

EZETIMIBE REDUCES α-TOCOPHEROL **LEVELS IN TYPE 2 DIABETES**

A. TOFFALINI¹, N. VIGOLO¹, N. ROLLI¹, E. PAVIATI², M. GELATI², E. DANESE², G. ZOPPINI¹

¹Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy

> ²Section of Clinical Biochemistry, Department of Engineering for Innovation Medicine, University and Hospital Trust of Verona, Verona, Italy

CORRESPONDING AUTHOR

Giacomo Zoppini, MD; E-mail: giacomo.zoppini@univr.it

ABSTRACT - Objective: α-tocopherol has a protective role against free radical-induced damage. The intestinal absorption of α -tocopherol is in part carried out by Nieman-Pick1-like1 protein, which is the target of ezetimibe, a drug used for the treatment of hypercholesterolemia. Ezetimibe is frequently prescribed to patients with type 2 diabetes in combination with statins. Therefore, the aim of the present study was to investigate the impact of ezetimibe treatment on the blood level of α -tocopherol.

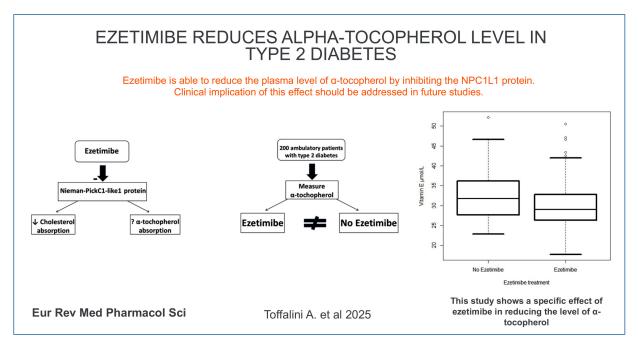
Materials and Methods: Two hundred patients affected by type 2 diabetes, regularly attending the diabetes clinic, were recruited. All patients should not have received vitamin supplements in the six months preceding the study. α -tocopherol was measured by reverse-phase high-performance liquid chromatography with UV detection. Other laboratory parameters were determined by standard laboratory procedures. Patients were analyzed according to ezetimibe treatment. A linear multivariate regression analysis was used to estimate the factors associated with α -tocopherol level.

Results: The majority of patients were on ezetimibe/statin treatment. Patients taking ezetimibe showed a significantly lower α -tocopherol level, 29.9 \pm 5.7 vs. 32.9 \pm 7.0 μ mol/L (p=0.006) compared to those not taking the drug. Ezetimibe was significantly and negatively associated with α -tocopherol level in the multivariate analysis (β standardized coefficient = -.217, p = .002).

Conclusions: Treatment with ezetimibe can reduce α -tocopherol plasma levels by inhibiting the Niemann-Pick C1-like protein. Future studies are required to address the clinical implications of this finding.

KEYWORDS: Diabetes, Antioxidant, α-tocopherol, NPC1L1, Ezetimibe.

INTRODUCTION


α-tocopherol, a fat-soluble antioxidant and an essential nutrient for human beings, participates in the protective reactions against damage from free radicals¹⁻³. Dietary uptake is an indispensable source of α-tocopherol due to the inability of human cells to synthesize this molecule⁴. α -tocopherol appears to be a promising candidate for cardiovascular disease (CVD) prevention⁵. Type 2 diabetes is an increasing chronic disease, and CVD are the

major cause of morbidity and mortality for patients affected by this conditition⁶. In this context, some observational studies have shown an association between α-tocopherol intake and a lower rate of overall and cardiovascular mortality⁷⁻¹⁰.

At the intestinal level, Nieman-PickC1-like 1 protein (NPC1L1) contributes to the absorption of α -tocopherol as well as of coenzyme Q10 and of vitamin K4. However, other proteins, such as CD36, are also involved in the absorption of α -tocopherol4.

This work is licensed under a <u>Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</u>

Graphical Abstract. Ezetimibe is known to reduce the absorption of cholesterol, no information is available on its impact on the absorption of vitamin E. The comparison between subjects treated with ezetimibe and those not treated, showed that the vitamin E levels were significantly lowers in treated subjects. Future studies are needed to address the clinical implications of this finding.

It should be emphasized that the main function of NPC1L1 protein is the intestinal absorption of cholesterol¹¹. Therefore, NPC1L1 inhibition is a crucial therapeutic target for reducing plasma cholesterol levels.

The intestinal uptake of α -tocopherol is essential for the maintenance of whole-body homeostasis¹². However, how α -tocopherol is transported across the membrane by NPC1L1 protein remains unknown.

NPC1L1 protein is the therapeutic target of ezetimibe. This drug inhibits its transport activity, thereby reducing the absorption of cholesterol, as well as the absorption of α -tocopherol¹¹. Ezetimibe in rats reduced the absorption of α -tocopherol almost completely when both substances were administered orally together¹³.

Patients with type 2 diabetes are frequently treated with ezetimibe, usually in combination with statins. The combination of statin and ezetimibe is the cornerstone of hypercholesterolemia treatment in diabetes to achieve the specific target of LDL-cholesterol.

Therefore, the aim of the present study was to estimate the impact of ezetimibe treatment on the blood level of α -tocopherol in patients with type 2 diabetes.

MATERIALS AND METHODS

In this cross-sectional observational study, 200 patients regularly attending our diabetic clinic at

the University of Verona were consecutively recruited. The inclusion criteria were age between 18 and 80 years, both sexes, and T2D diagnosed with the standard criteria at least 3 months before enrollment. The exclusion criteria were a history of pernicious anemia, autoimmune gastritis, pancreatitis, pregnancy, and vitamin supplementation within 6 months before the study.

The study was approved by the Local Ethics Committee of the Hospital Trust of Verona, with protocol number No. 3853CESC and date July 6, 2022. Informed consent was obtained from each participant. The study was conducted in accordance with the principles outlined in the Declaration of Helsinki and its latest amendments. The patients were recruited between September 2022 and March 2023, and the study was conducted at the University of Verona.

Venous blood samples were drawn in the morning after an overnight fast. Serum creatinine (Roche enzymatic method) and other biochemical blood measurements were determined using standard laboratory procedures (Cobas 8000, Roche Diagnostics GmbH, Mannheim, Baden-Württemberg, Germany). Low-density lipoprotein (LDL) cholesterol was calculated using Friedewald's equation, except when triglycerides were above 400 mg/dl. Hemoglobin A1c (HbA1c) was measured by an automated high-performance liquid chromatography analyzer (HA-8140; Menarini Diagnostics, Florence, Italy). The glomerular filtration rate (GFR) was estimated us-

ing the CKD Epidemiology Collaboration (CKD-EPI) equation 14 . Albuminuria was measured by an immuno-nephelometric method on a morning spot urine sample and expressed as the albumin-to-creatinine ratio. Patients studied during the programmed blood test for medical control underwent an additional blood test for the α -to-copherol, which was measured by reverse-phase high-performance liquid chromatography (HPLC) with UV detection (HPLC Prominence, Shimadzu Corporation, Kyoto, Japan).

Body mass index (BMI) was calculated by dividing the weight in kilograms by the height in meters squared. Height and weight were measured using a calibrated stadiometer and balance-beam scale, respectively, during the scheduled visit. Height was recorded to the nearest 0.1 cm and weight to the nearest 0.1 kg with minimal clothing. A physician measured the blood pressure of patients using a mercury sphygmomanometer after they had been seated quietly for at least 5 minutes. Patients were considered to have hypertension if their blood pressure was ≥140/90 mmHg or if they were taking any anti-hypertensive drugs. Information on smoking status and the use of medications was obtained from all patients via interviews during medical examinations. The duration of diabetes was calculated from the date of diabetes diagnosis. A single ophthalmologist diagnosed diabetic retinopathy using fundoscopy after pupillary dilation according to a clinical disease severity scale (no retinopathy, non-proliferative, proliferative, or laser-treated retinopathy). The presence of proliferative retinopathy was confirmed by fundus fluorescein angiography. Nephropathy was defined as the presence of eGFR <60 ml/min/1.73 m² and/or abnormal albuminuria (i.e., an albumin-to-creatinine ratio ≥30 mg/g creatinine). A confirmed history of myocardial infarction, angina, coronary revascularization, stroke, transitory ischemic attack, carotid revascularization, non-traumatic amputation, gangrene, and/ or lower limb revascularization was considered a valid proxy for prior clinical cardiovascular disease (CVD). Ultrasonography scanning of common and internal carotid arteries was performed (Esaote Wall Track System, Esaote S.p.A., Genova, Italy), and a cut-off of 60% was used to define a significant arterial stenosis. Ultrasonography scanning of lower limb arteries was performed, and any detected stenosis or moderate-to-severe reduction of blood flow at the proximal and/or distal level was considered as a marker of peripheral artery disease.

Statistical analysis

Data were summarized as mean ± standard deviation (SD) for continuous variables and ab-

solute values or percentages for categorical variables. Differences in clinical/ biochemical characteristics were tested using the Student's t-test for normally distributed variables and the Mann-Whitney test for non-normally distributed variables. The χ^2 test was used to study differences in proportions or percentages between the two groups for categorical variables. A forced-entry linear regression model was performed adjusting for age, BMI, eGFR, ezetimibe (dummy variable), and gender. Covariates for the multivariate regression model were chosen as potential confounding based on their biological plausibility. A p-value of less than 0.05 was considered statistically significant. The Analyses were carried out with SPSS Statistics for Data Analysis v.20.0.1.1 (IBM Corp., Armonk, NY, USA).

RESULTS

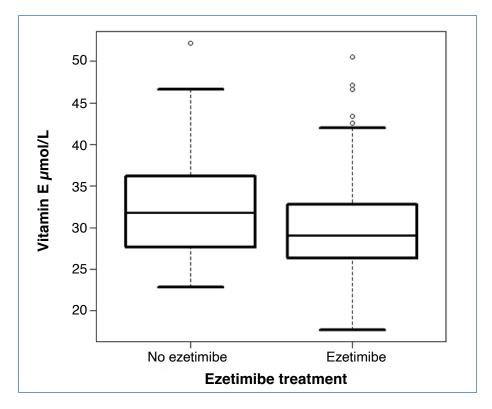
Ezetimibe was taken by 79.5% of type 2 diabetes patients; of these, 62.0% were men and 37.1% were women (p=.033). A previous cardiovascular event was recorded in 18.2% of the patients.

In Table I, the main clinical and laboratory characteristics of the patients stratified by the use of ezetimibe are shown. Patients in the ezetimibe group were older, with a longer duration of diabetes. In this group, males were more represented than females. As expected, they showed a significantly lower concentration of total and LDL cholesterol (102.7 \pm 28.3 vs. 64.0 \pm 24.2, p <.001) and a higher prevalence of clinical cardiovascular diseases (2.5% vs. 18.2%, p=.007). The concentration of α -tocopherol was significantly lower in patients treated with ezetimibe, 29.9 \pm 5.7 vs. 32.9 \pm 7.0 μ mol/L (p=.006), Figure 1. Men showed a lower level of α -tocopherol than women (29.6 \pm 5.8 vs. 32.5 \pm 6.3, p=.002). Ezetimibe was significantly associated with the level of α -tocopherol in the multivariate analysis, standardized β coefficient -.217, p=.002 (Table II). Other significant variables associated with α -tocopherol were sex and BMI.

DISCUSSION

The primary finding of the present study is the significantly lower level of α -tocopherol in patients with type 2 diabetes who are treated with ezetimibe compared to those not receiving it. The effect of this drug on α -tocopherol levels was maintained in the multivariate analysis. α -tocopherol is considered an important protective factor against oxidative stress¹⁵, particularly by limiting free radical-induced damage to

Table I. Clinical characteristics of ambulatory patients with type 2 diabetes according to the treatment of dyslipidemia.


	No Ezetimibe (n=41)	Ezetimibe (n=159)	p
Age, yr	64.8 ± 9.4	67.6 ± 8.4	.067
Duration of diabetes, yr	9.9 ± 8.2	12.7 ± 8.2	.053
BMI, Kg/m ²	27.6 ± 4.0	28.2 ± 4.7	.688
Sex, M %	80.0	62.3	.025
Systolic blood pressure, mmHg	135.5 ± 18.3	133.9 ± 18.1	.730
Diastolic blood pressure, mmHg	82.3 ± 7.0	79.4 ± 11.1	.268
Glycated hemoglobin, mmol/mol Hb	51.3 ± 13.2	53.2 ± 10.7	.329
Total cholesterol, mg/dl	175.3 ± 27.7	136.1 ± 29.4	<.001
HDL-cholesterol, mg/dl	49.3 ± 11.6	49.6 ± 16.7	.916
LDL-cholestrol, mg/dl	102.7 ± 28.3	64.0 ± 24.2	<.001
Triglycerides, mg/dl	117.0 ± 50.7	113.5 ± 45.5	.679°
AST, U/L	26.6 ± 21.6	24.2 ± 9.3	.505
ACR, mg/gr	59.9 ± 218.4	184.6 ± 468.9	.060°
eGFR, ml/min 1.73 m ²	83.9 ± 17.8	78.9 ± 20.1	.172
Clinical cardiovascular disease, %	2.5	18.2	.007
Nephropathy, %	25.0	28.6	.407
Retinopathy, %	10.5	15.8	.299

[°]Test Mann-Whitney, otherwise t-test or χ^2 test. Data are presented as mean±standard deviation. BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein; AST, aspartate transaminase; ACR, albumin-creatinine ratio; eGFR, estimated glomerular filtration rate.

cell membranes and plasma high-density (HDL) and low-density (LDL) lipoprotein 16 . Moreover, α -tocopherol decreases the cytotoxic effect of oxidized lipoproteins, smooth muscle cell proliferation, platelet aggregation, and systemic inflammation 17 .

To the best of our knowledge, this is the first report of lower vitamin E levels in subjects treated with ezetimibe.

It has been claimed that vitamin E levels, as a lipid-soluble antioxidant, play a crucial role in mitigating lipid peroxidation reactions¹⁸, and low

Figure 1. The figure shows the box plot of α -tocopherol concentrations according to the treatment with or without ezetimibe.

Table II. Multivariate linear	r rograccion analycic with	a vitamin E ac don	andant variable
Table II. Mullivariale linear	regression analysis will	i vitamin e as deb	endent variable.

Variables	β standardized coefficient	р
Age, yrs	.012	.894
BMI, Kg/m ²	169	.018
eGFR, ml/min 1.73 m²	.123	.155
Ezetimibe, yes	217	.002
Sex	283	<.001

BMI: body mass index; eGFR: estimated glomerular filtration rate.

levels of vitamin E lead to an increased oxidative burden in the body^{19,20}.

Vitamin E, as part of micronutrients with antioxidant and anti-inflammatory properties, is considered an ingredient of a heart-healthy diet^{21,22}. The absorption of dietary α -tocopherol is primarily mediated by the NPC1L1 protein, and other proteins may also be involved in the transport of α -tocopherol across intestinal cells. NPC1L1 is also a therapeutic target of ezetimibe^{11,23,24}. The aim of inhibiting NPC1L1 activity is primarily to reduce the absorption of dietary cholesterol²⁵.

Even though ezetimibe reduced the VE concentrations in our patients, none of them showed vitamin E levels compatible with deficiency or a very low level. Two possible explanations may put forward to explain why α-tocopherol was not completely inhibited by ezetimibe. The first is that NPC1L1 is not the only protein that transports α -tocopherol in the intestine, other proteins, such as CD36²³, are implicated. The second explanation, as shown in an animal model¹³, is that only the simultaneous administration of ezetimibe and vitamin E was able to reduce blood α -tocopherol to very low levels. The latter situations may occur rarely in humans. Thus, it is unclear whether the reduction of vitamin E induced by ezetimibe is clinically relevant. To address this point, a future study, investigating antioxidant activity, is needed. However, a recent review on micronutrients proposed an alternative cutoff for vitamin E based on levels associated with lower mortality, suggesting it is less than 30 μmol/L²⁶. Thus, the latter is a blood level higher than that currently accepted for vitamin E deficiency.

Nevertheless, in light of the effect of ezetimibe on the vitamin E level, it should be clearly stated that the combination therapy "statins + ezetimibe" is the cornerstone of hypercholesterolemia treatment²⁷. ESC/EAS guidelines²⁸ recommend adding ezetimibe to statin treatment when the LDL cholesterol target is not achieved, and increasing evidence supports combination therapy as the standard of care, as it reduces the likelihood of being off-target compared to statins alone^{29,30}.

Our study has limitations; it is cross-sectional, and thus it does not allow for conclusions about

causality. Additionally, we did not have vitamin E concentrations before starting ezetimibe. Moreover, ezetimibe was prescribed along with statins in fixed combinations. We do not know the possible effects of statins on vitamin E; nevertheless, a previous study addressing this issue reported no negative impact of statins on plasma vitamin E level³¹. Moreover, the present findings are restricted to patients with type 2 diabetes and therefore they cannot be generalized to other populations. The strengths of our study include the number of patients, the care to exclude subjects who took vitamin supplements during the six months before the study, and the completeness of the database.

CONCLUSIONS

In conclusion, we found that therapy with ezetimibe can reduce plasma levels of α -tocopherol by inhibiting the NPC1L1 protein. Future studies are needed to address the clinical implications of this finding.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

ETHICS APPROVAL AND INFORMED CONSENT

The study was approved by the Local Ethics Committee of the Hospital Trust of Verona, with protocol number No. 3853CESC on July 6, 2022. Informed consent was obtained from each participant. The study was conducted in accordance with the principles outlined in the Declaration of Helsinki and its latest amendments.

FUNDING

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

AUTHORS' CONTRIBUTIONS

AT contributed to the preparation of data, NV contributed to the preparation of data, NR contributed to the preparation of data, EP laboratory analyses of vitamins, MG laboratory analyses of vitamins, ED laboratory analyses of vitamins and critically reviewed the manuscript, GZ analysis of data and wrote the manuscript.

ORCID ID

G. Zoppini: 0000-0003-1085-554x

DATA AVAILABILITY

Data may be requested from the corresponding author upon reasonable motivation.

REFERENCES

- Khadangi F., Azzi A. Vitamin E—The Next 100 Years. IUBMB Life 2019; 71: 411-415.
- Shahidi F, Pinaffi-Langley ACC, Fuentes J, Speisky H, de Camargo AC. Vitamin E as an essential micronutrient for human health: Common, novel, and unexplored dietary sources. Free Radic Biol Med 2021; 176: 312-321.
- Niki E. Lipid oxidation that is, and is not, inhibited by vitamin E: Consideration about physiological functions of vitamin E. Free Radic Biol Med 2021; 176: 1-15.
- Narushima K, Takada T, Yamanashi Y, Suzuki H. Niemann-pick C1-like 1 mediates alpha-tocopherol transport. Mol Pharmacol 2008; 74: 42-49.
- 5) Garg A, Lee JC. Vitamin E: Where Are We Now in Vascular Diseases? Life (Basel) 2022; 12: 310-320.
- Fedeli U, Schievano E, Targher G, Bonora E, Corti MC, Zoppini G. Estimating the real burden of cardiovascular mortality in diabetes. Eur Rev Med Pharmacol Sci 2019; 23: 6700-6706.
- Zeng Q, Liao M, Li Y, She F, Zhang P. Association between dietary vitamin E intake and incident cardiovascular disease, cardiovascular, and all-cause mortality: A prospective cohort study using NHANES 2003-2018 data. Int J Cardiol Cardiovasc Risk Prev 2024; 24: 200340.
- 8) Wang Y, Han L, Ling S, Sha Y, Sun H. Dietary intake of potassium, vitamin E, and vitamin C emerges as the most significant predictors of cardiovascular disease risk in adults. Medicine (Baltimore) 2024; 103: e39180.
- Liu C, Liang D. Association between Dietary Vitamin E Intake and the Risk of Hypertension in US Adults. Curr Vasc Pharmacol 2024; 22: 391-403.
- 10) Corina A, Rangel-Zúñiga OA, Jiménez-Lucena R, Alcalá-Díaz JF, Quintana-Navarro G, Yubero-Serrano EM, López-Moreno J, Delgado-Lista J, Tinahones F, Ordovás JM, López-Miranda J, Pérez-Martínez P. Low Intake of Vitamin E Accelerates Cellular Aging in Patients with Established Cardiovascular Disease: The CORDIOPREV Study. J Gerontol A Biol Sci Med Sci 2019; 74: 770-777.
- 11) Garcia-Calvo M, Lisnock J, Bull HG, Hawes BE, Burnett DA, Braun MP, Crona JH, Davis HR Jr, Dean DC, Detmers PA, Graziano MP, Hughes M, Macintyre DE, Ogawa A, O'neill KA, Iyer SP, Shevell DE, Smith MM, Tang YS, Makarewicz AM, Ujjainwalla F, Altmann SW, Chapman KT, Thornberry NA. The target of ezetimibe is Niemann-Pick C1-Like 1 (NPC1L1). Proc Natl Acad Sci U S A 2005; 102: 8132-8137.
- Kiyose C. Absorption, transportation, and distribution of vitamin E homologs. Free Radic Biol Med 2021; 177: 226-237.
- 13) Nashimoto S, Sato Y, Takekuma Y, Sugawara M. Inhibitory effect of ezetimibe can be prevented by an administration interval of 4 h between α -tocopherol and ezetimibe. Biopharm Drug Dispos 2017; 38: 280-289.
- 14) Inker LA, Tighiouart H, Adingwupu OM, Shlipak MG, Doria A, Estrella MM, Froissart M, Gudnason V, Grubb A, Kalil R, Mauer M, Rossing P, Seegmiller J, Coresh J, Levey AS. CKD-EPI and EKFC GFR Estimating Equations: Performance and Other Considerations for Selecting Equations for Implementation in Adults. J Am Soc Nephrol 2023; 34: 1953-1964.

- Martin A, Wu D, Baur W, Meydani SN, Blumberg JB, Meydani M. Effect of vitamin E on human aortic endothelial cell responses to oxidative injury. Free Radic Biol Med 1996; 21: 505-511.
- 16) Arrol S, Mackness MI, Durrington PN. Vitamin E supplementation increases the resistance of both LDL and HDL to oxidation and increases cholesteryl ester transfer activity. Atherosclerosis 2000; 150: 129-134.
- 17) Skyrme-Jones RA, O'Brien RC, Berry KL, Meredith IT. Vitamin E supplementation improves endothelial function in type I diabetes mellitus: a randomized, placebo-controlled study. J Am Coll Cardiol 2000; 36: 94-102.
- 18) Traber MG, Cross CE. Alpha-Tocopherol from People to Plants Is an Essential Cog in the Metabolic Machinery. Antioxid Redox Signal 2023; 38: 775-791.
- 19) Traber MG. Vitamin E inadequacy in humans: causes and consequences. Adv Nutr 2014; 5: 503-514.
- Traber MG. Human Vitamin E deficiency, and what is and is not Vitamin E? Free Radic Biol Med 2024; 213: 285-292.
- 21) Knekt P, Reunanen A, Järvinen R, Seppänen R, Heliövaara M, Aromaa A. Antioxidant vitamin intake and coronary mortality in a longitudinal population study. Am J Epidemiol 1994; 139: 1180-1189.
- 22) Ziegler M, Wallert M, Lorkowski S, Peter K. Cardiovascular and Metabolic Protection by Vitamin E: A Matter of Treatment Strategy? Antioxidants (Basel) 2020; 9: 935.
- Reboul E. Vitamin E intestinal absorption: Regulation of membrane transport across the enterocyte. IUBMB Life 2019; 71: 416-423.
- 24) Kamishikiryo J, Haraguchi M, Nakashima S, Tasaka Y, Narahara H, Sugihara N, Nakamura T, Morita T. N-terminal domain of the cholesterol transporter Niemann-Pick C1-like 1 (NPC1L1) is essential for alpha-tocopherol transport. Biochem Biophys Res Commun 2017; 486: 476-480.
- Kytö V, Tornio A. Ezetimibe use and mortality after myocardial infarction: A nationwide cohort study. Am J Prev Cardiol 2024; 19: 100702.
- 26) Allen LH. Micronutrients Assessment, Requirements, Deficiencies, and Interventions. N Engl J Med 2025; 392: 1006-1016.
- 27) Lee SJ, Joo JH, Park S, Kim C, Choi DW, Hong SJ, Ahn CM, Kim JS, Kim BK, Ko YG, Choi D, Jang Y, Nam CM, Hong MK. Combination Lipid-Lowering Therapy in Patients Undergoing Percutaneous Coronary Intervention. J Am Coll Cardiol 2023; 82: 401-410.
- 28) Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, Chapman MJ, De Backer GG, Delgado V, Ference BA, Graham IM, Halliday A, Landmesser U, Mihaylova B, Pedersen TR, Riccardi G, Richter DJ, Sabatine MS, Taskinen MR, Tokgozoglu L, Wiklund O; ESC Scientific Document Group. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41: 111-188.
- 29) Capece U, Iacomini C, Mezza T, Cesario A, Masciocchi C, Patarnello S, Giaccari A, Di Giorgi N. Real-world evidence evaluation of LDL-C in hospitalized patients: a population-based observational study in the time-frame 2021-2022. Lipids Health Dis 2024; 23: 224-229.
- 30) Masana L, Ibarretxe D, Plana N. Reasons Why Combination Therapy Should Be the New Standard of Care to Achieve the LDL-Cholesterol Targets: Lipid-lowering combination therapy. Curr Cardiol Rep 2020; 22: 66-76.
- 31) Sahebkar A, Simental-Mendía LE, Ferretti G, Bacchetti T, Golledge J. Statin therapy and plasma vitamin E concentrations: A systematic review and meta-analysis of randomized placebo-controlled trials. Atherosclerosis 2015; 243: 579-588.