Atorvastatin might inhibit insulin resistance induced by insulin through the triglyceride-lowering role of Apolipoprotein AV

W. ZHAO, S.-P. ZHAO

Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China

Abstract. – OBJECTIVE: We aimed to evaluate the effect of atorvastatin on apolipoprotein AV (ApoAV) in HepG2 cells of insulin resistance (IR), and further explore its mechanism.

MATERIALS AND METHODS: Firstly, a model of IR in HepG2 cells was established by insulin, and then treated with various concentrations of atorvastatin (0, 10, 100 and 500 nM) for 12 h and 24 h, respectively. Detection of glucose concentration was performed by Glucose Oxidase kit. Subsequently, Enzyme-linked immunosorbent assay (ELISA) kits were used to measure the concentrations of triglyceride (TG), high density lipoprotein (HDL), low density lipoprotein (LDL) and very low density lipoprotein (VLDL). The mRNA levels of ApoAV and ApoAV-related genes, including glucose transporter 1 (Glut1), Glut2, peroxisome proliferator activated receptor α (PPARα), and liver X receptor α (LXRα) were detected by qRT-PCR.

RESULTS: We successfully established IR model in HepG2 cells by 10-6 nM insulin. Subsequently, we found that the glucose extraction rate and mRNA level of ApoAV significantly reduced in HepG2 cells of IR (p < 0.05); however, atorvastatin increased the glucose extraction rate and ApoAV mRNA level. Furthermore, atorvastatin inhibited the concentration of TG in HepG2 cells of IR (p < 0.05); however, atorvastatin had no effect on HDL, LDL and VLDL. Also, atorvastatin could increase the mRNA levels of Glut2 but not Glut1. PPAR α , and LXR α .

CONCLUSIONS: Our study indicated that atorvastatin might inhibit IR induced by insulin through the TG-lowering role of ApoAV. Furthermore, Glut2 might be involved in the effect of atorvastatin on ApoAV in HepG2 cells of IR.

Key Words:

Atorvastatin, Insulin resistance, Triglyceride, Apolipoprotein AV.

Introduction

Insulin resistance (IR), a phenomenon with normal dose of insulin resulting in deficient effect on glucose metabolism, is associated with various clinical syndromes, including type 2 diabetes, cardiovascular disease, essential hypertension, polycystic ovary syndrome, nonalcoholic fatty liver disease (NAFLD), certain forms of cancer and sleep apnea¹. It is well known that hepatic IR is universally complicated by NAFLD through influencing lipid metabolism, which also increases the risk of type 2 diabetes². Startlingly, the prevalence of NAFLD reaches as high as 60% and also is on the rise in urban areas in East and South Asian communities^{3,4}. Thus, it is essential to study the underlying molecular mechanism of hepatic IR on lipid metabolism.

Statins, namely hydroxymethyl glutaric acyl coenzyme A reductase inhibitors, has a beneficial role in improvement of endothelial dysfunction, antioxidant effects, stabilization of the atherosclerotic plaque and anti-inflammatory responses⁵. Tang et al⁶ has suggested that atorvastatin combined with valsartan or benazepril have a protective effect on cardiorenal syndrome. Fang et al⁷ has shown that atorvastatin has an anti-atherosclerotic role by inhibiting synthesis of cholesterol. More recently, atorvastatin have been proved to have a lipid-lowering effect^{8,9}. Atorvastatin not only can up-regulate the expression of low density lipoprotein (LDL) receptors by inhibiting hepatocyte cholesterol levels, but also can reduce the triglyceride (TG) levels and modify the composition of lipoprotein in a non-atherogenic manner⁹. Importantly, insulin action can be influenced by elevated plasma TG concentrations¹⁰, which prompted that atorvastatin may be associated with IR. Previous study has demonstrated that atorvastatin can improve IR by inhibiting inflammatory response in adipose tissue of obese mice11. In addition, atorvastatin has a protect effect on hypertensive and hypercholesterolemic patients with IR through regulating the fibrinolytic balance¹². However, few studies have investigated the lipid-lowering effects of atorvastatin on IR.

Apolipoprotein AV (ApoAV), a novel identified apolipoprotein, plays a vital role in the regulation of TG metabolism in human and animal studies^{13,14}. The human APOA5 gene was originally identified in the ApoA1-ApoC3-ApoA4 gene cluster and located on chromosome 11q23^{15,16}. O'Brien et al¹⁷ have shown that ApoAV is mainly expressed in liver and distributes in high density lipoprotein (HDL), very low density lipoprotein (VLDL), and chylomicrons. Recently, ApoAV is proved to be regulated by various nuclear transcription factors related to lipid metabolism, including peroxisome proliferator activated receptor α (PPAR α)¹⁸, liver X receptor α (LXR α)¹⁹, hepatocyte nuclear factor-4 α (HNF4 α)²⁰, and farnesoid X receptor²¹. In addition, insulin and glucose are also involved in the regulation of ApoAV, suggesting the role of ApoAV in diabetes^{22,23}. Also, a decreased expression of ApoAV is found in IR-related hypertriglyceridemia in obesity²⁴. Thus, we speculated that lipid metabolism disorder might be a cause of these IR syndromes and ApoAV might be closely associated with hepatic IR.

In this study, we induced a model of IR in HepG2 cells by insulin, and then interfered IR by atorvastatin. Subsequently, the expressions of ApoAV and ApoAV-related genes, including glucose transporter 1 (Glut1), Glut2, PPAR α , LXR α , as well as the concentrations of TG, HDL, LDL and VLDL were detected. We aimed to evaluate the effect of atorvastatin on HepG2 cells of IR and ApoAV, and further explore its mechanism.

Materials and Methods

Ethics Statement

All studies have been approved by The Ethics Committee of The Second Xiangya Hospital, Central South University and performed in accordance with the ethical standards.

Cell Culture

Human HCC cell line, HepG2, was purchased from the Cell Bank of Chinese Academy of Sciences (Shanghai, China). The cells were maintained in Dulbecco's Modified Eagle Media (DMEM, Gibco, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (FBS, Gibco, Carlsbad, CA, USA). Cultures were maintained at 37°C in a saturation humidity containing 5% CO₂.

Cell Treatment

In order to establish a model of IR, HepG2 cells were treated with various concentrations of insulin (0, 10^{-7} , 5×10^{-7} , and 10^{-6} nM) (Sigma-Aldrich, St. Louis, MO, USA) for 24 h. The appropriate concentration of insulin was selected by detecting the glucose concentration and used for the subsequent experiments.

Next, HepG2 cells were treated with the optimum concentration of insulin for 24 h in order to induce IR, and then treated with various concentrations of atorvastatin (0, 10, 100 and 500 nM) (Sigma-Aldrich, St. Louis, MO, USA) for 12 h and 24 h, respectively. Cell culture supernatant was collected for the detection of glucose concentration.

Detection of Glucose Concentration

Glucose concentration of cell culture supernatant was detected by Glucose kit (Applygen Technologies Inc., Beijing, China) according to the manufacturer's instructions. Briefly, 5 μ L cell culture supernatant was incubated with 195 μ L reaction buffer in a 96-well plate for 30 min at room temperature. The absorbance was read at 550 nm using a microplate reader (Thermo, Mass, USA). All determinations were carried out in triplicate. Glucose extraction rate was calculated according to the following formula: glucose extraction rate = (concentration of blank well – concentration of cell with no insulin) / (concentration of blank well – concentration of cell with insulin) × 100%.

Detection of TG, HDL, LDL and VLDL Concentrations

After treatment, the cells were crushed by ultrasonication and then supernatant was collected by centrifugation (10,000 g for 6 min). Subsequently, the concentrations of TG, HDL, LDL and VLDL were detected using Enzyme-Linked Immunosorbent Assay (ELISA) commercial kits (Enzyme-linked Biological Technology Co., LTD., Shanghai, China) following the manufacturer's instruction.

Quantitative Real-Time PCR (qRT-PCR)

The total RNA was extracted using 800 μL Trizol reagent (Invitrogen, USA) according to manufacturer's instruction. High-quality RNA was reversely transcribed into complementary DNA (cDNA) with a Reverse Transcription Kit (DRR036A, TaKaRa). Primers for *ApoAV*, *Glut1*, *Glut2*, *PPARα*, *LXRα* and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) are shown in Table I. PCR amplification was performed with SYBR® Premix Ex TaqTM (Applied Biosystems, Foster City, CA, USA). The PCR program was: 95°C for 3 min, 40 cycles of 95°C for 10 s and 59°C for 20 s, using the ABI Stepone plus Real-time PCR system (Applied Biosystems, Foster City, CA, USA). Relative quantification and calculations were done with the comparative threshold (Ct) cycle method (Ct).

Statistical Analysis

Statistical analysis was performed by SPSS 12.0 statistical analysis software (SPSS Inc., Chicago, IL, USA). Data were expressed as the mean \pm SD and analyzed by one-way analysis of variance. A value of p < 0.05 was considered significant.

Results

Atorvastatin Increased glucose Extraction Rate in HepG2 Cells of IR

The glucose extraction rate in cells with 10^{-6} nM insulin significantly lower than that in cells with other doses of insulin (p < 0.05), suggesting that a model of IR in HepG2 cells was successfully established by 10^{-6} nM insulin (Figure 1A). Noteworthily, after treatment for 12 h and 24 h, atorvastatin could increase the glucose extraction rate in HepG2 cells of IR (p < 0.05) (Figure 1B).

Table I. Primer sequences for specific genes.

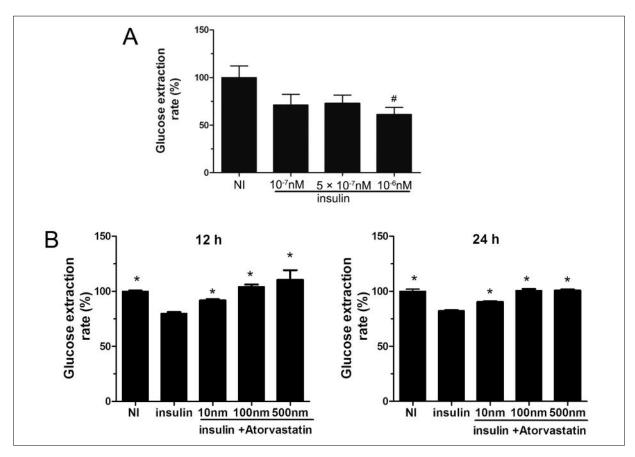
Gene	Primer sequences (5'-3')
ApoAV	Forward: TGGGCTCTGGCTCTTCTTT Reverse: GCTCCACCCTGCCTTTGTC
Glut1	Forward: ACAGGCTCAAAGAGGTTATG Reverse: TGGGTGGAGTTAATGGAGTAG
Glut2	Forward: AATTGCTCCAACCGCTCTCA Reverse: CTAATAAGAATGCCCGTGACGAT
LXRα	Forward: TTGCTAAACAGCTACCCGGCT Reverse: ATCACCTCGATCGCAGAGGT
PPARα	Forward: CAGGCTATCATTACGGAGTC Reverse: CTGGCATTTGTTTCTGTTCT
GAPDH	Forward: TGACAACTTTGGTATCGTGGAAGG Reverse: AGGCAGGGATGATGTTCTGGAGAG

ApoAV: Apolipoprotein AV; Glut1: glucose transporter 1; LXR α : liver X receptor; PPAR α : peroxisome proliferator activated receptor α ; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.

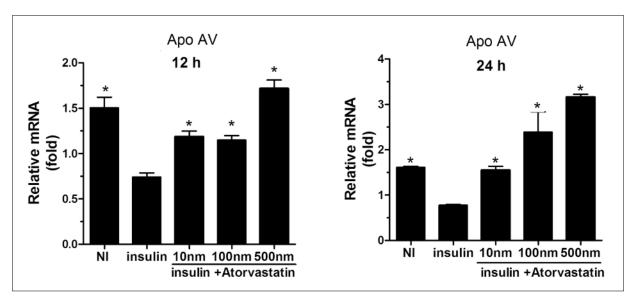
Effect of Atorvastatin on ApoAV in HepG2 Cells of IR

qRT-PCR analysis showed that the mRNA level of ApoAV was significantly inhibited in HepG2 cells of IR compared with HepG2 cells without treatment (p < 0.05) (Figure 2). However, after treatment with different dose of atorvastatin for 12 h and 24 h, the mRNA level of ApoAV was increased compared with HepG2 cells of IR (p < 0.05) (Figure 2).

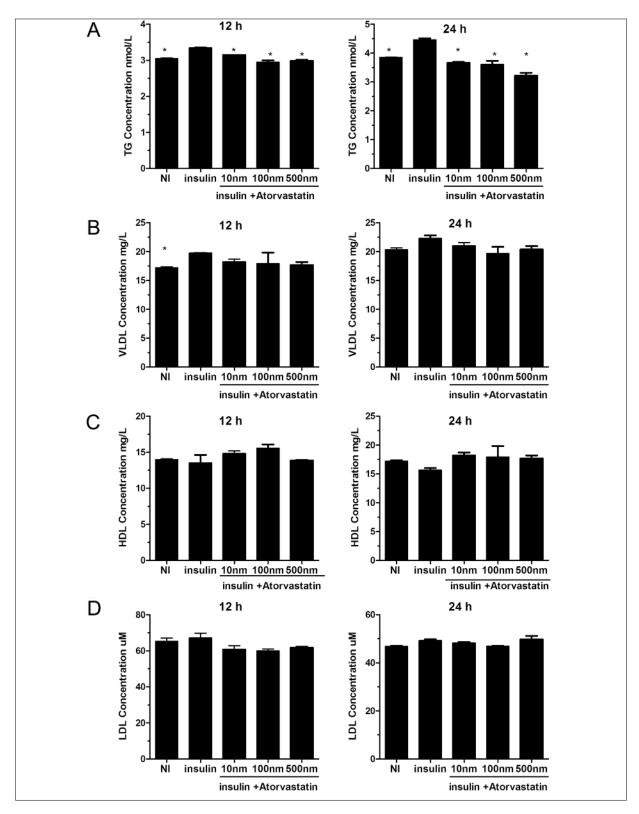
Atorvastatin Inhibited the Concentrations of TG But Not HDL, LDL and VLDL in HepG2 cells of IR


ELISA analysis showed that the concentration of TG was increased in HepG2 cells of IR compared with HepG2 cells without treatment (p < 0.05) (Figure 3A). However, after treatment with different doses of atorvastatin for 12 h and 24 h, TG concentration remarkably reduced compared with that in HepG2 cells of IR (p < 0.05) (Figure 3A). Also, insulin could increase the concentration of VLDL at 12 h but not 24 h (p < 0.05), while the concentration of VLDL was not significantly changed after treatment with atorvastatin in HepG2 cells of IR (Figure 3B). In addition, insulin and atorvastatin had no obvious effect on HDL (Figure 3C) or LDL (Figure 3D).

Atorvastatin Influenced the mRNA Level of Glut2 But Not LXRα, Glut1 and PPARα in HepG2 Cells of IR


Compared with HepG2 cells without treatment, the mRNA level of Glut2 was prominently decreased in HepG2 cells of IR (p < 0.05); however, which was increased as the increasing dose of atorvastatin at 12 h but not 24 h in HepG2 cells of IR (p < 0.05) (Figure 4A). In addition, insulin could inhibit the mRNA level of $LXR\alpha$ (p < 0.05), while atorvastatin had no effect on $LXR\alpha$ in HepG2 cells of IR (Figure 4B). Nonetheless, insulin and atorvastatin did not influence the mRNA levels of Glut1 (Figure 4C) or $PPAR\alpha$ (Figure 4D) in HepG2 cells.

Discussion


It had been acknowledged that high dose of insulin could induce IR in HepG2 cells^{25,26}. Consistent with this, we also demonstrated that 10⁻⁶ nM insulin caused IR. Previous study had shown that IR could contribute to the occurrence of cardiovascular disease and type 2 diabetes²⁷. Note-

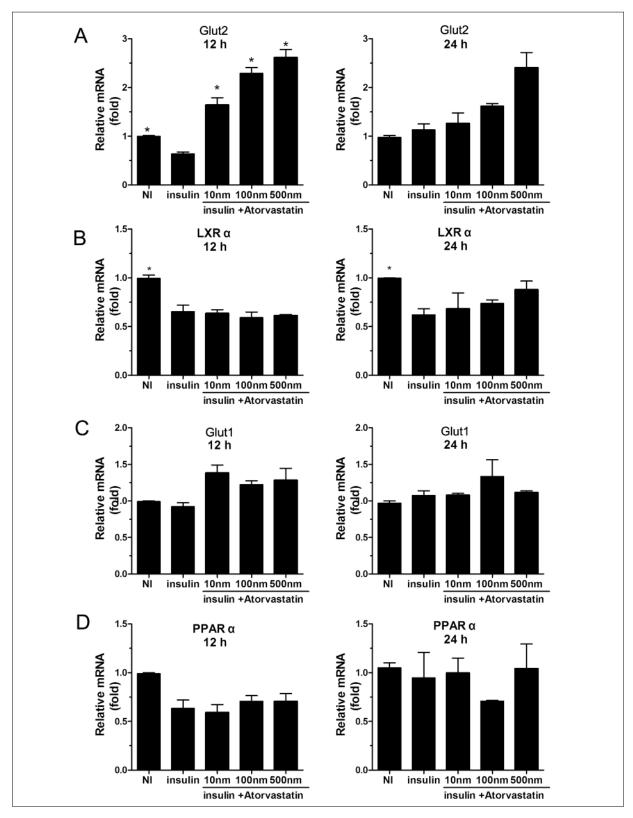

Figure 1. Effect of atorvastatin on glucose extraction rate in HepG2 cells of IR. **A**, A model of IR in HepG2 cells was successfully established by 10-6 nM insulin. **B**, After treatment for 12 h and 24 h, atorvastatin increased the glucose extraction rate in a dose-dependent manner in HepG2 cells of IR. NI: cell without treatment. $^*p < 0.05$ versus NI group, $^*p < 0.05$ versus insulin group.

Figure 2. Effect of atorvastatin on Apo AV in HepG2 cells of IR. qRT-PCR analysis showed that compared with NI group, the mRNA level of ApoAV was significantly inhibited in insulin group; however, atorvastatin increased ApoAV mRNA level after treatment for 12 h and 24 h . *p < 0.05 versus insulin group.

Figure 3. Effect of atorvastatin on TG, HDL, LDL and VLDL in HepG2 cells of IR. \bf{A} , Compared with NI group, the concentration of TG increased in insulin group; however, TG concentration remarkably reduced after treatment with different doses of atorvastatin for 12 h and 24 h. \bf{B} , Compared with NI group, the concentration of VLDL increased in insulin group at 12 h but not 24 h, while atorvastatin did not influence VLDL concentration. \bf{C} , \bf{D} , Insulin and atorvastatin had no effect on HDL and LDL. *p < 0.05 versus insulin group.

Figure 4. Effect of atorvastatin on ApoAV-related gene in HepG2 cells of IR. **A**, The mRNA level of Glut2 was prominently decreased in insulin group compared with NI group; however, atorvastatin increased Glut2 mRNA level after treatment for 12 h but not 24 h. **B**, Insulin inhibited LXR α mRNA level, while atorvastatin had no effect on LXR α in HepG2 cells of IR. **C**, **D**, Insulin and atorvastatin did not influence the mRNA level of Glut1 or PPAR α in HepG2 cells. *p < 0.05 versus insulin group.

worthily, atorvastatin reduced the risk of cardiovascular disease caused by type 2 diabetes²⁸. These results prompted that atorvastatin might be associated with IR. In addition, Paolisso et al²⁹ also had suggested that atorvastatin had a inhibiting effect on IR in non-insulin dependent diabetic patients. Similarly, our results showed that atorvastatin increased the glucose extraction rate in a dose-dependent manner in HepG2 cells of IR, suggesting that atorvastatin might inhibit IR in HepG2 cells.

Furthermore, we found that IR could inhibit ApoAV mRNA expression in HepG2 cells, while atorvastatin had the opposite effect on ApoAV. In accordance with our results, in vitro and in vivo studies of Nowak et al22 had shown that insulin could reduce the expression of ApoAV in humans and rodents. Huang et al³⁰ had further demonstrated that atorvastatin increased ApoAV level. ApoAV was a critical regulator involved in triglyceride homeostasis¹³. The earlier studies had demonstrated that knockdown of ApoAV led to increased plasma TG in mice, whereas its overexpression resulted in a reduction of TG^{13,16}. Interestingly, our results in this study were consistent with these earlier found. Currently, there were three explanations for TG-lowering role of ApoAV, including inhibiting the production and secretion of VLDL³¹, promoting TG hydrolysis induced by lipoprotein lipase (LPL)32, and accelerating hepatic uptake of VLDL³³. To explore whether atorvastatin affected ApoAV expression by lipoprotein, we detected the concentration of HDL, LDL and VLDL. Unfortunately, our results only found that the concentration of VLDL increased in HepG2 cells of IR at 12 h and atorvastatin did not influence the concentration of HDL, LDL and VLDL. We speculated that atorvastatin might inhibit IR through the TG-lowering role of ApoAV. However, it should be further investigated whether ApoAV inhibit TG level through HDL, LDL and VLDL in HepG2 cells of IR.

Previous study had demonstrated that atorvastatin enhanced ApoAV expression and reduced TG content through up-regulating PPAR α expression^{30,34}. On the contrary, our results found that atorvastatin did not influence the mRNA level of PPAR α in HepG2 cells of IR. Noteworthily, the mRNA level of LXR α reduced in HepG2 cells of IR, while atorvastatin had no effect on LXR α . LXR α ligand T0901317 was found to down-regulate the expression of ApoAV through the activation of sterol response element binding protein 1¹⁹. Also, Qiu et al³⁵ had shown that ator-

vastatin decreased LPL level by inhibiting the activation of LXRα. These results indicated that decreased mRNA level of *ApoAV* induced by IR might be associated with LXRα in HepG2 cells; however, atorvastatin did not influence *ApoAV* mRNA expression by LXRα. In addition, we further found that the mRNA level of *Gult2* but not *Glut1* had the same changing trend with *ApoAV*. Glut proteins were necessary to cellular glucose uptake³⁶ and glucose concentration could be gradually reduced by the regulation of Glut proteins³⁷, suggesting the vital role of Glut proteins in IR. Thus, we speculated that Glut2 but not Glut1 might affect the mRNA level of *ApoAV* caused by atorvastatin in HepG2 cells of IR.

Conclusions

Our study indicated that atorvastatin might inhibit IR induced by insulin through the TG-lowering role of ApoAV. Furthermore, Glut2 might be involved in the effect of atorvastatin on ApoAV in HepG2 cells of IR. However, the further study is essential to explore whether other pathways are involved in the TG-lowering role of ApoAV.

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 81170262).

Conflict of Interest

The Authors declare that there are no conflicts of interest.

References

- REAVEN G. The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrin Metab Clin 2004; 33: 283-303.
- PERRY RJ, SAMUEL VT, PETERSEN KF, SHULMAN GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510: 84-91.
- FAN J-G, ZHU J, LI X-J, CHEN L, LI L, DAI F, LI F, CHEN S-Y. Prevalence of and risk factors for fatty liver in a general population of Shanghai, China. J Hepatol 2005; 43: 508-514.
- 4) AMARAPURKAR DN, HASHIMOTO E, LESMANA LA, SOL-LANO JD, CHEN PJ, GOH KL. How common is nonalcoholic fatty liver disease in the Asia-Pacific region and are there local differences? J Gastroenterol Hepatol 2007; 22: 788-793.

- DAVIGNON J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004; 109: III-39-III-43.
- TANG S, PENG D, Hu Y, CHEN J. Protective effects of valsartan and benazepril combined with atorvastatin on cardiorenal syndrome in rats. Eur Rev Med Pharmacol Sci 2015; 19: 759-766.
- FANG D, YANG S, QUAN W, JIA H, QUAN Z, QU Z. Atorvastatin suppresses Toll-like receptor 4 expression and NF-κB activation in rabbit atherosclerotic plaques. Eur Rev Med Pharmacol Sci 2014; 18: 242-246.
- MCFARLANE S, MUNIYAPPA R, FRANCISCO R, SOWERS J. Pleiotropic effects of statins: lipid reduction and beyond. J Clin Endocr Metab 2002; 87: 1451-1458.
- POLI A. Atorvastatin: pharmacological characteristics and lipid-lowering effects. Drugs 2007; 67 Suppl 1: 3-15.
- MINGRONE G, HENRIKSEN FL, GRECO AV, KROGH LN, CAPRISTO E, GASTALDELLI A, CASTAGNETO M, FERRANNINI E, GASBARRINI G, BECK-NIELSEN H. Triglyceride-induced diabetes associated with familial lipoprotein lipase deficiency. Diabetes 1999; 48: 1258-1263
- FURUYA DT, POLETTO AC, FAVARO RR, MARTINS JO, ZORN TM, MACHADO UF. Anti-inflammatory effect of atorvastatin ameliorates insulin resistance in monosodium glutamate-treated obese mice. Metabolism 2010; 59: 395-399.
- 12) FOGARI R, DEROSA G, LAZZARI P, ZOPPI A, FOGARI E, RINALDI A, MUGELLINI A. Effect of amlodipineatorvastatin combination on fibrinolysis in hypertensive hypercholesterolemic patients with insulin resistance. Am J Hypertens 2004; 17: 823-827.
- 13) PENNACCHIO LA, OLIVIER M, HUBACEK JA, COHEN JC, COX DR, FRUCHART J-C, KRAUSS RM, RUBIN EM. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001; 294: 169-173.
- 14) PRIORE OC, PISCIOTTA L, VOLTI GL, SAMBATARO MP, CANTAFORA A, BELLOCCHIO A, CATAPANO A, TARUGI P, BERTOLINI S, CALANDRA S. Inherited apolipoprotein AV deficiency in severe hypertriglyceridemia. Arterioscl Thromb Vasc Biol 2005; 25: 411-417.
- 15) Pennacchio LA, Rubin EM. Genomic strategies to identify mammalian regulatory sequences. Nat Rev Genet 2001; 2: 100-109.
- 16) VAN DER VLIET HN, SAMMELS MG, LEEGWATER AC, LEVELS JH, REITSMA PH, BOERS W, CHAMULEAU RA. Apolipoprotein AV a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 2001; 276: 44512-44520.
- 17) O'BRIEN PJ, ALBORN WE, SLOAN JH, ULMER M, BOODHOO A, KNIERMAN MD, SCHULTZE AE, KONRAD RJ. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin Chem 2005; 51: 351-359.

- 18) Vu-Dac N, Gervois P, Jakel H, Nowak M, Baugé E, Dehondt H, Staels B, Pennacchio LA, Rubin EM, Fruchart-Najib J. Apolipoprotein A5, a crucial determinant of plasma triglyceride levels, is highly responsive to peroxisome proliferator-activated receptor α activators. J Biol Chem 2003; 278: 17982-17985.
- 19) JAKEL H, NOWAK M, MOITROT E, DEHONDT H, HUM DW, PENNACCHIO LA, FRUCHART-NAJIB J, FRUCHART J-C. The liver X receptor ligand T0901317 down-regulates APOA5 gene expression through activation of SREBP-1c. J Biol Chem 2004; 279: 45462-45469.
- 20) PRIEUR X, SCHAAP FG, COSTE H, RODRÍGUEZ JC. Hepatocyte nuclear factor-4α regulates the human apolipoprotein AV gene: identification of a novel response element and involvement in the control by peroxisome proliferator-activated receptor-γ coactivator-1α, AMP-activated protein kinase, and mitogen-activated protein kinase pathway. Mol Endocrinol 2005; 19: 3107-3125.
- 21) PRIEUR X, COSTE H, RODRÍGUEZ JC. The human apolipoprotein AV gene is regulated by peroxisome proliferator-activated receptor-α and contains a novel farnesoid X-activated receptor response element. J Biol Chem 2003; 278: 25468-25480.
- 22) Nowak M, Helleboid-Chapman A, Jakel H, Martin G, Duran-Sandoval D, Staels B, Rubin EM, Pennacchio LA, Taskinen M-R, Fruchart-Najib J. Insulin-mediated down-regulation of apolipoprotein A5 gene expression through the phosphatidylinositol 3-kinase pathway: role of upstream stimulatory factor. Mol Cell Biol 2005; 25: 1537-1548.
- 23) Nowak M, Helleboid-Chapman A, Jakel H, Moitrot E, Rommens C, Pennacchio LA, Fruchart-Najib J, Fruchart J-C. Glucose regulates the expression of the apolipoprotein A5 gene. J Mol Biol 2008; 380: 789-798.
- 24) HUANG X-s, ZHAO S-P, Hu M, BAI L, ZHANG Q, ZHAO W. Decreased apolipoprotein A5 is implicated in insulin resistance-related hypertriglyceridemia in obesity. Atherosclerosis 2010; 210: 563-568.
- AMATRUDA JM, NEWMEYER HW, CHANG CL. Insulin-induced alterations in insulin binding and insulin action in primary cultures of rat hepatocytes. Diabetes 1982; 31: 145-148.
- 26) ZHANG HJ, JI BP, CHEN G, ZHOU F, LUO YC, YU HQ, GAO FY, ZHANG ZP, LI HY. A combination of grape seed-derived procyanidins and gypenosides alleviates insulin resistance in mice and HepG2 cells. J Food Sci 2009; 74: H1-H7.
- 27) Ferre P. [Insulin signaling and insulin resistance]. Therapie 2006; 62: 277-284.
- 28) COLHOUN HM, BETTERIDGE DJ, DURRINGTON PN, HIT-MAN GA, W NEIL HA, LIVINGSTONE SJ, THOMASON MJ, MACKNESS MI, CHARLTON-MENYS V, FULLER JH. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet 2004; 364: 685-696.

- 29) PAOLISSO G, BARBAGALLO M, PETRELLA G, RAGNO E, BARBIERI M, GIORDANO M, VARRICCHIO M. Effects of simvastatin and atorvastatin administration on insulin resistance and respiratory quotient in aged dyslipidemic non-insulin dependent diabetic patients. Atherosclerosis 2000; 150: 121-127.
- 30) Huang Xs, Zhao SP, Bai L, Hu M, Zhao W, Zhang Q. Atorvastatin and fenofibrate increase apolipoprotein AV and decrease triglycerides by up-regulating peroxisome proliferator-activated receptor-α. Brit J Pharmacol 2009; 158: 706-712.
- 31) SCHAAP FG, RENSEN PC, VOSHOL PJ, VRINS C, VAN DER VLIET HN, CHAMULEAU RA, HAVEKES LM, GROEN AK, VAN DUK KW. ApoAV reduces plasma triglycerides by inhibiting very low density lipoprotein-triglyceride (VLDL-TG) production and stimulating lipoprotein lipase-mediated VLDL-TG hydrolysis. J Biol Chem 2004; 279: 27941-27947.
- 32) GROSSKOPF I, BAROUKH N, LEE S-J, KAMARI Y, HARATS D, RUBIN EM, PENNACCHIO LA, COOPER AD. Apolipoprotein AV deficiency results in marked hypertriglyceridemia attributable to decreased lipolysis of

- triglyceride-rich lipoproteins and removal of their remnants. Arterioscl Thromb Vasc Biol 2005; 25: 2573-2579.
- 33) NILSSON SK, LOOKENE A, BECKSTEAD JA, GLIEMANN J, RYAN RO, OLIVECRONA G. Apolipoprotein AV interaction with members of the low density lipoprotein receptor gene family. Biochemistry 2007; 46: 3896-3904.
- 34) ROGLANS N, SANGUINO E, PERIS C, ALEGRET M, VÁZQUEZ M, ADZET T, DÍAZ C, HERNÁNDEZ G, LAGUNA JC, SÁNCHEZ RM. Atorvastatin treatment induced peroxisome proliferator-activated receptor α expression and decreased plasma nonesterified fatty acids and liver triglyceride in fructose-fed rats. J Pharmacol Exp Ther 2002; 302: 232-239.
- 35) QIU G, HILL JS. Atorvastatin decreases lipoprotein lipase and endothelial lipase expression in human THP-1 macrophages. J Lipid Res 2007; 48: 2112-2122.
- 36) WOOD IS, TRAYHURN P. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins. Brit J Nutr 2003; 89: 3-9.
- BROSIUS III FC, HEILIG CW. Glucose transporters in diabetic nephropathy. Pediatr Nephrol 2005; 20: 447-451.