# MiR-524 inhibits cell proliferation and induces cell apoptosis in thyroid cancer via targeting SPAG9

Z. ZHEN<sup>1</sup>, F. DONG<sup>2</sup>, H. SHEN<sup>1</sup>, Q.-G. WANG<sup>1</sup>, L. YANG<sup>3</sup>, J. HU<sup>4</sup>

**Abstract.** - OBJECTIVE: To investigate the effect of miR-524 on the proliferation of thyroid cancer and its underlying mechanism.

PATIENTS AND METHODS: MiR-524 expression levels in thyroid cancer samples and para-cancer tissues were tested by quantitative Real-time polymerase chain reaction (qRT Cells proliferative ability and apoptosis evaluated through methyl thiazolyl tetra tum (MTT) and apoptosis assays, respectively uciferase reporter assay was used to confirm regulatory mechanism.

RESULTS: MiR-524 expressions reduction thyroid cancer specimen (regulated miR-524 expression inhibited the ability and enhanced components thyroid cancer cells. SPAG9 was seen to see the seen the seen

cancer cell prolift of and induced apoptosis via target 1999.

Key Words miR-52/ Hyroid cancer, Nation, Apoptosis.

#### ntroduction

a includes surgical treatment, thyroid hormone pression there isotope iodine 131 treatment adjuvant rad erapy. With effective and reatreatment pillary thyroid carcinoma genognosis; the 5-year survival rate 10-year survival rate is also above is about <sup>10</sup>64. However, some papillary cancers have the f dedifferentiation and eventually develorly differentiated thyroid cancer or undifferentiated carcinoma, which results in the decline of survival rate and quality of life<sup>5</sup>. Therefore, it is crucial to look for differentially expressed genes, predictive biomarkers and target molecules for intervention therapy, which could further increase the cure rate and survival rate of patients.

Previous researchers<sup>6-11</sup> have found that miRNAs are implicated in cell proliferation, apoptosis, invasion and angiogenesis in the different diseases. In thyroid cancer, miRNAs are differentially expressed in the serum of patients<sup>12</sup>. MiR-146a polymorphism is significantly associated with PTC risk<sup>13</sup>.

Upregulation of microRNA-524-5p enhances the cisplatin sensitivity of gastric cancer cells by modulating proliferation and metastasis *via* targeting SOX9<sup>14</sup>. miRNA-106b-mediated down-regulation of Clorf 24 expression induces apoptosis and suppresses invasion of thyroid cancer<sup>15</sup>. MiR-524-5p may function as a novel tumor suppressor gene, and suppresses the growth and invasive abilities of gastric cancer cells<sup>16</sup>. However, there are no relevant reports on the mechanism of action of miR-524 in PTC. The primary purpose of this study was to investigate the effect of miR-524 on the proliferation of thyroid cancer and its underlying mechanism.

<sup>&</sup>lt;sup>1</sup>Department of Otolaryngology, Head and Neck Surgery, Peking University arst Hospital, Bechina

<sup>&</sup>lt;sup>2</sup>Department of Breast and Thyroid Surgery, Union Hospital, Tongji Messen Soller Huazhong University of Science and Technology, Wuhan, China

<sup>&</sup>lt;sup>3</sup>Department of Emergency Medicine, Tongji Hospital, Tongji Med College, Chor University of Science and Technology, Wuhan, China

<sup>&</sup>lt;sup>4</sup>Department of Otolaryngology-Head and Neck Surgery, Tongger Stal, Tongji Manal College, Huazhong University of Science and Technology, Wuhan, Colla

#### **Patients and Methods**

#### Clinical Specimens

We collected fresh cancer tissues and para-cancer tissues from thyroid cancer patients in our hospital. All specimens were pathologically confirmed and quickly placed in inactivated RNAse cryopreservation tube in liquid nitrogen cryopreservation during 15 minutes, and then into 80°C refrigerator to be reserved. All patients did not receive the treatment of preoperative iodine 131 and thyroid hormone suppression therapy. Patients with other malignant tumors, systemic serious infection, and other serious systemic diseases were excluded. This study was approved by the Ethics Committee of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology. Signed written informed consents were obtained from all participants before the study.

#### Cell Culture

Thyroid cancer cell lines WRO [DMEM (Dulbecco's Modified Eagle Medium)] and TPC1 [RPMI (Roswell Park Memorial Institute)] um were supplemented with 10% fetal borum (FBS; Life Technologies, Grand Islan UY, USA). Both of them were maintained in a 5% and 37°C humidified incubator.

#### Cell Transfection

MiR-524 mimics and ics NC rified by (normal control) were syr ized and Shanghai Jima Co., Ltd. ( were seeded into 6-w plate sity or Z. X 10<sup>5</sup>/mL. After 48 l and miR-1RNA-524 524 mimics NC ransfected in RO and fectamine 2000 (Invit-TPC1 cell lin rogen, Carlsbau, CA, Us cording to the manufacturer rotocol. The in ncentration was 50 nM

## Occupative Leal-Time Polymerase Chair on (qR CR)

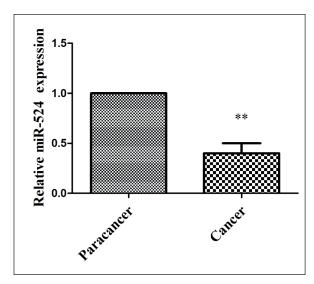
Total was condition the cell lines e tissue on the TRIzol reagent kit (Life Technologies, and Island, NY, USA). Then, all JA was synthesized into complementary of Nucleic Acid (cDNA) via using Mully reverse transcriptase (Fisher Scientific, burgh, PA, USA). Real-time PCR was condition was hima). The detection system condition was

94°C for 3 min, followed by 35 cycles of 94°C for 30 s and 60°C for 30 s. MiR-524 expression was normalized to U6 RNA. Primer es used in this study were as follow R: 5'-GCTGTGACCCTACAAA 3Α-3', 5'-AGCATCAACTTCAACGCT SPAG9, F: 5'-TCCTGAGCTGGATATG AGA-3', R: 5'-GCCTGAGCCAGC SAAG U6. F: 5'-CTCGCTTCGGCA ACA-3', R. **1**-3'. GCTTCACGAATTTG

### Methyl Thiazolyl Assay (MTT)

Cells (1 × cells/well) so d into a 96-well plate a incubated for  $\mu$ , 4, 5, and 6 days. Moreover, (20  $\mu$ L) was added to each well for 4  $\mu$  incubated. Then, dimethyl sulfoxide (DMSO) (150  $\mu$ L) was red to each well. The above at 540 nm was right was detected.

#### II Apoptosis etection


n accordance with the manufacturer's protocal lapoptos was detected by using an Annex (Becton, Dickinson and Company, 14. Lakes, NJ, USA). Cells (5×105) are re-suspended in the binding buffer (200  $\mu$ L) bated with FITC Annexin V (5  $\mu$ L) and open in iodide solution (1  $\mu$ L). Finally, cell apoptosis was analyzed by Calibur Flow Cytometer (Becton, Dickinson and Company, Franklin Lakes, NJ, USA).

#### Luciferase Reporter Assay

With PCR Amplification kit (TaKaRa, Dalian, China), SPAG9 3'UTR including the predicted binding site was amplified, and then cloned into the psiCHECK-2 reporter vector (Promega, Madison, WI, USA). By using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA), psiCHECK-2-SPAG9-wild (200 ng) or psiCHECK-2-SPAG9-mutant (200 ng) and miR-524 mimics (100 nmol/L) were co-transfected into WRO cells. The reporter activity was examined by a Dual Luciferase Reporter Assay kit (Promega, Madison, WI, USA).

#### Statistical Analysis

The results were carried out in triplicate. Graphpad Prism v5.0 (GraphPad Software, La Jolla, CA, USA) was used for analyses. The comparisons were examined using the Student's t-test. A p value of <0.05 was regarded as statistically significant.



**Figure 1.** The relative miR-524 expression was detected by qRT-PCR between paracancer tissues and cancer tissues (\*\*p<0.01).

#### Results

#### MiR-524 Was Down-Regulation In Thyroid Cancer Samples

To investigate the unknown functions 524 in thyroid cancer, we firstly detec the expression of miR-524 in cancer tissues ar ra-cancer tissues *via* using qRT-PCR method. analysis exhibited that lower exp 524 was found in cancer tiss red wit the para-cancer tissues (Fi e 1). finding demonstrated that dysre tion of R-524 is implicated in the progress hy

#### MiR-524 Overeg ession Co Repress Cell F sative Ability

the influence of miR-Furthermo proliferative ability, 524 down-regulation of MTT me d was used. In tingly, the result ed that the proof MT2 igure 2A and 2B) si ability of cells transfected with miR-524 lifer eased as compared to the control mi aggested at miR-524 overexpresgroup, oliferative ability. could

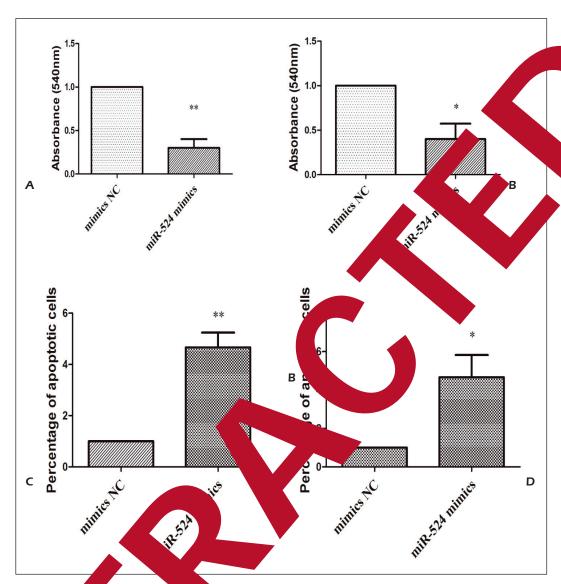
#### Up gulation miR-524 Co I Promote Cell Apoptosis

e futher investigated the changes cell apoptosis responding to up-regulation of 524 through an apoptosis assay. The results optosis assay showed that more cell apoptosis was detected in over-expressing miR-524 group compared with the control group (Figure

2C and 2D). These results indicated that up-regulation of miR-524 could promote cell apoptosis.

#### SPAG9 Was a Target Gene of miR-524

Various studies<sup>6-9</sup> have repor hat miRNAs influences the different cancer ament by modulating the target gene target gene of miR-524, we use ree miRN formatics predictive so are (miRDB, R and TargetScan). The tersect of the th bioinformatics predic e were a sessed (Figure 3A). A t of I ntial tar genes 31 of miR-524 w Additionshown in ally, accordi the research arg et al 17, essed in thyraid cancer, and SPAG9 w knockdown of SPA pression in cell significantly reduced cellula. th and colony formatic , we focused on AG9.


# R-524 Could Reversely rulate SPA Through Bounding to AG9 3'U

SPAG9 was shown in Figure 4A. To continuit, we planned a luciferase reporter assay. It displayed that the luciferase activity as a ficantly lessen in psiCHECK-2-SPAG9-Wild+mimics (Figure 4B), which demonstrated that miR-524 could bound to SPAG9 3'UTR.

Furthermore, we used qRT-PCR method to detect the regulatory correlation between miR-524 and SPAG9. This test displayed that declined SPAG9 was expressed when miR-524 was up-regulation (Figure 4C and 4D). All these results indicated that miR-524 could reversely regulate SPAG9 through bound to SPAG9 3'UTR.

#### Discussion

MiRNAs, as small single-chain non-coding RNAs with 19-22 nt in length, can regulate the expression of specific mRNAs at the transcriptional level, ultimately resulting in functional changes in cells or tissue. Evidence had indicated that abnormal up-regulation or down-regulation of miRNAs is associated with the development, invasion, and metastasis of various tumors<sup>18,19</sup>. Our work found that there is a significant difference in the expression of miR-524 between thyroid cancer and para-cancerous tissues. Through the previous functional tests, we discovered that miR-524 acts as a tumor suppressor gene in thyroid cancer. Ac-



**Figure 2.** MiR-524 as expression in the proliferation and promoted cell apoptosis. MTT assessment of up-regulated miR-524 on cell proliferation absorbance (a) was obtained in WRO (**A**) and TPC1 (**B**); cell apoptosis assay was performed in WRO (**a**) and **b** (**b**) (\*p<0.05, \*\*, <0.01).

cordin the mechanism or RNA on downarget geres, it can inhibit the translational stre get gene mRNA and reduce the exp throug protei omplete or incomplete e target gene. Therefore, oplem K-524 should meet the folirstly, the target genes are onlov condition s, which are involved in promoting the deprogression of tumors. Secondly, re is complementation of miRNAs with their sites. Thirdly, there are conserved types NA target sites between different species. Foundy, there is the thermal stability between miRNA and mRNA double-stranded. Fifthly, the miRNA target site should not have complex secondary structure. We chose three miRNAs bioinformatics predictive software (miRDB, RNA22, and TargetScan) together to predict the target genes of miR-524 according to the above conditions. The intersection of the three bioinformatics predictive software was assessed. Then, to verify whether SPAG9 was a downstream gene of miR-524, we detected SPAG9 mRNA expression *via* qRT-PCR. We found that miR-524 could up-regulate the expression of SPAG9. Additonally, miR-524 was further verified to act specifically on SPAG9 3'UTR by dual luciferase reporter gene system.

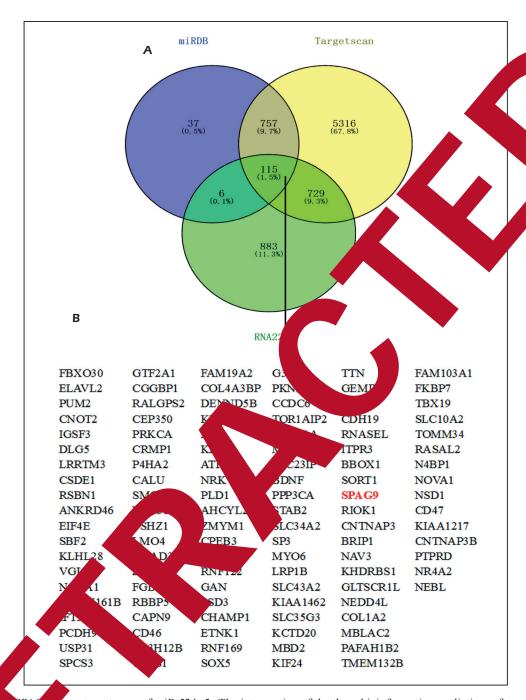
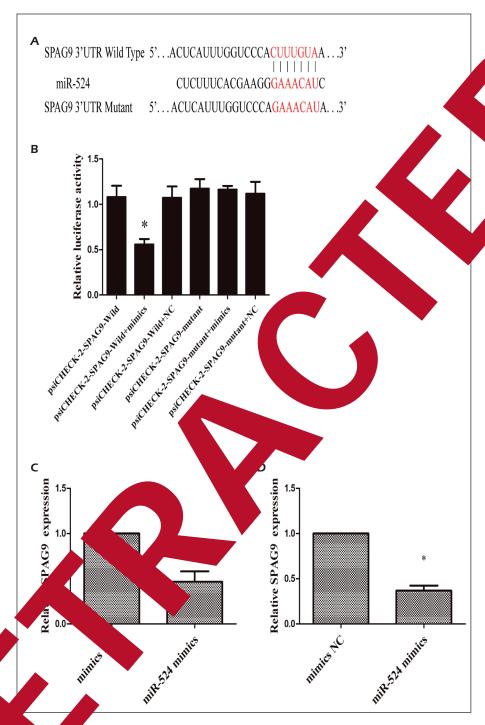




Fig. PA was a target gene of miR-524. **A**, The intersection of the three bioinformatics predictive software (miRDB, RNA22 sessed; **B**, 115 potential target genes of miR-524 were shown.

pre on levels are overexpressed in prostate cancancer<sup>22</sup>, hepatocellular cancer<sup>23,24</sup>, eosarcoma<sup>25,26</sup>, breast cancer<sup>27</sup>, and endometrincer<sup>28</sup>. Abnormal expression of SPAG9 conto the molecular biology processes.

1. sum up, we first found the lower expression of miR-524 in thyroid cancer tissues, and the func-

tion of miR-524 tumor as suppressor gene through *in vitro* functional experiments. In addition, we further verified that SPAG9 is a downstream gene of miR-524. Further studies are needed to explore the role of SPAG9 downstream genes in thyroid cancer, so as to discover a complete regulatory pathway, and then improve the regulatory network in thyroid cancer.



te 4. No. 1 inhold SPAG9 expression via targeting 3'UTR of SPAG9. A, The potential binding site was displayed be and in the luciferase activity was assessed; qRT-PCR analysis showed the relative SPAG9 expression in WR and TPC. (\*p<0.05).

#### Conclusions

first identified that miR-524 represses thyroid cancer cell proliferation and induces cell apoptosis *via* targeting SPAG9, which may provide a new diagnostic criterion and potential therapeutic target in treatment for PTC.

#### Conflict of interest

The authors declared no conflict of interest.

#### References

- DAVIES L, WELCH HG. Increasing incidence of thyroid cancer in the United States, 1973-2002. JAMA 2006; 295: 2164-2167.
- Wang Y, Wang W. Increasing incidence of thyroid cancer in Shanghai, China, 1983-2007. Asia Pac J Public Health 2015; 27: P223-P229.
- HUNDAHL SA, FLEMING ID, FREMGEN AM, MENCK HR. A national cancer database report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995 [see comments]. Cancer 1998; 83: 2638-2648.
- 4) Albores-Saavedra J, Henson DE, Glazer E, Schwartz AM. Changing patterns in the incidence and survival of thyroid cancer with follicular phenotype--papillary, follicular, and anaplastic: a morphological and epidemiological study. Endocr Pathol 2007; 18: 1-7.
- WYNFORD-THOMAS D. Origin and progression of thyroid epithelial tumours: Cellular and molecular mechanisms. Horm Res 1997; 47: 145-157.
- Zou YT, Gao JY, Wang HL, Wang Y, Wang H, Li PL. Downregulation of microRNA-630 inhibits cell proliferation and invasion and enhances chemosensitivity in human ovarian carcinoma. Genet Mol Res 2015; 14: 8766-8777.
- SUN C, LIJ. Expression of MiRNA-137 in oral squamous cell carcinoma and its clinical significance. J BUON 2018; 23: 167-172.
- 8) XIE L, ZHANG Z, TAN Z, HE R, ZENG X, XIE Y, G, TANG H, HE X. MicroRNA-124 inhibits peration and induces apoptosis by directly replied EZH2 in gastric cancer. Mol Cell Biochem 392: 153-159.
- 9) PAN Y, LIANG H, CHEN W, ZHANG NG N, WA F, ZHANG S, LIU Y, ZHAO C, JULIAN J, ZHAN CY, Gu H, ZEN K, CHEN JUCTORI 00b and microRNA-200c promo colorectal incer cell proliferation via target reversions cysteine-rich protei with 2015; 12: 276-286
- 10) Mao G, Liu Y, T X, Liu Y, Fa N L, Liu X, Wang N. Turr yed microRNA comotes angiogenesis 2015; 18 382.
- 11) Liu F, MY, Liu G. Michael A-200c exacerbates the imperial/reperfusion of heart through target in the glutaminase (Con)-mediated glutametabolism. Eur Rev Med Pharmacol Sci 21: 33 3289.
- 12)

  PART RD, FONGLAS S, MAKKI FM, PINTO D,
  BUILLOCK MO LABY MH, TRITES JR, TAYLOR SM,
  SINGH MORE PROPERTY OF THE PROPERTY OF
- 13 Ng G, Zhang R, Xu J, Guo Y. Association bemicroRNA polymorphisms and papillary cer susceptibility. Int J Clin Exp Pathol 2015; 8: 13450-13457.
- YANG J, XUE X, HONG H, QIN M, ZHOU J, SUN Q, GH, GAO L. Upregulation of microRNA-524-5p nances the cisplatin sensitivity of gastric cancer

- cells by modulating proliferation and metastasis via targeting SOX9. Oncotarget 2017; 8: 574-582.
- 15) CARVALHEIRA G, NOZIMA BH, CERUTTI JM NA-106b-mediated down-regulation expression induces apoptosis an appressinvasion of thyroid cancer. Once get 2015; 6: 28357-28370.
- 16) LIU GH, LIU YH, YANG Z, ZHU AL, SL. MicroR-NA-524-5p suppresses the grown invasive abilities of gastric cancer alls. Once 2016; 11: 1926-1932.
- 17) GARG M, KANOJIA D, S, GUPTA S, GUPTA S, A. Sperm-association intigen of novel diagnostic marker for thy concern Clin Endocrinol Metab 2009; 25: 46
- 18) DAVIDSON B, JE CG, RE, The climated and diagnostic residence of microRNAs arcinoma. Gynecol 2014; 133: 64
- 19) FURUTA KO TANAKA S, ARII S, IMOTO I, INAZAWA
  J. Mih. 24 and 13 are epigenetically silenced tumor-suppressive NAs in hepatocellular carCarcinogenes 3; 31: 766-776.
- HE P. SPAG9 is overexpressed in human prostate cancer and motes cancer cell proliferation. Tumour Biol 4; 35: 6949-6954.
- SHEN F, Lu Z, NG J, HAN X, BAI J, LIU Q, XI Y, expression is increased in hucancer and promotes cell motility, invas. and angiogenesis in vitro. Oncol Rep 2014; 32: 2533-2540.
- ZF, Wang ZN, Zhao TT, Xu YY, Wu JH, Liu XY, You Y, Xu HM. Overexpression of SPAG9 in numan gastric cancer is correlated with poor prognosis. Virchows Arch 2015; 467: 525-533.
- 23) XIE C, Fu L, LIU N, LI Q. Overexpression of SPAG9 correlates with poor prognosis and tumor progression in hepatocellular carcinoma. Tumour Biol 2014; 35: 7685-7691.
- 24) YAN Q, Lou G, QIAN Y, QIN B, Xu X, WANG Y, LIU Y, Dong X. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. Onco Targets Ther 2016; 9: 1067-1075.
- 25) XIAO C, FU L, YAN C, SHOU F, LIU Q, LI L, CUI S, DUAN J, JIN G, CHEN J, BIAN Y, WANG X, WANG H. SPAG9 is overexpressed in osteosarcoma, and regulates cell proliferation and invasion through regulation of JunD. Oncol Lett 2016; 12: 2674-2679.
- 26) YANG X, ZHOU W, LIU S. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells. Exp Ther Med 2016; 11: 637-644.
- 27) JAGADISH N, GUPTA N, AGARWAL S, PARASHAR D, SHARMA A, FATIMA R, TOPNO AP, KUMAR V, SURI A. Sperm-associated antigen 9 (SPAG9) promotes the survival and tumor growth of triple-negative breast cancer cells. Tumour Biol 2016; 37: 13101-13110.
- 28) ZHANG L, YAN L, CAO M, ZHANG H, LI C, BAI Y, YU P, LI M, ZHAO X. SPAG9 promotes endometrial carcinoma cell invasion through regulation of genes related to the epithelial-mesenchymal transition. Eur J Gynaecol Oncol 2016; 37: 312-319.