Mitochondrial protein UCP1 mediates liver injury induced by LPS through EKR signaling pathway

P. LIU¹, J. YANG², Z.-Y. CHEN³, P. ZHANG⁴, G.-J. SHI⁵

Ping Liu and Jian Yang are equal contributors

Abstract. – **OBJECTIVE**: Mitochondria are abundant in liver. The roles of mitochondrial protein in liver injury and related signaling pathways are still unclear. UCP1 is a novel mitochondrial transmembrane protein. Its expression pattern and function in liver still needs further investigation.

MATERIALS AND METHODS: A mouse model of liver injury was established by the treatment of LPS. UCP1 expression in the liver tissue was detected by Western blot and qRT-PCR. ERK signaling activity was tested by enzymatic activity kit. ATP production was evaluated by flow cytometry. Cell apoptosis was determined by Western blot and flow cytometry. ERK signaling pathway inhibitor, U0126, was used treat mice. Liver tissue from sepsis patien collected from the surgery.

RESULTS: Our data showed that the lev UCP1 was upregulated, ERK signature was tivated, ATP production was and d apoptosis was enhanced in jury model caused by LP 3n ession, insignificantly suppress CP1 hibited ERK signaling ed ATP hway, el production, and re ver cell poptosis in mice liver inju model. increased, ERK d, and cell signaling activ tosis elevated in the liver ti psis patients.

er tissue of me viver only model and sepsis paties of me viver only model and sepsis paties of me viver only model and sepsis paties of me viver only model and sepsis dulation of mitochondric of paties of the control of the control

Key Wo

Mitoche al protein UCP1, ERK signaling pathway, LPS, Liver injury.

Introd

jury wh LPS induced liv gs to a kind y re of liver inflamm ome. It is chaise sy case fatality rate, racterized by a incre high cost ence^{1,2}. Liver injury caused can le tissue hypoperfusion, septio Lock n dystunction, and death throuartiple med sms³⁻⁵. Therefore, effective detion is the presse and foundation of the treatent of liver injury induced by LPS^{6,7}. According to teria, the treatment to the mice with mmation became less effective⁸. At present, it is urgently needed to explore the biomarker b good specificity and sensitivity for early diasis, treatment, and prognosis of LPS-induced liver injury. Previous studies showed that biomarkers for LPS-induced liver injury mainly included the indicator of tissue perfusion, organ function, inflammatory cytokines, and liver tissue dynamics. However, the limitation was that all of these indicators were lack of specificity and high sensitivity^{9,10}. Therefore, a better molecular biomarker is needed for the diagnosis of liver injury caused by LPS in clinic¹¹. LPS-induced liver injury involves a variety of mechanisms, including the structure and function changes of mitochondria associated with inflammatory mediators^{12,13}. Myocardial mitochondria are the important target of liver cell during liver injury. Following the development of biogenetics and the concept of cellular hypoxia, it was speculated that the mitochondrial energy metabolism had certain relationship with its own dynamics changes^{14,15}. Mitochondrial protein UCP played an important role

¹Department of Cadre Health Care, Qingdao Municipal Hospital, Qingdao, Shandong, China ²Department of Hepatobiliary Surgery, the First Affiliated Hospital of Shihezi University Medical College, The Xinjiang Uygur Autonomous Region, Xinjiang, China

³Department of Hepatobiliary Surgery, Chengyang People's Hospital, Qingdao, Shandong, China

⁴Department of Gynecology, Qingdao Municipal Hospital, Qingdao, Shandong, China

⁵Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Qingdao, Shandong, China

in mitochondrial function¹⁶, which may be closely related to liver injury^{17,18}. In this study, we intend to explore the potential relationship between UCP1 levels in liver cells and liver injury induced by LPS. As there is still lack of evidence about the relationship between UCP1 and LPS induced liver injury¹⁹, we selected patients with liver injury from ICU and tested UCP1 level in the liver based on the data concerning mouse model of liver injury, in order to evaluate the value of UCP1 as molecular biomarker in liver injury induced by LPS and provide theoretical basis for the early diagnosis and prognosis of liver injury.

Materials and Methods

Experimental Model

Mouse liver injury model was established using LPS according to previous report¹⁰. Female C57BL/6 mouse at 6-8 weeks old was intraperitoneal injected by LPS at 25 µg/kg. The mouse injected by normal saline was treated as control. The experiment was approved by the Ethics Committee in our hospital conforming to anima fare¹⁰. The liver tissue collected from the patients received surgery was used as expen tal group, while the liver tissue obtained from ver operation due to traffic accident was treat as control. The experiment was apd by the Ethics Committee in Qingdao N Hospital. All the subjects had signed me

Liver Tissue Preparation

The liver tissue was extracted mouse or operation. The tissue daysed and by normal saline and acer for four times den, the homogenate was red at -20°C.

Caspase-3 Ac y Detection

was detected by kinase ERK signal activi activity kit. activity was tested by casp < 10⁵ liver celmicroplate otal o ate to ls were added ease the protein. ted with caspase-3 Then, the mixture chron room temperature substa r 20 min. At last, cells were tested avoi 17 2 nm 17 . ropla

An. tion

Mito ATP production in liver tissue was detected by cytometry. The liver tissue was added with tysis to prepare the suspension.

Next, the mixture was added on fluid and tested on microplate on according to the standard curve.

Western Blot

The protein was acted from the tissue and quantified. Not the profession was sequrated by SDS-PAGE and dyzed Image I software to obtain the gray.

Real-time R

was extracte n the liver tissue Total 1 vitrogen, Carlsbad, CA, USA) using and r d for Real-time PCR²¹. Total PNA was rev scribed to cDNA using The PCR reaction system a 42°C for 60 m ained 1 µl cDNA, 2 µl primers, 4 µl dNTP, 2 oading buffer and 1 μl Taq enzyme. The PCR ed of 94°C for 5 min, followed ction was con cycles of for 30 s and 55°C for 30 s. The were as follows.

and 5 - CCACCTAAATCAACCTCCAACCA-3'; in 5'-TTATTAGAGGGTGGGGCGGATCGC-3' ACCTAAATCGACCTCCGACCG-3'.

0126 Pretreatment

ERK signaling pathway inhibitor U0126 was sed to treat mouse through intraperitoneal jection at 10 μg/kg. Next, the mouse was intraperitoneal injected by LPS at 25 μg/kg. The mouse injected by normal saline was treated as control.

Statistical Analysis

All data analyses were performed on SPSS 11.0 (SPSS Inc., Chicago, IL, USA). The measurement data were depicted as mean \pm standard deviation. p<0.05 was considered as statistical significance.

Results

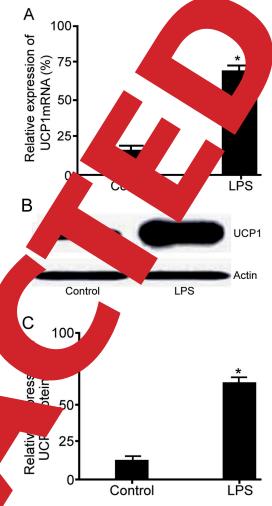
UCP1 Expression in Liver Cells from Mouse Liver Injury Model

As shown in Figure 1A, qRT-PCR results demonstrated that UCP1 mRNA significantly increased in liver cells from liver injury model compared with that in normal control (p=0.0017). As shown in Figure 1B and C, Western blot results revealed that the level of UCP1 protein obviously elevated in liver cells from liver injury model compared with that in normal control (p=0.0027).

ERK Signaling Activated, Mitochondrial ATP Production Reduced, and Cell Apoptosis Enhanced in Liver Injury Mouse

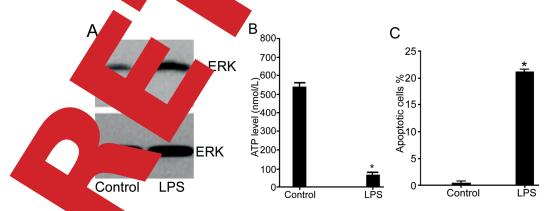
To further discuss the molecular mechanism of UCP1 in LPS induced liver injury model, we tested mitochondrial ATP production and cell apoptosis. As shown in Figure 2, our data exhibited that ERK signaling pathway was activated, mitochondrial ATP production was reduced, and cell apoptosis was enhanced in mice with liver injury.

The Influence of ERK Signaling Pathway Inhibitor U0126 Pretreatment


Next, to investigate the specific mechanism of UCP1 in liver injury induced by LPS, we detected ATP level and cell apoptosis in mice model pretreated by U0126. As shown in Figure 3, U0126 intervention significantly suppressed UCP1 expression, inhibited ERK signaling pathway, enhanced ATP production, and restrained liver cell apoptosis in mice, suggesting a key role of U0126 on ERK signaling pathway.

UCP1 Expression and Cell Apoptosis the Liver Tissue from Sepsis Patient

To study UCP1 expression and cell apopto sepsis patients, we collected the liver tissue for sepsis patients who received surgery. As shown a Figure 4, the level of UCP1 was incomed, along with the increasing activation of the pathway and elevation of cell at the liver tissue of sepsis patients.


Discus

LPS seriously threat mammal's life the cause of liver inflant mong which, the

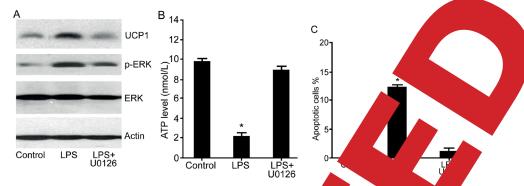


Figure 1. UCP1 expression in liver cells from mouse liver injury model. (A) qRT-PCR detection. (B) Western blot detection. (C) Western blot analysis. *p<0.05, compared with control.

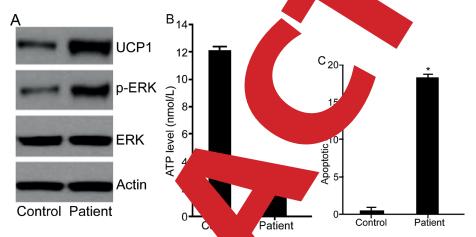

function of mitochondrial uncoupling protein (UCP1) in liver injury induced by LPS remains to be further investigated. Early diagnosis and treat-

Figure 2. ERA and an activated, mitochondrial ATP production reduced, and cell apoptosis enhanced in liver injury mouse. (A) Western block etection. (B) ATP production. (C) Cell apoptosis detection.

Figure 3. The influence of ERK signaling pathway inhibitor U0126 pretreat duction. (*C*) Cell apoptosis detection. *p<0.05, compared with control.

Figure 4. UCP1 expression and cell aport on the liver production. (A) Western blot detection. (B) ATP production. (C) Cell apoptosis detection approach of the liver production.

jury m ment were of prime important duced by LPS^{22,23}, but cur nt m viomarker provided an inconve it and un case²⁴. Therei solution to evaluate th his bility of UCP1 as study aimed to explor nag the biomarker in ea prognosis of liver injury induced by LPS. ced liver injury is a con ated inflamma. response process induc ction. A variety of iny in flammatory kines ract with each other to induce inte respo during the prog to mouse deacess of liver us le th^{1,2}. Under this pro-inflammatory cytok s were activated to aling p age in organs and tissues of mamlead matory strategy should m id an Iflammatory diseases²⁵⁻²⁷. e application of reasonable detection detection and prognosis is of method In our study on the molecugreat signing lar mechanism of UCP1 in liver injury, we found

that UCP1 was upregulated, ERK signaling was activated, ATP production was reduced, and cell apoptosis enhanced in mouse model with liver injury induced by LPS. Also, with the treatment of U0126, the expression of UCP1 was significantly suppressed, ERK signaling pathway was inhibited, ATP production was increased, and liver cell apoptosis was decreased in mice. It suggested that UCP1 played its role in liver injury through the regulation of ERK signaling pathway, ATP production and cell apoptosis. Endotoxin injection in mouse showed the production of reactive oxygen species (ROS), sustained inflammatory activation and over expression of immune cytokines¹⁴. Moreover, levels of inflammatory cytokines were upregulated when ROS was activated^{15,16}. Thus, the role of inflammatory cytokines in regulating reactive oxygen species and the influence of molecular target still needs further exploration. There are also deficiencies in this study. Firstly, the sample scale was small and larger scale was needed to

investigate the possibility of UCP1 as a practical biomarker in liver injury induced by LPS. Secondly, since most liver injury patients received chemotherapy and other treatments²⁸, the impact of treatment on UCP1 level is still to be further elucidated. Lastly, UCP1 as the target in animal liver injury model requires to be evaluated.

Conclusions

UCP1 exerted an essential effect on mice with liver injury and sepsis patients by regulating mitochondrial ATP production, cell apoptosis and ERK signaling pathway.

Acknowledgments

This work was supported by Qingdao Wei Planning Commission topics (2007Y004).

Conflict of interest

The authors declare no conflicts of interest.

References

- 1) Wei H, Liu L, Chen Q. Selective reconstruction of mitochondria via mitophagy: distinct ferent mitochondrial stresses Acta 2015; 1853: 2784-2790
- 2) PALIKARAS K, TAVERNARAKIS N. N sis: the interplay between mitch drial biogenesis. Exp Ge 120 188.
- 3) Angus DC, van der Pour shock. N Engl J Mer 369: 840-851.
- 4) Jones AE, Puskarich duced tissue hypoperfusion. Crit Carrie 29-779, ix.
- 5) ZHANG W, REN H. XI. C, ZHU C, D, WANG J, LIU L, LI W Q, DU L, ZHENG HANG C, LIU J, CHEN Q. H'ANG C LIU J, CHEN Q. H'ANG C LIU L'AND CITIZEN CITIZEN CONTROL CONTROL
- 6) SANTEL ME B, H MR M, YOULE RJ, FUL-LER MT. MIN rotein generally expressed mediator of the function of the second se
- 7) itochondria. /namics--mitochondrial in human diseases. N Engl J 2251.
- ACIN M, ZARZANO A. Mitochondrial dynanmalian health and disease. Physiol Rev. 799-845.
- ZORZANO M, SEBASTIAN D, SEGALES J, PALACIN M. Mitochon I al fusion proteins: dual regulators

- of morphology and metaboling label Dev Biol 2010; 21: 566-574.
- SHANG Y, LIU Y, DU L, W , CHENG X W, Wang X, Jin H, Yang CHEN Q. ed expression of uncoup n 2 to mo ver lysa increases the susceptibil ide/ galactosamine-ind ed acui patology 2009; 50: 12 216
- 11) DING H, JIANG N H, LIV LIU D, ZHA, F, WEN L, LIU S, JI LL, ZHA, I. Restroye of mitochondrial fusion and fisher the later of the lat
- 12) BENART FELLANCE N. J. RRONE P. FERNANDEZ
 H, L. T. ROSSIGNOL R. Chondrial bioenerget Stural network organization. J Cell
 S. Jr. 848.
- 13) DENON RM. He constructed from the first state of mitochondrial dehydroases by calculates. Biochim Biophys Acta 2009; 1787: 1309-1315.
- Ryan JJ, Marsboom G, Fang YH, Toth PT, Morrow E, Luo N, Pia Hong Z, Ericson K, Zhang HJ, Han M, Hang J, Chen CT, Sharp WW, Archer SL. GC1alphs diated mitofusin-2 deficiency in d humans with pulmonary arterial 1. Am J Respir Crit Care Med 2013; 187. 605-878.
- Tolkovsky AM. Mitophagy. Biochim Biophys Acta 793: 1508-1515.
- te oxygen-sensing mechanisms. N Engl J Med 2005; 353: 2042-2055.
- 17) SHEERAN FL, PEPE S. Energy deficiency in the failing heart: linking increased reactive oxygen species and disruption of oxidative phosphorylation rate. Biochim Biophys Acta 2006; 1757: 543-552.
- SINGER M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014; 5: 66-72.
- Donadelli M, Dando I, Fiorini C, Palmieri M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 2014; 71: 1171-1190.
- LE MINH K, BERGER A, EIPEL C, KUHLA A, MINOR T, STE-GEMANN J, VOLLMAR B. Uncoupling protein-2 deficient mice are not protected against warm ischemia/reperfusion injury of the liver. J Surg Res 2011; 171: 742-748.
- 21) FRIDELL YW, SANCHEZ-BLANCO A, SILVIA BA, HELFAND SL. Targeted expression of the human uncoupling protein 2 (hUCP2) to adult neurons extends life span in the fly. Cell Metab 2005; 1: 145-152.
- 22) LOPEZ NE, GASTON L, LOPEZ KR, COIMBRA RC, HAGENY A, PUTNAM J, ELICEIRI B, COIMBRA R, BANSAL V. Early ghrelin treatment attenuates disruption of the blood brain barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Brain Res 2012; 1489: 140-148.
- 23) IVANKOVIC D, CHAU KY, SCHAPIRA AH, GEGG ME. Mitochondrial and lysosomal biogenesis are activated following PINK1/Parkin-mediated mitophagy. J Neurochem 2016; 136: 388-402.

- 24) RAKOVIC A, GRUNEWALD A, KOTTWITZ J, BRUGGEMANN N, PRAMSTALLER PP, LOHMANN K, KLEIN C. Mutations in PINK1 and Parkin impair ubiquitination of Mitofusins in human fibroblasts. PLoS One 2011; 6: e16746.
- 25) WANG X, LIU D, CHAI W, LONG Y, SU L, YANG R. The role of uncoupling protein 2 during myocardial dysfunction in a canine model of endotoxin shock. Shock 2015; 43: 292-297.
- 26) Toda C, Diano S. Mitochondrial UCP2 in the central regulation of metabolism. Best Pract Res Clin Endocrinol Metab 2014; 28: 757-764.
- 27) HUANG LH, PAN XP, GONG Anti-in-flammatory effects of thr Mongolian medicine medi
- 28) KORNFELD OS, HWAY S, DISATING JAMES JA