An impressive case of alopecia universalis after COVID-19 vaccination: a coincidental finding or a consequence?

L. PETERLE¹, L. MACCA¹, F. LI POMI¹, F. VACCARO², F. BORGIA¹, M. VACCARO¹

¹Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
²Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy

Lucia Peterle and Laura Macca equally contributed to this work and share first authorship

Abstract. – BACKGROUND: Several cutaneous manifestations in patients undergoing COVID-19 vaccination have been described in literature.

CASE REPORT: Herein, we present a case of alopecia universalis that occurred after the first and second dose of Comirnaty vaccine. A bibliographic search was conducted and a total of 14 studies concerning the association were reviewed.

CONCLUSIONS: Given the autoimmune pathogenesis of the disease, we discussed the potential role of SARS-CoV-2 infection and vaccination as a trigger for the development of hair loss. Physicians should be aware of SARS-CoV-2 vaccine-related hair loss and properly treat this undesirable effect.

Key Words: SARS-CoV-2 infection, COVID-19 vaccination, Hair loss, Alopecia universalis, Autoimmunity.

Introduction

Several cutaneous adverse events occurred after the anti-SARS-CoV-2 vaccination¹. Among these, few cases of alopecia areata (AA) have been described. The autoimmune pathogenesis based on peri- and intrafollicular cluster of differentiation 4 (CD4)⁺ and cluster of differentiation 8 (CD8)⁺ T cells infiltrate has been extensively investigated².

It clinically occurs in the form of patches with complete hair loss on the scalp or other parts of the body. The major risk factors are genetic predisposition, atopy, autoimmunity, stress, hormonal changes, vaccination, and infections³. The most imputed are viral triggers (influenza, Cytomegalo, and the Epstein-Barr Virus)⁴. In this regard, we report a case of alopecia universalis (AU) arising after SARS-CoV-2 vaccination, suggesting a possible connection between vaccines and autoimmune diseases.

Case Report

A 48-year-old Caucasian female patient with Hashimoto’s thyroiditis well-controlled, a previous episode of self-limiting AA in childhood and a familiar history of autoimmune diseases, came to our attention. She complained of a sudden hair loss starting from the parietal region of the scalp (Figure 1A). Simultaneously, she noticed a bilateral periocular edema (Figure 1B) and an impressive hair loss after routine hair washing (Figure 1C). About 10 days before the onset of these manifestations, she received the first dose of Comirnaty [Pfizer/BioNTech (Mainz, Germany)] vaccine against SARS-CoV-2. The progressive loss of the remaining hair of the scalp, eyebrows and body’s hair was reported after the second dose (Figure 1D-E). A timeline of the clinical events is reported on Figure 2. Diagnosis of AU was made. Topical clobetasol propionate solution and intrallesional triamcinolone acetonide 10 mg/mL (3 sessions, 4 weeks apart) was administrated. Unfortunately, there was no response. Written consent to image recording for academic purposes was obtained.

Literature Review

A bibliographic search was conducted on PubMed database (available at: https://ncbi.nlm.nih.gov/PubMed accessed on 20 July 2022) using the key words: “alopecia” AND “COVID-19 vaccination”. Basing on the abstract content, we collected pa-
pers concerning this association. No restrictions for language, type or year of publication were applied. The overall search yielded 23 articles. Among these, 13 were excluded as not relevant and/or because the full text was not available, and 10 papers were selected as matching our search. The review of available medical literature is summarized in Table I.

Discussion

Since the start of the COVID-19 pandemic, multiple studies have reported an increased incidence of several cutaneous diseases. Among them, new onset of AA might represent a cutaneous feature of SARS-CoV-2 infection. Few cases showed the outbreak of AA in course of COVID-19 vaccination, thus becoming, together with telogen effluvium, the most common type of hair loss in the pandemic. With regard to SARS-CoV-2 infection, two mechanisms dealing with AA occurrence have been hypothesized. The first could be the cross-reaction between the viral antigen and autoantigens, leading to a hyperimmune reaction against hair follicles or dermal papillae cells, finally resulting in hair loss. The second concerns with the cytokine storm, characterized by the increase of interleukin-6 (IL-6) levels, thus blocking the lengthening of the hair shaft and the proliferation of the matrix cells. Switching to vaccination, the molecular mimicry, and the subsequent production of pathological autoantibodies, could similarly represent the pathogenic mechanism of vaccines-related alopecia. Autoimmune phenomena after vaccination could also be justified by the epitope spreading, which is a secondary autoimmune response generated after the release of neo-autoantigens caused by inflammation. Finally, a further mechanism is represented by the heterologous activation of non-antigen-specific lymphocytes (bystander activation) that induce an inflammatory environment with the release of cytokines and chemokines. Recent studies have highlighted genetic similarities between cross-reactive human endogenous antigens and spike protein, supporting the unifying reason for common adverse events following both COVID-19 infection and vaccines. As in most of the cases of AA arising after COVID-19 vaccination described in the literature, our patient also had a personal and family history of autoimmune disease. In fact, these autoimmune reactions have been established on a typical genetic background with alopecia itself representing an additional stress factor. This can concur to a vicious circle for the patients, by activating pre-existing underlying dysregulated pathways. With regard to the treatment of AA, several topical and systemic drugs have been widely described in literature, even if the commonest therapy is still represented by corticosteroids. Additional treatments available are: minoxidil, pentoxifylline, topical calcipotriol, phototherapy with narrow band ultraviolet B radiation and Janus Kinasis inhibitors. Recently, topical latanoprost, an esterified prodrug of Prostaglandin F2α (PGF2α), has been

Figure 1. Clinical features 10 days after the first dose of the vaccine: A, Single enlarging patch of non-scarring alopecia; B, Periocular edema; C, Sudden hair loss after routine hair washing; D-E, AU with total hair loss and eyebrows after the second dose of the vaccine.

Figure 2. Timeline of ensuing clinical events after the administration of the SARS-CoV-2 vaccine.
Table I. Patients’ characteristics in studies on SARS-CoV-2 vaccines-related alopecia areata.

<table>
<thead>
<tr>
<th>References</th>
<th>Sex/age (year)</th>
<th>Type of SARS-CoV-2 vaccine</th>
<th>Severity of hair loss</th>
<th>Approximate time to flare</th>
<th>Treatment</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen et al13</td>
<td>-M/29, -F/26</td>
<td>- AstraZeneca</td>
<td>- AT of the scalp</td>
<td>- Within 1 week after 2<sup>nd</sup> dose</td>
<td>Both treated with pulsed oral Methylprednisolone</td>
<td>No response</td>
</tr>
<tr>
<td>Gamonal et al14</td>
<td>F/27</td>
<td>Pfizer-BioNTech</td>
<td>AA of the scalp</td>
<td>- Within 2 weeks after 3<sup>rd</sup> dose</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Ho et al15</td>
<td>F/51</td>
<td>AstraZeneca</td>
<td>AU</td>
<td>Within 1 week after 1<sup>st</sup> dose</td>
<td>Clobetasol propionate ointment and intralesional triamcinolone acetonide</td>
<td>Partial response</td>
</tr>
<tr>
<td>Lo et al16</td>
<td>F/61</td>
<td>Pfizer-BioNTech</td>
<td>AA of the scalp</td>
<td>Within 1 week after 2<sup>nd</sup> dose</td>
<td>Topical fluocinonide, tacrolimus ointment and minoxidil 5% solution, followed by intralesional triamcinolone acetonide</td>
<td>Complete remission</td>
</tr>
<tr>
<td>Essam et al17</td>
<td>F/32</td>
<td>AstraZeneca</td>
<td>AA of the scalp</td>
<td>Not reported</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Gallo et al18</td>
<td>M/31</td>
<td>Pfizer-BioNTech</td>
<td>AA of the scalp and beard</td>
<td>Within 3 weeks after 2<sup>nd</sup> dose</td>
<td>Not reported</td>
<td>Not reported</td>
</tr>
<tr>
<td>Bardazzi et al6</td>
<td>-F/41, -M/24, -F/21</td>
<td>Pfizer-BioNTech, Moderna</td>
<td>- AT of the scalp, AA of the scalp</td>
<td>- Within 1 week after 1<sup>st</sup> dose</td>
<td>- Clobetasolpropionatefoam - Intramuscular triamcinolone and clobetasol propionate - Intralesional triamcinolone</td>
<td>- Complete regrowth, - Worsening to AU, - Partial hair regrowth</td>
</tr>
<tr>
<td>Lee et al19</td>
<td>M/80</td>
<td>Pfizer-BioNTech</td>
<td>AT of the scalp and AA of the beard</td>
<td>Within 1 week after 1<sup>st</sup> dose</td>
<td>Topical squaric acid dibutylester and minoxidil 5% solution</td>
<td>No response</td>
</tr>
<tr>
<td>Scollan et al20</td>
<td>-F/33, -F/57, -F/62, -F/29, -M/22, -M/15, -M/61, -M/16</td>
<td>Moderna, Pfizer-BioNTech</td>
<td>- AA of the scalp - AT with eyebrow, eyelash, and beard hair loss - AA of the scalp, eyebrows, and eyelashes</td>
<td>- Within 2 months after 2<sup>nd</sup> dose - Within 1 week after 2<sup>nd</sup> dose - Within 1 month after 2<sup>nd</sup> dose - Within 2 weeks after 1<sup>st</sup> dose - Within 2 weeks after 1<sup>st</sup> dose</td>
<td>- Tofacitinib citrate 5 mg - Tofacitinib citrate 5 mg - Tofacitinib citrate 10 mg, bimatoprost 0.03% eye drops - Tofacitinib citrate 10 mg - Intraleionaltriamcinolone - Tofacitinibcitrate 10 mg - Intraleionaltriamcinolone - Scheduled for oral tofacitinib citrate trial - Tofacitinib citrate 10 mg</td>
<td>Not reported</td>
</tr>
<tr>
<td>Su et al21</td>
<td>M/42</td>
<td>AstraZeneca</td>
<td>AA of the scalp</td>
<td>Within 3 weeks after 1<sup>st</sup> dose</td>
<td>Intraleional triamcinolone</td>
<td>Not reported</td>
</tr>
</tbody>
</table>
found effective in treating AA and safer than topical betamethasone\(^{10}\). Eyelash hypertrichosis is the common complication after its chronic use similarly to other drugs\(^{11}\); however, cases of erosive pustular dermatosis have been described\(^{12}\). In conclusion, treatment of AA represents a challenge both in terms of the efficacy of the available therapies and in terms of patient compliance, since these are prolonged, related to side effects and often ineffective.

Conclusions

According with literature\(^{13-20}\), several cutaneous manifestations may occur after SARS-CoV-2 vaccination. Among these, AA seems to represent a ‘model’ of such reactions, pathogenically linking COVID and related prophylactic measures. Although not disabling, AA may have consequences on patients’ quality of life, due to its clinical presentation, and demonstrate variable response to treatments, thus requiring further clinical studies and research.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Ethics Approval

Not applicable.

Informed Consent

Written consent to image recording for academic purposes was obtained.

Authors’ Contribution

Conceptualization, methodology and writing, original draft preparation: Lucia Peterle, Laura Macca, Federica Li Pomi, Mario Vaccaro; data collection, methodology: Federico Vaccaro; writing, review and editing and supervision: Francesco Borgia and Mario Vaccaro. All authors have read and agreed to the published version of the manuscript.

Funding

None.

Availability of Data and Materials

Study data are available at our University Hospital Archive.

References

15) Ho JD, McNish A, McDonald L, Burrell C, Smith-Matthews S. Alopecia universalis with unusual histopathologic features after vaccination with ChAdOx1 nCoV-19 (AZD1222). JAAD Case Rep 2022; 25: 4-8.

21) Su HA, Juan CK, Chen YC. Alopecia areata following ChAdOx1 nCoV-19 vaccination (Oxford/AstraZeneca). J Formos Med Assoc 2022; 121: 2138-2140.