Abstract. – OBJECTIVE: PTEN-PI3K/AKT signaling pathway is widely involved in the regulation of cell proliferation, cell cycle, apoptosis, and invasion. Resveratrol (Resv) is a natural botanical ingredient involved in several biological activities. It is still unclear in terms of whether Resv may exert anti-leukemia effects by regulating the PTEN-PI3K/AKT pathway. This study investigated the effect of Resv on leukemia cell proliferation and apoptosis by regulating PTEN-PI3K/AKT pathway.

PATIENTS AND METHODS: Human normal peripheral blood PBMC cells, and human acute promyelocytic leukemia (APL) cell line NB-4 and HL-60 cells were cultured in vitro. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to detect Phosphatase and tensin homolog (PTEN) mRNA expression. Western blot was adopted to test PTEN protein expression. HL-60 and NB-4 cells were treated with 0, 5, 10, and 20 μM Resv, respectively. Cell proliferation was analyzed by cell counting kit8 (CCK-8) assay. The level of caspase-3 was measured by Western blot. HL-60 cells were divided into control group, 20 μM Resv treatment group, and Resv+PTEN inhibitor SF1670 group. Cell apoptosis was determined by flow cytometry. Cell proliferation was assessed by EdU staining.

RESULTS: Compared with peripheral blood mononuclear cell (PBMC), PTEN mRNA and protein levels were significantly decreased in NB-4 and HL-60 cells. Resv significantly inhibited the proliferation activity in HL-60 and NB-4 cells, and increased the activity of caspase-3. Resv treatment up-regulated the expression of PTEN and reduced the expression of p-AKT protein in HL-60 cells. However, Resv treatment markedly suppressed the proliferation of HL-60 and induced apoptosis. SF1670 treatment in the presence of Resv significantly antagonized the down-regulation of p-AKT protein expression induced by Resv, resulting in decreased apoptosis and enhanced cell proliferation.

CONCLUSIONS: Resv can up-regulate PTEN expression and inhibit the activity of PI3K/AKT pathway to play an anti-leukemia effect through suppressing cell proliferation and inducing apoptosis.

Key Words: Resv, PTEN, PI3K/AKT, Leukemia, Apoptosis, Proliferation.

Introduction

Leukemia is a group of heterogeneous hematopoietic stem cell malignant clonal diseases caused by the differentiation blockage, apoptosis suppression, and malignant proliferation of hematopoietic stem/progenitor cell at different stages. Among them, acute myeloid leukemia ((AML) is a class of malignant leukemia that originates in myeloid hematopoietic cells. Phosphatidylinositol-3 kinase (PI3K)/protein kinase B (AKT/PKB, protein kinase B) signaling pathway is widely expressed in a variety of cells and participates in the regulation of biological processes, such as cell growth, survival, and apoptosis. It plays a role in promoting a variety of activities related to tumors. Abnormal PI3K/AKT signaling pathway plays a key regulatory role in the development, progression, and prognosis of leukemia, and has become a therapeutic target for multiple anti-leukemia drugs. The phosphatase and tensin homologue deleted on chromosome ten (PTEN) is the only tumor suppressor gene with the dual activity of protein esterase and phosphatase to date, which can negatively regulate the activity of PI3K/AKT signaling pathway. It plays a tumor suppressor role in the occurrence, progression, metastasis, and drug resistance of vari-
ous tumors, such as breast cancer11, lung cancer12, esophageal cancer13, and leukemia14,15, etc.

Resveratrol (Resv) is a natural botanical ingredient with many biological activities16-19. It was shown that Resv regulates the expression and function of PTEN through a variety of mechanisms. However, it is still unclear whether Resv may exert anti-leukemia effects by regulating PTEN-PI3K/AKT pathway20-22. This study investigated the effect of Resv on leukemia cell proliferation and apoptosis.

\textbf{Materials and Methods}

\textbf{Main Reagents and Materials}

Human normal peripheral blood mononuclear cells (PBMCs) were purchased from Beijing Beina biological Co. (Beijing, China). Leukemia HL-60 cells were purchased from Nanjing Kezhen biological Co. (Nanjing, China). Leukemia NB-4 cells were purchased from Shanghai Cell Bank of Chinese Academy of Sciences (Shanghai, China). Roswell Park Memorial Institute-1640 (RPMI-1640), Opti-MEM, and fetal bovine serum (FBS) were purchased from Gibco (Grand Island, NY, USA). RNA extraction reagent TRIzol was purchased from Invitrogen (Beijing, China). QuantiTect SYBR Green RT-PCR Kit was purchased from Qiagen Sciences Inc (Germantown, MD, USA). Rabbit anti-human polyclonal PTEN and β-actin antibodies were purchased from Abcam (Cambridge, MA, USA). Rabbit anti-human p-AKT monoclonal antibody was purchased from Cell Signaling Technology, Inc (Danvers, MA, USA). Goat anti-rabbit HRP-conjugated secondary antibody was purchased from Jackson ImmunoResearch (West Grove, PA, USA). CCK-8, Annexin V-FITC/PI apoptosis kit, and BCA protein quantification kit were purchased from Beyotime Institute of Biotechnology (Jiangsu, China). EdU Flow Cytometry Kit was purchased from Sigma-Aldrich (St. Louis, MO, USA). Resv was purchased from Sellceck Chemicals (Houston, TX, United States).

This study has been approved by the Ethical Committee of Affiliated Hospital of Weifang Medical College (Shandong, China). All participants have acknowledged this research and have signed informed consents.

\textbf{Cell Culture}

PBMC, HL-60, and NB-4 cells were cultured in Roswell Park Memorial Institute-1640 (RPMI-1640) medium containing 10% fetal bovine serum (FBS) at 5% CO\textsubscript{2} and 37°C. The cells in the log phase were subjected to experiments.

\textbf{CCK-8 Assay}

HL-60 and NB-4 cells were seeded in 96-well plate at 10000/well and treated by different concentrations (0, 5, 10, 20 μM) of Resv for 48 h. Next, the cells were added with Cell Counting Kit-8 (CCK-8) to measure the absorbance value (A450). Relative viability = (A450 in drug group - A450 in blank group)/(A450 in control – A450 in blank group) \times 100%.

\textbf{Flow Cytometry Detection of HL-60 Cell Proliferation}

Cell proliferation was tested by EdU Flow Cytometry Kit. The cells were resuspended in Roswell Park Memorial Institute-1640 (RPMI-1640) medium containing 10% fetal bovine serum (FBS). After being incubated in 10 μM EdU at 37°C for 2 h, the cells were seeded in 6-well plate and divided into three groups, including control group without special treatment, 20 μM Resv group that was treated by 20 μM Resv, and Resv + PTEN inhibitor SF1670 group that was treated by 20 μM Resv and 1 μM SF1670. Post incubated for 48 h, the cells were fixed in paraformaldehyde. The cells were then incubated in 100 μL TritonX-100 at room temperature and in 500 μL reaction fluid at room temperature under dark for 30 min. At last, the cell was tested on FC500MCL flow cytometry.

\textbf{Cell Apoptosis Detection}

The cells were digested by enzyme and collected followed by being resuspended in 100 μl binding buffer. After that, 5 μl Annexin V-FITC kit and 5 μl PI were added into cells and incubated at room temperature under dark for 15 min. Then the cells were tested on flow cytometry.

\textbf{qRT-PCR}

Total RNA was extracted using TRIzol. QuantiTect SYBR Green RT-PCR Kit was used for qRT-PCR. The PCR reaction system was composed of 10.0 μL 2×QuantiTect SYBR Green RT-PCR Master Mix, 1.0 μL forward primer (0.5 μmol/L), 1.0 μL reverse primer (0.5 μmol/L), 2.0 μg template RNA, 0.5 μL QuantiTect RT Mix, and ddH\textsubscript{2}O. The reaction was performed on Bio-Rad CFX96 at 45°C for 5 min and 94°C for 30 s, followed by 40 cycles of 95°C for 5 s and 60°C for 30 s. The primer sequences were: PTEN-F-5'-TG-
Resveratrol treated leukemia

GGCCCTGTACCATCCCAAGT-3';
PTEN-R-5'-TGTTGCAACCACAGCCATC-GT-3';
GAPDH-F-5'-CATGAGAAGTATGA-CAACAGGCT-3';
GAPDH-R-5'-AGTCCCTTC-CACGATACCAAG-3'.

Western Blot

Total protein was extracted from the cells by radioimmunoprecipitation assay buffer (RIPA buffer). After quantified by bicinechonic acid assay (BCA assay), a total of 40 μg protein was separated by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and transferred to polyvinylidene difluoride (PVDF) membrane at 250 mA for 100 min. After blocked by 5% skim milk at room temperature, the membrane was incubated in primary antibody at 4°C overnight (PTEN, p-AKT, and β-actin at 1:1500, 1:800, and 1:10000, respectively). The membrane was washed by Phosphate-Buffered Saline with Tween 20 (PBST), and was then incubated in horseradish peroxidase (HRP) conjugated secondary antibody at room temperature for 60 min (1:10000). At last, the membrane was treated by ECL (enhanced chemiluminescence) reagent and developed.

Statistical Analysis

SPSS 18.0 software (SPSS inc., Chicago, IL, USA) was applied for data analysis. Measurement data was presented as mean ± standard deviation and compared by the Student t-test or one-way ANOVA with Bonferroni as post-hoc analysis. p < 0.05 was depicted as significant difference.

Results

Decreased PTEN Expression in Leukemia HL-60 and NB-4 Cells

qRT-PCR showed that the expression of PTEN mRNA in leukemia HL-60 and NB-4 cells was significantly lower than that in healthy human PBMC (Figure 1A). Western blot demonstrated that the expression of PTEN protein in HL-60 and NB-4 cells was obviously lower than that of PBMC (Figure 1B).

Resv Suppressed HL-60 and NB-4 Cell Proliferation

CCK-8 exhibited that compared with the control group, the proliferation activity of HL-60 (Figure 2A) and NB-4 cells (Figure 2B) in Resv treatment group was markedly reduced in a dose-dependent manner. It was revealed that compared with the control group, the activity of caspase-3 in HL-60 (Figure 2C) and NB-4 cells (Figure 2D) of Resv treatment group was significantly enhanced in a dose-dependent manner.

Resv Upregulated PTEN Expression in HL-60 Cells

qRT-PCR showed that the expression of PTEN mRNA in HL-60 cells of Resv treatment group was significantly higher than that of the control group in a dose-dependent manner (Figure 3A). Western blot observed that compared with the control group, the expression of PTEN protein in HL-60 cells was significantly upregulated, while the expression of p-AKT protein was signifi-

![Figure 1](image1.png)

*Figure 1. PTEN expression decreased in leukemia HL-60 and NB-4 cells. (A) qRT-PCR detection of PTEN mRNA expression; (B) Western blot detection of PTEN protein expression. *p < 0.05, compared with PBMC.*
cantly declined in the Resv treatment group in a dose-dependent manner (Figure 3B).

Resv Inhibited HL-60 Cell Proliferation and Induced Apoptosis via Regulating PTEN-PI3K/AKT Signaling Pathway

qRT-PCR found that the expression of PTEN mRNA in HL-60 cells was significantly elevated in the 20 μM Resv-treatment group compared with the control group. SF1670 treatment did not affect the expression of PTEN mRNA (Figure 4A). Western blot showed that compared with the control group, the expression of PTEN protein was significantly upregulated, whereas the expression of p-AKT protein was markedly declined in HL-60 cells of Resv treatment group. SF1670 did not affect PTEN protein expression but significantly enhanced p-AKT protein expression (Figure 4B). Flow cytometry exhibited that 20 μM Resv significantly induced HL-60 cell apoptosis, while SF1670 apparently antagonized the apoptosis-inducing effect of Resv on HL-60 cells (Figure 4C). EdU staining observed that HL-60 cell proliferation in the 20 μM Resv treatment group was significantly weakened compared with the control group, and SF1670 significantly antagonized the inhibitory effect of Resv on HL-60 cell proliferation (Figure 4D).

Discussion

Under the stimulation of growth factors, mitogens, and other factors, PI3K can be activated after conformational changes. Once PI3K/AKT signaling pathway is activated, PI3K can catalyze its substrate phosphatidylinositol 4,5-diphosphate (phosphatidylinositol). 4,5-trisphosphate, (PIP2) phosphorylation to produces phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 recruits Ser/Thr protein kinase AKT from the cytoplasm to the membrane and phosphorylates AKT at Ser473 and
Resveratrol treated leukemia

Thr308 under the action of phosphoinositide-dependent protein kinase (PDK). Phosphorylated AKT continues to transmit signals downstream to regulate the expression and function of proteins that play a key role in cell proliferation, cell cycle, and apoptosis. Over-activation of PI3K/AKT signaling pathway promotes cell proliferation, migration, invasion, and apoptosis, which is closely related to the development of ovarian cancer, breast cancer, and other tumors.

Resv is a natural botanical ingredient with many biological activities. It was found that Resv has a variety of biological activities and pharmacological effects in regulating lipid metabolism, inhibiting platelet aggregation, anti-inflammation, anti-tumor, and anti-leukemia. Moreover, several studies have shown that Resv can regulate the expression and function of PTEN through a variety of mechanisms. However, there have been very few studies about whether Resv plays a role in anti-leukemia by regulating PTEN-PI3K/AKT pathway. This study investigated the effect of Resv on leukemia cell proliferation and apoptosis as well as on PTEN-PI3K/AKT pathway.

This study showed that compared with human normal PBMC cells, PTEN mRNA and protein levels in leukemia HL-60 and NB-4 cells were significantly decreased, indicating that the reduced expression of the tumor suppressor gene PTEN may play a role in promoting pathogenesis of leukemia. Yao et al. found that PTEN expression was downregulated in leukemia NB-4 cells. Wang et al. observed that tumor suppressor gene PTEN expression was significantly reduced in leukemia HL-60 cells. In this study, the decrease in the expression of PTEN was associated with leukemia, which was similar to the results of Yao et al. and Wang et al. CCK-8 assay revealed that different concentrations of Resv significantly inhibited the proliferation and enhanced caspase-3 activity of HL-60 and NB-4 cells with dose dependence. Fan et al. reported that Resv obviously induced leukemia NB-4 cell apoptosis and inhibited cell proliferation. Su et al. demonstrated that Resv treatment markedly suppressed the proliferation activity of HL-60 cells. Fan et al. reported that Resv promoted leukemia HL-60 cell autophagy through LKB1-AMPK-mTOR pathway and inhibited cell apoptosis via upregulating Bax/Bcl-2 ratio and activating caspase-8 and caspase-3. Cakir et al. exhibited that Resv apparently restrained HL-60 cell proliferation and promoted cell apoptosis with dose dependence. In this study, Resv significantly inhibited leukemia cell proliferation, induced apoptosis, and showed anti-leukemia effects, which was consistent with previous studies conducted by Su et al., Fan et al., and Cakir et al.

At present, numerous studies found that anti-leukemia drugs can play their roles by regulating PTEN. Yao et al. observed that PTEN expression level was significantly reduced in leukemia NB-4 cells. The administration of EGCG and ARTA could inhibit the activity of AKT by upregulating PTEN expression to promote cell myeloid differentiation and attenuate malignancy. Wang et al. showed that the decrease of PTEN expression was related to the malignant biological characteristics of leukemia HL-60 cells. The administration of carnosic acid (CA) significantly upregulated PTEN expression, inhibited AKT and ERK2 phosphorylation activities, promoted

Figure 3. Resv upregulated PTEN expression in HL-60 cells. (A) qRT-PCR detection of PTEN mRNA expression in HL-60 cells; (B) Western blot detection of PTEN and p-AKT protein expressions in HL-60 cells. *p < 0.05, compared with 0 μM.
cell apoptosis, inhibited cell proliferation, and arrested cell cycle. Cellai et al reported that the decrease of PTEN expression was related to the malignant characteristics of leukemia NB-4 cells. Treatment with WEB-2170 significantly up-regulated the expression of PTEN, inhibited the phos-
phorylation activity of AKT and ERK2, inhibited cell proliferation, and induced cell apoptosis. This study focused on investigating whether Resv may exert anti-leukemia effects by regulating PTEN. It was found that Resv clearly upregulated PTEN mRNA and protein levels, and suppressed p-AKT protein expression in HL-60 cells, indicating that Resv inhibited PI3K/AKT pathway activity by enhancing PTEN to exert an anti-leukemia effect. Furthermore, it was showed that treatment with PTEN inhibitor SF1670 on the basis of Resv can antagonize the down-regulation of p-AKT protein, enhance cell proliferation and decrease apoptosis induced by Resv, thus attenuating the anti-leukemia effect of Resv. It was suggested that the anti-leukemia effect of Resv is exerted through the PTEN-PI3K/AKT pathway. Jing et al. found that Resv can significantly upregulate the expression and function of PTEN, inhibit the activity of PI3K/AKT pathway, arrest cell cycle arrest, restrained cell proliferation, and attenuated cell malignancy of gastric cancer MGC803 cells. Dhar et al. revealed that Resv exerts anti-prostate cancer function by increasing PTEN expression, inhibiting AKT activity, reducing prostate cancer cell proliferation, and suppressing tumorigenicity in animals. This study revealed that Resv inhibited cell proliferation and promoted apoptosis by regulating the activity of the PTEN-PI3K/AKT pathway. However, whether Resv plays a role in regulating PTEN-PI3K/AKT pathway activity and anti-leukemia effect in vivo still remains unclear and requires further investigations.

Conclusions

We revealed that Resv can up-regulate PTEN expression and inhibit the activity of PI3K/AKT pathway to play an anti-leukemia effect by suppressing cell proliferation and inducing apoptosis.

Conflict of interest

The authors declare no conflicts of interest.

References

