MicroRNA-139-3p suppresses growth and metastasis of glioblastoma via inhibition of NIN1/RPNI2 binding protein 1 homolog

L. SHI¹, Y. YUAN², H.-Y. LI¹

¹Department of Neurosurgery, Dezhou People's Hospital, Dezhou, Shandong 2 Department of Neurosurgery, Yantai Yuhuangding Hospital, Yantai, Shandong 2, Ching

Lin Shi and Yuan Yuan contributed equally to this work

Abstract. – OBJECTIVE: This study aimed to investigate the role of microRNA-139-3p (miR-139-3p) in glioblastoma, and further explored the underlying molecular mechanism.

PATIENTS AND METHODS: Gene Expression Omnibus (GEO) dataset (accession code GSE90603) was selected to identify differentially expressed microRNAs in glioblastoma. The level of miR-139-3p in glioblastoma tissues and cell lines was detected by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl zolium bromide (MTT), colony formation healing, and transwell invasion assays re applied to assess the role of miR-139-3p in blastoma cells growth and aggressiveness. direct target of miR-139-3p was confirmed us luciferase reporter assay. N bindir protein 1 homolog (NOB1) ecific ort hair pin RNA (shRNA), and la √iral ve encoding NOB1 stable transfe wer expression levels of NOF lioblastoma Western blotting aRT-P cells were subcu ously imple into nude mice to determ role of miR p in tuis in vivo. me mor growth a

RESULTS: miR-13. was remarkably sed in glio down-ex ma tissue compared ontrol normal tiss Overexpression 39-3p suppressed the growth and meof m astoma cells. Moreover, miR-139d gliobletoma growth and lung metasta vivo, reas under-expression 1iR-13 an opposite outcome. rmore ork revealed that NOB1 exatively associated with miRon was and NOB1 knock-down mimicked the ct of miR-139-3p on glioblastoma ation and mobility phenotypes. Fiy, overexpression of NOB1 neutralized the tion of miR-139-3p in glioblastoma cells.

miR-139-3p played a vital role in inhibiting glioblastoma growth and metastasis by targeting NOB1.

Key Words:
Glioblas (a), New 2-3p, Growth Metastasis.

List breviation.

, gene expression omnibus; NOB1, NIN1/RPNI2 omolog; qRT-PCR, quantitative ling protein 🔽 chain reaction; MTT, 3-(4,5-ditime polyme thiazol-2-yl 5-diphenyl tetrazolium bromide; hort 1 oin RNA; GBM, glioblastoma; shi FBS. serum; DMEM, Dulbecco modified Fagle's medium; TMZ, temozolomide; DMSO, disulfoxide; WT, wild-type; MUT, mutant-type; density; GAPDH, glyceraldehyde-3-phosnate aenydrogenase; 3'-UTR, 3'-untranslated region, cDNA, complementary DNA; NSCLC, non-small cell lung cancer; TNM, tumor-node-metastatic.

Introduction

Glioma is a frequently occurring type of primary malignant cancer of the human brain¹. The current therapeutic methods include maximal resection, followed by radiotherapy in combination with temozolomide (TMZ)². Glioblastoma (GBM) is the most aggressive type of glioma and exhibits strong aggression properties³. The invasive phenotype is critical to the clinical progression of malignant GBM, and complicates complete surgical resection and permits postoperative tumor re-growth4. Therefore, there is an urgent need for the development of novel mechanistic methods to investigate the invasiveness and migration properties of cancer cells, which could be exploited to design more effective therapeutic strategies.

MicroRNAs are small non-coding RNAs that post-transcriptionally control the expression of their down-stream target genes⁵. Substantive

studies demonstrate that altered expression of microRNA is related to human cancer progression, including growth, metastasis, angiogenesis, and chemotherapy resistance⁶. MicroRNAs commonly function as tumor suppressors or oncogenes and play vital roles in the diagnosis and treatment of cancer⁷. Previous researches have identified abnormal microRNA expression to be closely associated with the prognosis of patients across several cancers8. MiR-139-3p is markedly lower in patients with colorectal cancer than in control subjects and is a potential non-invasive biomarker for detection of colorectal cancer⁹. Furthermore, miR-139-3p acts as a tumor suppressor that restricts cervical cancer cell growth and aggressiveness, and induces cell apoptosis via inhibition of NIN1/RPNI2 binding protein 1 homolog (NOB1)¹⁰. NOB1 is a subunit of the 26 S proteasome, encoding a 50-kDa protein and contains a zinc ribbon domain and a PIN domain¹¹. Wang et al¹² identified that NOB1 is up-regulated in epithelial cancers, including prostate, hepatocellular carcinoma, lung, and pancreatic cancers, and that down-regulation of NOB1 restrains growth and mobility in renal cancer cells. In add down-regulation of NOB1 inhibits the and cell colony formation ability of ovaria cer cells. However, how abnormal miR-1 expression regulates glioblastoma invasion metastasis, has not yet been full stigated

In this investigation, we ted the down-r miR-139-3p was remarkal lated in glioblastoma samples, i ing c imens and cell line miR-139-3p, cellul rowth, on, and metastasis were si and the cantly inhi same effect y owth in ed on tumo sion of miR-139-3p vivo, whereas downresulted completely ite outcomes. In we demonstrated additio NOB1, a miRarget gene, played a very important role 139in

Maturals and Methods

a Specimens and Cell Lines

Forty nozen paraffin-embedded specimens human glioblastoma samples and 5 para for tissue samples) were obtained from Binzhou Central Hospital. Informed consents of patients were obtained before surgery. The glioblastoma cell lines (U251, U-87MG, SHG-

44, and TJ905) and normal human brain glial cells, HEB, were obtained from the Cobioer Biotechnology Co., Ltd (Nanjing, Jiangsu, China). The cell lines were cultured MI-1640 or Dulbecco Modified Experimental MI-1640 or Dulbecco MI-1640 or D

Transfection of MiR 9-3p Precursors and Interior

139-3p) MiR-139-3p mimic is miR and its positive itrol in (name miRniR-139-3p niR-139-NC), as well Cinhi), were 3pinhi) and i ve control (N GeneCopoeia, Guangzhou, provided Amb. Guangdong, China). efection of miR-139-3p or i s was carried using Lipofectamine AIMAX transfection eagent (Invitrogen, lsbad, CA, USA)13.

in sient Train ection an entivira constructs

Tra. of vectors or short hairpin RNA (hRNA) was conducted with Lipofectamine exitrogen, Carlsbad, CA, USA). The shRA inst NOB1 was designed and purchased from Genepharma Co., Ltd (Shanghai, China). Lentiviral vector encoding NOB1 complementary DNA (cDNA) was constructed by Genepharma Co., Ltd (Shanghai, China) and designated as pLV-NOB1. The empty vector was used as control (pLV-vector).

Luciferase Reporter Assay

293T cells were seeded in a 96-well plate at 70 to 80 % confluence. After 24 h, the cells were transfected with miR-139-3p and wild-type (WT) or mutant-type (MUT) 3'-UTR of NOB1 gene. Forty-eight hours after transfection, the cells were collected and Renilla luciferase activity was assessed by using a dual-luciferase reporter system (Promega, Madison, WI, USA)¹⁴.

Cell Proliferation Assay

Cells were plated into 96-well plates, and cultured for 1, 2, or 3 days. 5 mg/ml 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) was added into 96-well plates. After 4 h, the supernatant was removed and 200 µl dimethyl sulfoxide (DMSO) was added; the optical density (OD) value was determined at 490 nm¹⁵.

Wound Healing Assay

Cells were seeded into a 6-well plate. After 24 h, the monolayer cells were created by using a 100 μ l tip, and cells were continually cultured with serum-free medium. The wound closure at 0 h and 24 h was photographed, and the percentage of the wound closure was calculated¹⁶.

Transwell Invasion Assay

Cells were seeded into a Matrigel-coated chamber (8 μ m), and placed in a 24-well plate. After 24 h, the lower chamber cells were fixed and stained with 0.1% crystal violet. The invading cells were counted¹⁷.

Colony Formation Assay

Cells were cultured in a 25-mm³ dish and placed in an incubator for four weeks. The colonies were stained with 0.1% crystal violet and the number of cell colonies was calculated¹⁸.

Quantitative Real-time RT-PCR (qRT-PCR) Assay

Total RNA was isolated using Trizol (TaKa-Ra, Otsu, Shiga, Japan). RNA (1 µg) w verse-transcribed to cDNA using a Prin RT reagent kit (TaKaRa, Otsu, Shiga, qRT-PCR was performed to detect the le miR-139-3p or other genes using IQTM S Green Supermix and Bio-Ra real-til detection system. The form relativ $n^{-2(-\Delta\Delta)}$ lethod19 expression value was thr The reference gene, U6 detectsed y ing the level of miR rimers used sues and para-tum assues. for PCR were llows: GA (forward TACACTG 5' ACC-3 primer): '-AAGTGGTCGTTand (reverse prime GAGGG ATG-3'; NO (forward primer): AACCCCTAA 5'-TG •GAGACC-3' erse primer): 5'-CCT1GTCCGTGTCAand CA

Westen tting

Bu contain protein inhibitors (Beyotime, Gv czhou, Guangdong, China). Membranes d with anti-NOB1 or anti-GAP-ff (1:1000, Abcam, Cambridge, MA, USA) at overnight and hybridized with horseradish per dase-conjugated goat anti-rabbit IgG antibody. Target proteins were assessed by using the enhanced chemiluminescence (ECL) system (Millipore, Braunschweig, Germany) and visual-

ized with the ChemiDoc XRS system (Bio-Rad, Hercules, CA, USA)²⁰.

Xenograft Model of Glioblastoma

All nude mice were bred and house LAC-accredited SPF rodent facility the Peoexperiments ple's Hospital of Dezhou City. were approved by the Animal Eth mmittee of the People's Hospital of Dolou Ch R-139-3p or miR-NC transfected As were st ks of nude mic ously injected into the d each tumor sizes were me ek²¹, and c \times widt $12\sqrt{2}$. To culated as tumor volun stoma study metastasia vivo, s were miR-139-3p transfected w 9-3p ininto tail ve hibitor and nude mice. ce were sacrificed and the After six éks, lungs were excised. ungs were stained with Bou ution for 24 d then paraffin-emed, sectioned, and started with hematoxylin eosin staining (H&E)²².

S stical Ana is

repeate sented as Mean \pm SD for three repeate ments and the difference was ampared using the Student's *t*-test. p < 0.05 was and statistically significant.

Results

MiR-139-3p is Down-Expressed in Glioblastoma

Gene expression datasets used for statistical analysis were acquired from the GEO database with the accession code GSE90603. The screening was performed in GEO datasets that contained both the glioblastoma samples and the matched normal tissues samples. As shown in Figure 1A, miR-139-3p was down-expressed in glioblastoma samples as compared to that in control samples. In order to compare miR-139-3p expression pattern in glioblastoma and control tissue, miR-139-3p levels were evaluated in 35 glioblastoma tissues and 5 para-tumor tissues. As shown in Figure 1B, miR-139-3p level in glioblastoma was significantly lower than that in the control tissues. MiR-139-3p levels were also determined in a panel of glioblastoma cell lines by qRT-PCR. Similar results were obtained in four glioblastoma cell lines, in which the levels of miR-139-3p were lower compared to those in normal human brain glial cells, HEB (Figure 1C). In order to investigate the role of miR-139-3p

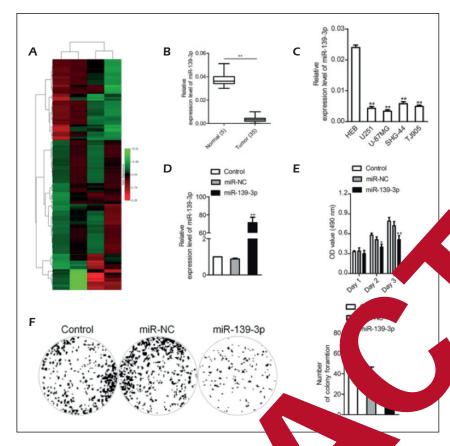
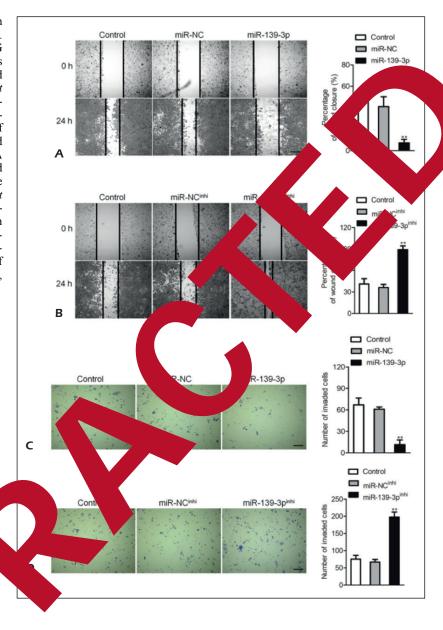


Figure 1. MiR-139-3p inhibits glioblastoma cells growth. A, Microarray analysis of miRNA expression in glioblastoma tissues and corresponding normal tissue level of miR-139-3p from of patients tissues and tumor ti with glioblastom s determined by qRT-PCR as <0.01, compared to normal. 9-3p levured in els were ferent glioblas cell lines by compared to HE D. MG cell vere transf miR-139-3p. The vel -3p was d mined δy qRT-1 Cells e plated into 96-well ultured for say was per-2 or 3 days ed and OD valle was measured nm. F, Cells were subjected r colony formation assay in a culture plate. The cell were counted after four weeks. Data are presented as the mean \pm SD from three independent neasurements. **p<0.01, compared o control.

in the growth of glioblastoma nstruct the miR-139-3p overexpressi 11R-139 -139-3p 3p was significantly up-re ated in transfected glioblastoma MG (Figure 1D). The MTT assay nhibited the duction of miR-139 significa proliferation of lastoma cen ure 1E). Colony forma h analysis I ded that miR-139-3p overexpre inhibited the colony amor cells 1F). These obgrowth o servati suggest that mix -3p is a tumor or in glioblastoma. supp

MiR-. Overey ession Inhibits on ar hvasion


demo. The effect of miR-139-3p on mix ion, we cormed wound closure assays, where the observed that the distance between the miR-139-3p-transfected U-87MG (Is was markedly longer than that in control cells are 2A). Additionally, we observed shorter the wound edges of miR-139-3pin-transfected U-87MG cells compared with that in control (Figure 2B). To investigate the effect of altered miR-139-3p expression on glioblas-

toma cell invasion, we performed the transwell analysis, wherein we observed that miR-139-3p overexpression remarkably suppressed U-87MG cell invasion (Figure 2C). We found that miR-139-3p^{inhi} significantly accelerated glioblastoma cell invasion *in vitro* (Figure 2D).

MiR-139-3p Overexpression Inhibits Glioblastoma Cell Metastasis in vivo

In vitro, miR-139-3p markedly inhibited glioblastoma cell growth, migration, and invasion. Whether miR-139-3p regulated tumor growth and metastasis in vivo was needed to be further investigated. MiR-139-3p transfected U-87MG cells were subcutaneously implanted into the nude mice. Tumors were monitored and measured every week. MiR-139-3p overexpression remarkably inhibited growth and tumor volume of glioblastoma cells (Figure 3A). We dissected the mice to harvest the tumor, noting that the Ki67 staining was remarkably inhibited in miR-139-3p group than in the miR-NC group (Figure 3B), which confirmed that miR-139-3p inhibited glioblastoma growth in vivo. In addition, the occurrence of lung metastasis of glioblastoma cells in the

Figure 2. Effects of miR-139-3p on aggressiveness in glioblastoma cells. A, Wound healing analysis of U-87MG cells. A representative image was shown (left panel). Histograms showed the percentage of wound closure (right panel). B, Transwell analysis. A representative image was shown (left panel). Histograms showed the number of invaded cells (right panel). C, Wound healing analysis of U-87MG cells. A representative image was presented (left panel). Histograms exhibited the percentage of wound closure (right panel). D, Transwell assay. Photographs show cells that invaded through the membrane (left panel). A representative image was shown (left panel). Histograms showed the number of invaded cells (right panel). **p<0.01, compared to control.

miR-13 p transfection gree was remarkably supposed, as compared to that in control group (Fig. 3C). These results showed that miR-139-3p as the growth and metastasis of blaste wills in vo.

Mi 39-3p ctly Binds to e 3'-UTR of NOB1

microRNAs regulate their target nes by binding to their 3'-UTR regions²³. miRand TargetScan were selected to predict the target of miR-139-3p and we found that NOB1 may be a target of miR-139-3p (Figure 4A). To investigate whether miR-139-3p binds directly to the 3'-UTR of NOB1 and modulates NOB1 expres-

sion, 3'-UTR of NOB1 was cloned into the downstream of the luciferase reporter gene. Reduced luciferase activity revealed that NOB1 is indeed a target of miR-139-3p (Figure 4B). Taken together, the results indicated that miR-139-3p regulated NOB1 by binding to the 3'-UTR region directly. QRT-PCR assay analysis showed that glioblastoma cell lines exhibited high NOB1 expression as compared to the normal human brain glial cells, HEB (Figure 4C). In addition, NOB1 showed higher expression in glioblastoma samples compared to that in normal tissue samples (Figure 4D). We also investigated the relationship between miR-139-3p and NOB1 in glioblastoma specimens. As shown in Figure 4E, there was a negative correlation

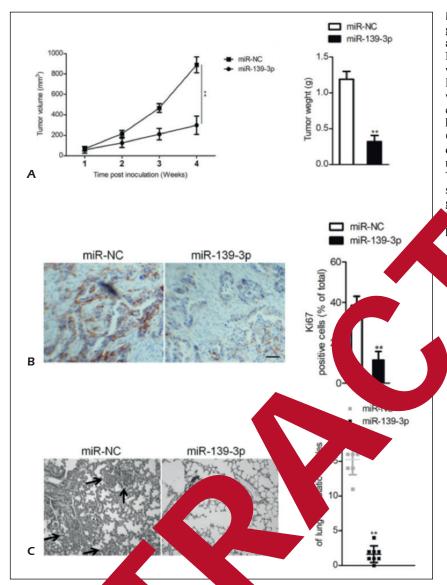
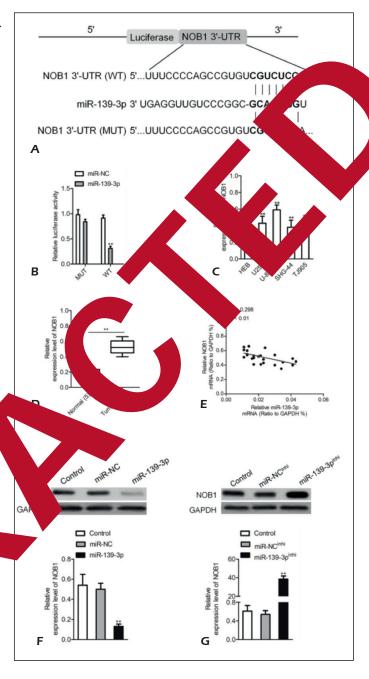


Figure 3. Effect of miR-139-3p on glioblastoma cells tumor growth and metastasis in vivo. A, MiR-NC or miR-139-3p U-87MG cells were implanted into the Measure the tumor week. B, Tumor moved and for immunoembedded in par histochemical with Ki67. C, Metastatic lesi he lungs of the glig toma co stasis models e shown afte ers of metastatic The. the miR 2-3p transfe sig gr n less than those up. **p< n m compared to grow


-139-3p level NOB1 levels. Adbetween 1 NOB1 was signin. ditional y down-regulat-U-87MG was transfected with miR-139ed a whereas NOB1 was remarkably 3p⁴ up-reg tion with miR-139-3p^{inhi} hese ervations hint that NOB1 ure of miR-139-3p. e a tal

The Effect of MiR-139-3p Coma is Rescued NOB1-Overexpression

ittle is known about the role of NOB1 in grant stoma progression, and whether NOB1 knock-down could mimic the effect of miR-139-3p in glioblastoma. Short hairpin RNA (shRNA), specifically targeting NOB1 (shNOB1), was used

to stably knock down the expression of NOB1 in the U-87MG cells (Figure 5A). To determine the role of NOB1 in glioblastoma growth and metastasis, the effect of NOB1 knock-down on U-87MG cell proliferation, colony formation, migration and invasion was examined (Figure 5B-5E). The stable knock-down of NOB1 in U-87MG had a similar effect as miR-139-3p overexpression on the growth, migration and invasion of U-87MG cells in vitro, which suggested that NOB1 might play an oncogenic role by promoting glioblastoma growth and metastasis. To investigate whether miR-139-3p suppresses the growth and mobility of glioblastoma cells by inhibiting NOB1, we constructed a U-87MG cell line that was transfected with miR-139-3p

Figure 4. NOB1 is the target of miR-139-3p. A, Predicted miR-139-3p target sequences in 3'-UTR of NOB1. B, Luciferase activity of NOB1 (MT or MUT) was evaluated after miR-139-3p transfection into 293T cells. **p<0.01, compared to miR-NC. **C**, The expression level of NOB1 was detected by qRT-PCR assay in several glioblastoma cell lines. **p<0.01, compared to HEB cells. D, The level of NOB1 in glioblastoma tissues was measured by qRT-PCR. **p<0.01, compared to normal. E, The correlation analysis of miR-139-3p and NOB1 expressions. F, The level of NOB1 in U-87MG cells after cells transfected with miR-139-3p was measured by qRT-PCR and Western blotting assays. G, The expression level of NOB1 in U-87MG cells after cells transfected with miR-139-3pinhi was measured by qRT-PCR and Western blot analysis. **p<0.01, compared to control.

pLV Improposition and qRT-PCR is denoted a that ectopic expression of No rescued expression after U-87MG cells we transfected with miR-139-3p (Figure 6A). Solony formation, wound closure d transwell assay exhibited that NOB1 overextion restored the inhibition of miR-139-3p in greater and cell growth and metastasis (Figure 6B-oE). Altogether, these results demonstrated that miR-139-3p inhibits cell growth and metastasis of glioblastoma by targeting NOB1.

Discussion

Glioblastoma is one of the most aggressive tumors, and the occurrence of metastasis leads to a sharp decline in the survival rate of patients²⁴. Thus, identification of metastasis-related biomarkers and therapeutic targets will help improve glioblastoma prognosis. There is increasing evidence to suggest that miRNAs have vital roles in tumor progression in controlling their target genes, and thus they might serve as biomarkers

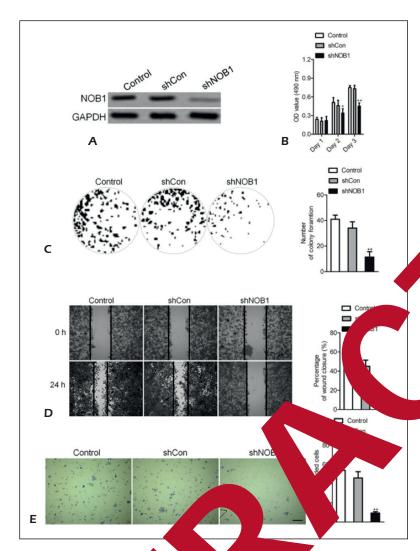
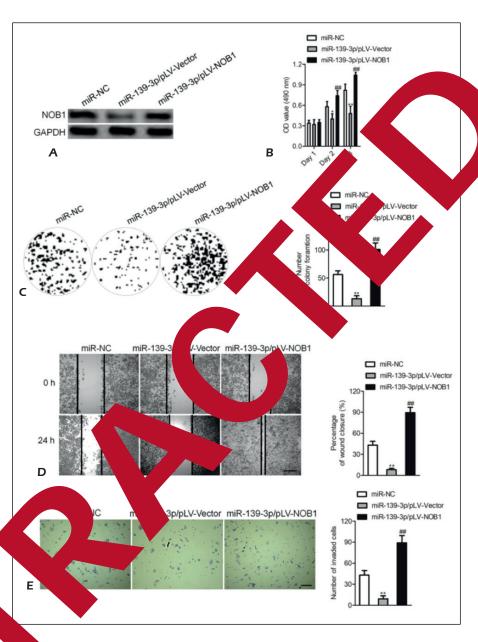


Figure 5. NOB1 knocks-down mimics the effects of miR-139-3p on U-87MG cells. A, To knock-down NOB1, shNOB1 or shCon were transfected into U-87MG cells. The NOB1 was detected by Wester U-87MG cells proliferation measured by MTT. C, C formation measured by ability of U-87MG cells the soft agar colony for assay. The image and quantitative and colonies MG ce were shown. **D**, transfected with sh or shCon, a of the cells was in migration ab g assay. Qu ed with ound hea tative ana the centage of wound pendent ex closi from ments own. E, acity of vasior with the MG cells wa ntitative analll invasion ass invasive cells vas shown. The data ar inted as mean \pm SD. *p<0.05, **p<0.01, red to control.


²⁵. Here, for prediction ar ognosis of 3p is a no we report tha metastalays a significant role sis-associated MiRNA in regulati glioblaston. wth and metastaand a significant a ase in miR-139s in glioblastoma and miR-139-3p was 3p glioblastoma cell proliferation fou prev n by ink and pl ting NOB1 expression.

NOBL quent's apressed in the liver, lung, leen, a maly located in the nucleus. It was ported that OB1 is abnormally expressed in invoke ductal carcinoma and may be involved in and development of tumors²⁶. The pression of NOB1 messenger RNA (mRNA) and ins in papillary thyroid carcinoma is significant inhigher than that in normal thyroid tissues²⁷. In non-small cell lung cancer (NSCLC) and prostate cancer, the NOB1 expression is correlated with tumor-node-metastatic (TNM) stages and lymph node

metastasis²⁸. Consistently, our results verified that NOB1 level was markedly increased in glioblastoma compared to controls.

In addition, the use of shRNA knock-down of NOB1 inhibits U-87MG cell growth, migration, and invasion, suggesting that NOB1 plays a crucial role in regulating glioblastoma cell proliferation and metastasis. It is acknowledged that miRNAs regulate gene expression by binding to the 3'-UTR of the target genes. In this study, a bioinformatics approach was used to predict NOB1 as a candidate target gene and luciferase reporter assay was performed, for in vitro confirmation. Meanwhile, the expression of NOB1 was down-regulated and up-regulated in U-87MG cells after transfection with miR-139-3p and miR-139-3p^{inhi}, respectively. In addition, overexpression of NOB1 neutralized the effects of miR-139-3p suppression. These results corrob-

Figure 6. Effect of miR-139-3p on glioblastoma cells rescues by NOB1 overexpression. A, pLV-NOB1 was transfected into U-87MG. The expression level of NOB1 was detected by Western blot. B, Cell proliferation activity was measured by MTT assay. C, Growth ability was measured by the colony formation assay in vitro. The image and quantitative analysis of colonies were shown. D, U-87MG cells were co-transfected with pLV-NOB1 and miR-139-3p, and then the migration ability of the cells was investigated with the wound healing assay. E, The invasion ability of the cells was investigated with the transwell invasion assay. The data are presented as mean \pm SD. *p < 0.05, **p<0.01, compared to miR-NC. #p<0.01, compared to cell co-transfected with miR-139-3p and pLV-Vector.

orate at miR-139-3p act as a tumor suppressor by B1 in glioblastoma progression.

clusions

coma. Overexpression of miR-139inhibited the growth, invasion, and metastasis lioblastoma, whereas inhibition of miR-139-3 ulted in almost the opposite outcomes. NOB1, the direct target gene of miR-139-3p, plays a crucial role in this process. These findings may help us to investigate the mechanism of miR- 139-3p regulation of glioblastoma better, and might provide a novel therapeutic target for the treatment of glioblastoma growth and metastasis.

Conflict of Interests

The authors declare that no conflicts of interest exist.

References

 MANN J, RAMAKRISHNA R, MAGGE R, WERNICKE AG. Advances in radiotherapy for glioblastoma. Front Neurol 2017; 8: 748.

- Du C, Ren J, Zhang R, Xin T, Li Z, Zhang Z, Xu X, Pang Q. Effect of bevacizumab plus temozolomide-radiotherapy for newly diagnosed glioblastoma with different MGMT methylation status: a meta-analysis of clinical trials. Med Sci Monit 2016; 22: 3486-3492.
- 3) FANG DZ, WANG YP, LIU J, HUI XB, WANG XD, CHEN X, LIU D. MicroRNA-129-3p suppresses tumor growth by targeting E2F5 in glioblastoma. Eur Rev Med Pharmacol Sci 2018; 22: 1044-1050.
- 4) Bredel M, Bredel C, Juric D, Harsh GR, Vogel H, Recht LD, Sikic BI. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res 2005; 65: 8679-8689
- 5) ZAPOROZHCHENKO IA, MOROZKIN ES, SKVORTSOVA TE, PONOMARYOVA AA, RYKOVA EY, CHERDYNTSEVA NV, POLOVNIKOV ES, PASHKOVSKAYA OA, POKUSHALOV EA, VLASSOV VV, LAKTIONOV PP. Plasma miR-19b and miR-183 as potential biomarkers of lung cancer. PLoS One 2016; 11: e0165261.
- 6) BENTINK S, HAIBE-KAINS B, RISCH T, FAN JB, HIRSCH MS, HOLTON K, RUBIO R, APRIL C, CHEN J, WICKHAM-GARCIA E, LIU J, CULHANE A, DRAPKIN R, QUACKENBUSH J, MATULONIS UA. Angiogenic mRNA and microRNA gene expression signature predicts a novel subtype of serous ovarian cancer. PLoS One 2012; 7: e30269.
- 7) ESLAMIZADEH S, HEIDARI M, AGAH S, FAGIL CONTROL OF THE SHARE AND AREA OF THE STATE OF T
- 8) Braga EA, Loginov VI, Burdens Silippova E Pronina IV, Kurevlev SV, K. Kushlin NE. Five DN, Utkin DO, Ermilova Kushlin NE. Five hypermethylated microgenes potential markers of ovarian can built solve the solve of the solve o
- 9) ZHANG L, DONG YOU N, TSON O Z, WU CW, WANG K, ZHENY NG SS, CHAN NG NG JJ, YU J. microRNA-1 Control of tumor support from by tax sing NG H1 in colorestal cancer. Mol Cancer 2014: 13.
- 10) Huan Xi J, Liu S. MiR-spinduces cell apoptos and inhibits metastas. Pervical cancer by the eting NOB1. Biomed Pharmacother 2016; 83: 856.
- 11)

 R, Wur JP, Weis BL, Duchardt-Ferner L, Thal C, H' L, R, Mirus O, Bohnsack MT,
 Wohn Schur LE. Structural and functional
 halysis archaeal endonuclease Nob1.
 lcleic Act Les 2012; 40: 3259-3274.
- 12 ANG J, CAO E, Wu J, WANG Q. Long non-coding 111G1 regulates NOB1 expression by miR-326 and promotes tumorigenesis in osteosarcoma. Int J Oncol 2018; 52: 77-88.
 - TES DZ, SCHMIDT ML, SUMAN S, HOBBING KR, SARVE SS, GOBEJISHVILI L, BROCK G, KLINGE CM, RAI SN, PARK J, CLARK GJ, AGARWAL R, KIDD LR. Micro-RNA-186-5p inhibition attenuates proliferation, anchorage independent growth and invasion in

- metastatic prostate cancer cells. BMC Cancer 2018; 18: 421.
- 14) Zhou L, Zhao LC, Jiang N, Wang XL, Zhou XN, Luo XL, Ren J. MicroRNA miR-590-5p inhibits breast cancer cell stemness and metastasis by targeting Eur Rev Med Pharmacol Sci 2017; 21
- 15) BLOCKHUYS S, VANHOECKE B, SMET J, FOR AEPE B, VAN COSTER R, BRACKE M, DE WAGTER C Traveling the mechanisms behind the enhancement of the TT conversion by irradiated breast cancer ce diat Res 2013; 179: 433-443.
- 16) YANG Z, JI L, JIANG G, L LIU Z, YANG ZHAO H. FL118, a no camptothecin and suppressed migra and in ion of hu pithelial-mesenbreast cancer cells biti eta-cater chymal transiti ignalvia t 46. ing pathway sci Tren 8; 12;
- 17) TOMIDA C, C. GISHI N, NAGA LA T, OHNO A, HIRAY LA TKAWA T, TESHIN LOO S. VEGF pathway large large large induce evasive adaptation by activation neuropilin-1/cMet in colon capear cells. Int J 2018; 52: 1350-1362.
- 18' , BANDARU S, DE ONDA S, GOKALP S, ALA C, ALVANDIAN A, YENER N, AKYUREK LM. Blocking the cleavage of filamin a by calpain inhibitor decreases tumor cell owth. Anticancer Res 2018; 38: 3079-2085.
- TICHOTE R JUWAJIT P, SINGSUKSAWAT E, WARNNIS-ISOMANUS PT, ITHIMAKIN S, CHANTHA-RAS, HUWAJIT C. Compound A attenuates toll-like receptor 4-mediated paclitaxel resistance breast cancer and melanoma through suppresof IL-8. BMC Cancer 2018; 18: 231.
- 20) Chung ZX, Song YX, Wang ZY, Wang Y, Dong Y. miR-144-3p serves as a tumor suppressor by targeting FZD7 and predicts the prognosis of human glioblastoma. Eur Rev Med Pharmacol Sci 2017; 21: 4079-4086.
- 21) ESPOSITO CL, NUZZO S, CATUOGNO S, ROMANO S, DE NIGRIS F, DE FRANCISCIS V. STAT3 Gene silencing by Aptamer-siRNA chimera as selective therapeutic for glioblastoma. Mol Ther Nucleic Acids 2018; 10: 398-411.
- 22) Murakami K, Wu Y, Imaizumi T, Aoki Y, Liu Q, Yan X, Seino H, Yoshizawa T, Morohashi S, Kato Y, Kijima H. DEC1 promotes hypoxia-induced epithelial-mesenchymal transition (EMT) in human hepatocellular carcinoma cells. Biomed Res 2017; 38: 221-227.
- 23) LIU Z, WANG C, JIAO X, ZHAO S, LIU X, WANG Y, ZHANG J. miR-221 promotes growth and invasion of hepatocellular carcinoma cells by constitutive activation of NFkappaB. Am J Transl Res 2016; 8: 4764-4777.
- 24) CHOWDHURY FA, HOSSAIN MK, MOSTOFA AGM, AKBOR MM, BIN SAYEED MS. Therapeutic potential of thymoquinone in glioblastoma treatment: targeting major gliomagenesis signaling pathways. Biomed Res Int 2018; 2018: 4010629.
- 25) Orso F, Quirico L, Virga F, Penna E, Dettori D, Cimino D, Coppo R, Grassi E, Elia AR, Brusa D, Deaglio S, Brizzi MF, Stadler MB, Provero P, Caselle M, Taverna D. miR-214 and miR-148b targeting inhibits dissemination of melanoma and breast cancer. Cancer Res 2016; 76: 5151-5162.

- 26) Li XY, Luo QF, Li J, Wei CK, Kong XJ, Zhang JF, Fang L. Clinical significance of NOB1 expression in breast infiltrating ductal carcinoma. Int J Clin Exp Pathol 2013; 6: 2137-2144.
- 27) LIU J, DONG BF, WANG PS, REN PY, XUE S, ZHANG X, HAN Z, CHEN G. Silencing NOB1 enhances doxorubicin antitumor activity of the papillary thyroid
- carcinoma *in vitro* and *in vivo*. Oncol Rep 2015; 33: 1551-1559.
- 28) Li Y, Ma C, Qian M, Wen Z, Jing H, Qian D. Down-regulation of NOB1 suppresses the proliferation and tumor growth of non-small cell lupin vitro and in vivo. Oncol Rep 201 1276.