Prehabilitation and heart failure: main outcomes in the COVID-19 era

S. GIOVANNINI1,2, D. CORACI3, C. LORETI4, L. CASTELLI4,5, F. DI CARO1,4, M. FIORI1, L.M. IMPERIA1, G.G. MADATHIL1, L. PADUA1,5, D.A. SANTAGADA1,6, L. BISCOTTI1,7, R. BERNABEI1,4

1Department of Geriatrics and Orthopaedics, Università Cattolica del Sacro Cuore, Rome, Italy
2UOS Riabilitazione Post-Acuzie, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
3Department of Neuroscience, University of Padova, Padova, PD, Italy
4Department of Aging, Neurological, Orthopaedic and Head-Neck Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
5UOC Neuroriabilitazione ad Alta Intensità, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
6UOC di Chirurgia Vertebrale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
7Presiding Officer of Geriatric Care Promotion and Development Centre (C.E.P.S.A.G), Università Cattolica del Sacro Cuore, Rome, Italy

Abstract. – OBJECTIVE: The advent of the SARS-CoV-2 pandemic has resulted in an increase in sedentary behavior, with consequenc on cardiopulmonary capacity, especially in the elderly population. Prehabilitation is a strategy usually used before a surgical procedure to improve functional capacity; however, it can be used for non-surgical patients and not in the acute phase of disease. The purpose of this study is to evaluate the effectiveness of a prehabilitation program, using telerehabilitation, in frail elderly patients with chronic heart failure.

PATIENTS AND METHODS: This is a randomized, controlled, single-blind study. Fifteen patients with chronic heart failure were randomized into three groups: two active groups (telerehabilitation and in-person) and the control group. Patients in the active groups underwent a rehabilitation program divided into two 4-week periods, for 45-60 minutes per day, 2 days per week.

RESULTS: In the Study Group, the quality of life significantly improved (EQoL-5D), and between the two groups a statistically significant difference in the motor dimension of SF-36 was identified.

CONCLUSIONS: The telerehabilitation prehabilitation program for patients with chronic heart failure was confirmed to be effective and not inferior to a prehabilitation program performed in-person, avoiding the worsening of some domains of quality of life and motor performance, and leading to the improvement of others.

Key Words: Prehabilitation, Heart failure, Personalized medicine, Aging, Quality of life.

Introduction

Heart failure (HF) is a syndrome of cardiac dysfunction, characterized by the inability of the heart to meet its normal demands at normal filling pressures1. Indeed, the heart muscle may weaken and generate less contractile force, leading to a reduction in ventricular ejection volume and cardiac output and an increase in intracardiac pressure, which can occur both at rest and during exercise.

Chronic HF is characterized by a gradual development of long-term symptoms. These include dyspnea when supine or during exercise, fatigue and weakness, lower extremity edema, rapid or irregular heartbeat, persistent cough and shortness of breath, elevated jugular venous pressure, and pulmonary crackles, among others. HF is commonly encountered in elderly patients, with an incidence of 1% above age 65 and 4% after 85 years old. The prevalence of HF is 10-20% in the population aged 70-80 years. In persons over 65 years old heart failure is the leading cause of hospitalization, as well as incidence of polypharmacy associated to those patients1. Physical activity is directly associated with a lower risk of adverse cardiovascular outcomes as HF. It is highly recommended in patients with stable HF, and recent literature demonstrated that appropriate exercise programs are able to positively affect cardiovascular outcome18.
The terms “prehabilitation”, or “pre-rehabilitation”, refer to an education strategy to increase functional abilities before a surgical procedure\(^5,6\), in order to improve postoperative outcomes. Prehabilitation is a multidisciplinary approach that aims to improve the psychophysical abilities of individuals and enhance functional recovery. It is compliant with the concept of reserve, cognitive or motor, and it has an impact on the rehabilitation outcome as reported in recent investigations\(^7-12\). The term “reserve” indicates that the number of experiences and/or of physical activities done by an individual in his/her pre-morbid life plays a key role in a sudden change of individual lifestyle. On this basis, we can hypothesize that an increase in functional ability before a surgical intervention could ameliorate post-surgery condition and outcomes.

Some authors\(^13\) suggest the possibility of applying a multimodal pre-rehabilitation model even to patients who are not planning surgery and who are not in the acute phase of the disease. Our previous work\(^14\) has shown how a prehabilitation program, in patients with HF, significantly improved both functional and quality of life indexes.

With the advent of the SARS-CoV-2 pandemic, there has been an increase in sedentary behavior resulting from the attitude of “social distancing”, which has translated into decreased cardiopulmonary physical activities. This is likely to result in increased morbidity and mortality, especially in older adults or in patients with chronic conditions\(^15,16\).

To counteract this, home-based prehabilitation programs have been developed\(^16,17\). It is possible to guide the patient’s rehabilitation pathway at home by using different types of communication technologies (video, simulcasting chat, etc.). Telerehabilitation can be performed in synchronous, asynchronous and mixed modes. Several studies\(^18-21\) have shown that telerehabilitation is effective in improving clinical outcomes in conditions of disability, musculoskeletal disorders, cardiovascular diseases, stroke and depression.

Therefore, the purpose of the study is to evaluate the effectiveness of a prehabilitation program, using telerehabilitation, in frail elderly patients with chronic heart failure.

Patients and Methods

This is a randomized, controlled, single-blind study involving patients diagnosed with chronic HF from the Geriatric Day Hospital of the Fondazione Policlinico Universitario A. Gemelli IRCCS. Patients considered frail according to Fried criteria and showing at least 3 out of the 5 criteria, were included: unintentional weight loss (10 lbs in past year), self-reported exhaustion, weakness (grip strength), slow walking speed, and low physical activity\(^22,23\).

Inclusion criteria: patients of 65 years of age or older, a diagnosis of clinically stable HF, able to ambulate safely and to sign informed consent. Exclusion criteria: patients with cognitive impairment, spatial or temporal disorientation, a diagnosis of dementia or Alzheimer’s disease, Parkinson’s disease and/or Parkinsonism not pharmacologically compensated, acute osteoarticular disease, unable to walk or with adverse conditions during the study and not able to sign informed consent.

Fifteen patients were included in the study and were casually randomized, in Ratio 1:1, in three different groups: the TeleRehabilitation Group (TR-G), the Presence Group (PR-G) that carried out rehabilitation “in presence” and the Control Group (C-G), which did not carry out any kind of rehabilitation program. The exercise-based rehabilitation was organized in patients’ groups to allow a better allocation of economic resources and it resulted to be as effective as individual physiotherapy after orthopedic surgery, as recently documented\(^24\).

PR-G and TR-G patients underwent a prehabilitation program divided into two a 4-weeks period, interspersed with a further 4 weeks of pause. In each treatment period, patients performed rehabilitation for 45-60 minutes per day, 2 days a week (Figure 1).

All patients underwent the following evaluations: Six Minutes Walking Test (6MWT)\(^25\), Chair Sit to Stand Test\(^26\), and Handgrip Strength test\(^27\), to assess gait speed, fall risk, and muscle strength. To investigate patients’ perceptions of their disease, how they live with it, and whether

![Figure 1. Study design.](image-url)
Prehabilitation and heart failure: main outcomes in the COVID-19 era

it affects nutrition, all patients were assessed with New York Heart Association Index (NYHA)39, Short Form-12 (SF12)29, Mini Nutritional Assessment (MNA)30, Activities of Daily Living Scale (ADL)31, Instrumental Activities of Daily Living Scale (IADL)32, and European Quality of Life (EQ-5D)33,34. The presence of psychological disorders, such as anxiety and/or depression was also investigated. Finally, the patients underwent echocardiogram26.

At the end of the evaluation, a brochure containing nutritional advice was given to the TR-G patients.

Procedures

Synchronous and asynchronous remote mode was used for TR-G. The synchronous mode was performed using an internet-based video conferencing platform. A trained physical therapists guided the patients to correctly perform the exercises, through a two-way audiovisual communication, which allowed interaction between the physical therapist and the participants. Physical therapists were able to correct patients and provide feedbacks in real time.

The asynchronous mode, on the other hand, consisted in sending audio-video material containing the explained exercises to be performed at home by patients every two weeks. In this case, caregivers were asked to observe and to monitor the progress of the activities of the participants.

For both groups, TR-G and PR-G, the same exercises were administered. Taking into account the characteristics of the patients, the level of the exercises was gradually increased, without requiring excessive effort, in order to maintain an optimal level of participation and to make the proposed activities stimulating.

Moreover, both groups underwent breathing exercises, exercises with aids (e.g., elastics, sticks, tennis balls, hoops), free body exercises and walking exercises. The planned exercises aimed to teach the correct breathing pattern during stress situations and daily life activities, to improve aerobic and functional capacity, to increase resistance to fatigue, to strengthen the abdominal muscles and limbs, to improve motor coordination and to stimulate and maintain high sustained attention during the performance of exercises.

Statistical Analysis

Statistical analysis was performed using SPSS Statistics for Windows, Version 25.0 (IBM Corp., Armonk, NY, USA).

Due to the small sample size, the statistical analyses were carried out using nonparametric tests. The evolution of the condition of individuals has been analyzed through dependent sample tests (Wilcoxon test), separately for the two groups.

In order to study the differences between the two treatments, the relative variation for each measure of outcome, between the two evaluation times, has been calculated using the following formula:

\[
\frac{X(T_{1}) + X(T_{0})}{X(T_{0})}
\]

where “X” is the considered measure of outcome.

So, the difference between the two groups was assessed by testing for independent samples (Mann-Whitney test). The statistical significance was set as \(p < 0.05 \). The results were given as median values.

15 patients, 7 males and 8 females, with a mean age of 82 years (range 68-98 years) were included in the study. In TR-G, there was one dropout at T1 because of the death of the patient.

Baseline characteristics were similar in the three groups (Table I).

Results

15 patients, 7 males and 8 females, with a mean age of 82 years (range 68-98 years) were included in the study. In TR-G, there was one dropout at T1 because of the death of the patient. Baseline characteristics were similar in the three groups and are reported in Table I.

The mean ejection fraction (EF) for the entire sample was 52\%: more specifically, RT-G and PR-G had a mean EF of 54\%, while C-G had a mean EF of 49\%. With regard to NYHA class attribution, the mean for the entire sample was 2.1: specifically, RT-G and PR-G had a mean EF of 2.1, while C-G had a mean EF of 2.4. Statistical analysis showed that C-G had a statistically significant worsening at the SF-12 Mental Component Summary (MCS) between T0 and T3 \((p = 0.04)\) (Figure 2).

Similarly, C-G showed a statistically significant worsening on the Hand Grip Test compared to T0 and T3 \((p = 0.04)\) (Figure 3). Regarding the 6MWT, both TR-G and PR-G showed a statistically significant improvement at T3, compared to...
Table 1. Clinical characteristics at baseline (T0).

<table>
<thead>
<tr>
<th>Population</th>
<th>TR-G</th>
<th>PR-G</th>
<th>C-G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (M:F)</td>
<td>7:8</td>
<td>3:2</td>
<td>2:3</td>
</tr>
<tr>
<td>Age (years)</td>
<td>81.27 ± 6.61</td>
<td>80.80 ± 3.70</td>
<td>77 ± 8.94</td>
</tr>
<tr>
<td>NYHA</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
</tr>
<tr>
<td>Ejection Fraction</td>
<td>52.4%</td>
<td>54.0%</td>
<td>54.2%</td>
</tr>
<tr>
<td>BMI</td>
<td>29.04 ± 8.49</td>
<td>28.94 ± 9.56</td>
<td>30.75 ± 7.09</td>
</tr>
<tr>
<td>MNA T0</td>
<td>21.81 ± 3.38</td>
<td>20.62 ± 4.02</td>
<td>25.37 ± 1.37</td>
</tr>
<tr>
<td>C-STS T0</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>PCS T0</td>
<td>38.57 ± 9.45</td>
<td>46.47 ± 10.32</td>
<td>42.38 ± 5.03</td>
</tr>
<tr>
<td>MCS T0</td>
<td>48.98 ± 11.16</td>
<td>45.22 ± 12.12</td>
<td>55.06 ± 10.22</td>
</tr>
<tr>
<td>6MWT T0</td>
<td>418 ± 180.69</td>
<td>447.33 ± 199.62</td>
<td>583 ± 121.17</td>
</tr>
<tr>
<td>Hand Grip T0</td>
<td>26.99 ± 14.98</td>
<td>41.32 ± 21.05</td>
<td>28.02 ± 9.05</td>
</tr>
<tr>
<td>IADL T0</td>
<td>4/8</td>
<td>5/8</td>
<td>5/8</td>
</tr>
<tr>
<td>ADL T0</td>
<td>5/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>EQ-5D T0</td>
<td>0.33 ± 0.73</td>
<td>0.79 ± 0.24</td>
<td>0.65 ± 0.23</td>
</tr>
<tr>
<td>EQ-5D VAS T0</td>
<td>66.25 ± 15.09</td>
<td>81.67 ± 10.40</td>
<td>61.25 ± 14.36</td>
</tr>
</tbody>
</table>

C-G (p = 0.03) (Figure 4). Noteworthy, the data collected on pain perception, through the VAS section of the EQ-5D, show a statistically significant difference between PR-G and TR-G (p = 0.02) (Figure 5).

Discussion

For patients with heart diseases and the prevalence of chronic HF, exercise-based rehabilitation is highly recommended to improve quality of life, increase physical activity and reduce disease-related hospitalizations35. Despite these positive effects and the recommendations of international guidelines, participation in this type of rehabilitation treatment remains low. This could be attributable, in addition to advanced age and the presence of comorbidities, to the presence of logistical problems36. To attempt this difficulty, the scientific community lately is focusing on the development of home rehabilitation programs, which have been shown to be comparable to programs carried out in-presence, in terms of improving quality of life and involvement in home physical activity37,38.

Moreover, in addition to the low compliance of patients with chronic HF39, the advent of pandemic SARS-CoV-2 added new barriers to the participation in rehabilitation programs at dedicated centers, fueled the fear of leaving home40,41 and made difficult for patients to participate in targeted physical activity programs.

A possible solution to this problem is the use of telerehabilitation protocols: through a personal computer, a tv and using an internet-based video conferencing platform, it is in fact possible to reach the patients at home and follow them in their...
treatment, avoiding the manifestation of a feeling of exclusion and abandonment. Telerehabilitation is as effective as face-to-face rehabilitation approach in ameliorate physical function and balance, autonomy in daily living activities and perceived quality of life in patients with musculoskeletal, neurological, and cardiorespiratory conditions.

Despite the small sample size, the results that emerge would seem to demonstrate the effectiveness of the application of a multidimensional model of prehabilitation in frail older adults with multimorbidity. Our previous study showed that in a population of patients with HF, a prehabilitation program could bring significant improvements in the quality of life and in balance performances, as measured by the C-STS. The results emerging from this study show that the C-G presented a significant worsening in the MCS of the SF12 and in the Handgrip test. This can be considered a very interesting result: it is then possible to infer that a period of inactivity determines an impoverishment in the mental component of perceived quality of life and a reduction of handgrip strength. Evidence showed that inactivity in the elderly, in addition to being a risk factor for chronic diseases, can significantly contribute to the decline in physical and cognitive functions.

The analysis also showed that patients who underwent rehabilitation treatments in both groups, had an improvement in walking, compared to the group of patients who did not undergo any rehabilitation treatment. In particular, it was found that the patients in the TR-G group improved more than the PR-G. This could be related to the fact that the TR-G patients performed the exercises more frequently, with physiotherapists and alone. There are two randomized studies evaluating telerehabilitation in HF patients. The first one showed that an 8-week home-based telerehabilitation program provided improvements in physical capacity and quality of life similar to that of a standard outpatient rehabilitation program. The second one demonstrated that an 8-week home-based telemonitored training program was well accepted, safe, effective and had high adherence among HF patients.

The improvement of pain perception in PR-G patients may derive from the presence of physical contact: in fact, touching the patient, the physiotherapist is able to correct his/her posture. Therefore, the patient has the possibility to learn immediately and more easily the corrections and perform exercises without errors.

The non-significance of some assessments, such as the C-STS, the PCS, EQ-5D and the MNA, has not to be considered a negative result. Although there was no improvement in these scales, in fact, there was not even a worsening. In a pandemic situation, which has altered the perception of certain areas and motor performances, even avoiding a picture of worsening can be considered an acceptable result. Above all, in patients with chronic HF, the priority is to keep the parameters as stable as possible over time and to be followed up, avoiding worsening and potential hospitalizations. The same principle can be applied to ADL and IADL outcomes: the proposed prehabilitation program was effective in preventing the decline in daily life activities. In fact, in both TR-G and PR-G patients no worsening at the end of the treatment program was detected.

In a health emergency situation, in which the possibility of leaving home was limited, telerehabilitation proved to be an effective approach in...
different conditions. This study shows that even in the case of elderly and frail patients tele-rehabilitation proved to be a very effective tool. In fact, through this modality it was possible to provide guidelines that the patient was able to follow independently and more frequently, even compared to the in-person group. A crucial issue regarding home-based telerehabilitation was to ensure the safety of HF patients who participate. To our knowledge, there were no published data reporting major adverse events or severe complications during telerehabilitation, being the benefits of regular physical training superior to the relative risks.

Our study wanted to emphasize the importance of preventive aspects of rehabilitation in frail elderly patients: through a counselling strategy, we wanted to make the patient understand the importance of the prehabilitation treatment, associated with a proper diet, considering the important impact of nutrients in elderly.

To conclude the analysis of the study, it is necessary to formulate a critical thought about the future of the prehabilitation approach in patients with heart failure. These results should be confirmed by studies performed in a larger sample size, which may demonstrate the validity and effectiveness of the prehabilitation intervention. The results obtained in the tele-rehabilitation group showed that remote prehabilitation is not inferior to an outpatient prehabilitation program.

Therefore, telerehabilitation could be used as a tool to overcome some difficulties, such as low compliance and patients’ logistical problems. Tele-rehabilitation would also allow patients to perform more frequently the exercises. Therefore, it would be desirable to perform the sessions more often than twice a week. The nutrition assessment through the MNA was not statistically significant despite the nutritional counselling and the delivery of a booklet with some advice. Probably, in the future, a specialized nutritional intervention tailored to each patient should be considered, and patients’ compliance with the program should be periodically checked.

In addition, with the creation of a multidisciplinary team between physicians and physical therapists, it might be possible to take care of patients through tailored, structured, progressive, multi-domain rehabilitation. In this way, patients might feel more reassured and motivated and, consequently, increase their adherence to the rehabilitation program.

Conclusions

In conclusion, a prehabilitation program through tele-rehabilitation for patients with chronic heart failure was confirmed to be effective and not inferior to a prehabilitation program carried out in person, avoiding the worsening of some domains of life quality and motor performances, and leading to the improvement of others.

Furthermore, tele-rehabilitation has proven to be as useful as face-to-face rehabilitation in keeping the patient active and to be even superior in some domains, such as in improving walking activity, probably for the characteristic of being repeatable by the patient alone. Telerehabilitation could be a form of rehabilitation approach to help patients maintaining an active lifestyle and slow the decline in motor and cognitive function. Telerehabilitation also allows prehabilitation to be transformed into an innovative approach by promoting physical activity in the home environment.

More studies with higher sample size will be needed to better explore the wide possibilities of prehabilitation.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Ethics Approval

This study was conducted in accordance with the International Guidelines for Good Clinical Practice and the Declaration of Helsinki. The institutional ethics committee approved the study protocol on April 21, 2020 (Prot. 0017298/20).

Informed Consent

All subjects gave written informed consent prior to participation.

Availability of Data and Material

Data supporting the results are not available.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Authors’ Contribution

All authors contributed, read, and approved the final version of the manuscript.
Prehabilitation and heart failure: main outcomes in the COVID-19 era

ORCID ID
Dr. Silvia Giovannini: 0000-0001-9125-752X; Dr. Daniele Coraci: 0000-0002-7019-9006; Dr. Claudia Loretì: 0000-0002-0835-4079; Dr. Letizia Castelli: 0000-0001-9455-3789; Prof. Luca Padua: 0000-0003-2570-9326; Dr. Lorenzo Biscotti: 0000-0003-1246-9546; Prof. Roberto Bernabei: 0000-0002-9197-004X.

Acknowledgments
We thank Andrea Berti, Raffaele Forino and Federica D’Ignazio for their support.

References

28) Spacie R, Duffell JM, Jones M. Heart failure. In -

Prehabilitation and heart failure: main outcomes in the COVID-19 era

