Clinical effectiveness of a new oral curcumin formulation in acute non-infectious uveitic macular edema: a 12-month observational study

P. ALLEGRI¹, R. ROSA², A. MASALA³, R. RISSOTTO⁴, F. RISSOTTO⁵, M.G. CRIVELLI⁶, S. PERI⁶

1Inflammatory Eye Diseases Referral Center, Rapallo Hospital, Genoa, Italy
2University Eye Clinic of Genova, Genova, Italy
3Ophthalmological Department of Genova Local Health Authority No. 3, Genoa, Italy
4University Eye Clinic of Milano, San Paolo Hospital, Milan, Italy
5University Eye Clinic of Pisa, Pisa, Italy
6Pharmaceutical Department of Genova Local Health Authority No. 4, Genoa, Italy

Abstract. – OBJECTIVE: Oral supplementation with curcumin demonstrated a beneficial effect on some ocular diseases, including uveitis and macular edema. This study aimed to evaluate the effectiveness and safety of a curcumin formulation with the hydrophilic carrier (CHC; Diabec®, Alfa Intes, Italy) as an adjuvant to standard steroid treatment in adults suffering from acute non-infectious uveitic macular edema (NIUME).

PATIENTS AND METHODS: This was a monocenter prospective observational study carried out between January 2019 and May 2020 on consecutive patients with a new diagnosis of NIUME. Patients were treated with standard therapy or with a CHC add-on to standard treatment. The observation period for each patient was 12 months. The Best Corrected Visual Acuity (BCVA) and the Central Macular Thickness (CMT) were the primary outcomes; Foveal Avascular Zone (FAZ) and intraocular pressure (IOP) were also assessed, along with safety data.

RESULTS: A total of 43 eyes of 26 patients were analyzed. CHC-treated eyes showed an improvement in mean BCVA from baseline (0.34 logMar) to T₆ (0.20 logMar) and T₁₂ (0.19 logMar; p≤0.05 and p≤0.01, respectively); CMT decreased from a mean of 320 μm (T₀) to 278 μm (T₆; p≤0.05) and 272 μm (T₁₂; p≤0.01). A significant improvement of mean BCVA in the CHC group at T₆ and T₁₂ was reported compared to the control group (p≤0.01). FAZ and IOP showed no statistically significant variations in both groups. No adverse events were recorded.

CONCLUSIONS: CHC as an adjuvant treatment improved the anatomical and functional outcomes, without significant side effects in eyes affected by the recent onset of NIUME, compared to the sole standard therapy.

Key Words: Non-infectious uveitic macular edema (NIUME), High bioavailable curcumin (CHC), CurcuWIN, BCVA, SD-OCT, angio-OCT.

Introduction

Macular edema (ME) is the most common sight-threatening complication of uveitis (UME), and it has been reported in 1/3 of uveitis patients¹. UME can be seen in infectious and non-infectious conditions (NIUME) and is associated with autoimmune diseases (mainly sarcoidosis, multiple sclerosis, rheumatoid syndromes and Behçet’s disease).

To treat NIUME, different drugs (from topical NSAIDs and/or local, sub-tenon and short- or long-acting intravitreal steroids to systemic drugs, such as steroids, immunosuppressants and biologics) have been proposed, but most, if not all, have significant potential for causing local or systemic adverse events (for instance, cataract and intraocular pressure (IOP) for local steroids, or more significant systemic reactions from drugs, such as IFN-α)²-⁴. In addition, ME may persist, leading to permanent photoreceptor damage and loss of central vision⁵-⁷. Consequently, new strategies are needed to improve available anti-edema therapies, particularly as regards the safety profile.

Curcumin, an active derivative from Curcuma Longa rhizome, has shown its scavenger potential against reactive oxygen molecules in many studies⁸-⁹, making it an antioxidant and anti-in-
Efficacy of oral curcumin in NIUME

47

Inflammatory product. Nevertheless, curcumin is a molecule with poor systemic and ocular tissues bioavailability due to its low water solubility, rapid systemic metabolism and elimination. Different approaches were successfully tested to improve curcumin oral absorption, including its conjugation with nanocarriers, such as phosphatidylserine phytosome or polyvinyl pyrrolidone-hydrophilic carrier, to obtain a curcumin formulation with a hydrophilic carrier (CHC, Diabec®, Alfa Intes, Italy). After CHC oral administration, a significantly high concentration of curcuminoids is present, in vivo, in blood and the retina. This curcumin formulation is currently available on the Italian market.

Based on these findings, we conducted a study aimed at investigating the anti-inflammatory effectiveness and safety of oral CHC in addition to steroid standard therapy in subjects suffering from the recent onset of NIUME.

Patients and Methods

Study Design and Participants

This was a prospective observational study carried out between January 2019 and May 2020 on consecutive adult patients with a diagnosis of bilateral, recent-onset NIUME referred to the Ocular Inflammatory Diseases Center in Rapallo (Genoa, Italy). Uveitis was anatomically classified according to the Standardization of Uveitis Nomenclature (SUN) Working Group criteria. Diabetic subjects, eyes operated for cataracts and eyes with other retinal complications (including alteration of retinal thickness) were excluded.

At enrollment, a detailed systemic and ocular history was collected. The patients’ eyes underwent a complete ocular examination, including anterior and posterior segment slit-lamp examination, Goldmann applanation tonometry, Best Corrected Visual Acuity (BCVA) testing using 4-meter ETDRS (Early Treatment Diabetic Retinopathy Study) charts, SD-OCT (Optical Coherence Tomography; Heidelberg II Engineering GmbH, Heidelberg, Germany) and Optovue Angio-OCT (Optovue Inc., AngioVue, Fremont, CA, USA) imaging.

Patients were treated with standard therapy (oral steroids) or with a CHC add-on to standard treatment (one capsule bis in die of Diabec®), based on the physician’s routine clinical practice. The standard therapy consisted of a starting dose of oral prednisone (1 mg/kg/day up to a maximum 50 mg/day dose) for 4 weeks, and then, tapered over 45 days to a 15 mg/day dose, which was maintained for 6 weeks and then tapered and discontinued in further 8 weeks.

Each CHC capsule contained 60 mg Curcumin® (dry powder 20% with a polyvinylpyrrolidone hydrophilic carrier). CHC treatment was performed for 6 months combined with systemic therapy and then continued alone for the other 6 months. The observation period for each patient was 12 months.

The study is conformed to Helsinki’s Declaration and was approved by the Regional Ethical Committee and regulatory agency of Liguria (Italy) n° 247/18. All participants provided written informed consent.

Study Measures

The study’s primary aims were the evaluation of BCVA improvement (ETDRS charts) and Central Macular Thickness (CMT) reduction. Secondary endpoints were the foveal avascular zone (FAZ) area (Optovue AngioVue angiography) and the IOP variations.

All the above-mentioned parameters were evaluated at baseline (T₀) and during each follow-up visit, carried out at 3 (T₃), 6 (T₆) and 12 (T₁₂) months from the beginning of the treatment.

For the BCVA evaluation, the Snellen fraction of the ETDRS chart was converted to the logarithm of the minimum angle of resolution (logMAR) for statistical analysis and 0.02 logMAR units were given for each letter correctly identified on the entire chart.

The “Thickness Map” function of Heidelberg SD-OCT (center point thickness ≥260 µm) was used to automatically measure the mean CMT within a circular area of 0.5 mm radius from the foveal center. Macular edema was considered persistent or unresponsive to treatment when CMT was ≥300 µm.

FAZ area calculation was performed on the superficial vascular retinal network using the nonflow function of the AngioAnalytics imaging software embedded in the Optovue AngioVue instrument. 6×6 mm scans of the superficial and deep capillary plexuses were collected for analysis; images were generated by automated layer segmentation, and, in case of wrong processing, manual segmentation was performed.

OCTA images were normalized to a standard window level based on the maximum and minimum intensity values to increase the reliability of the extracted features. The mean normal area was considered 0.27±0.1 mm² at the superficial network. Three
different OCTA biomarkers (FAZ area, contour irregularity and vessel density) were analyzed.

Two different observers evaluated SD-OCT and Angio-OCT images and excluded scans of poor quality. At each visit, any adverse effect was also registered.

Statistical Analysis

Repeated measures analysis under the generalized linear mixed effect framework was performed; in particular, the experimental design would model the responses as a function of treatment, time and their one-way interaction; following analyses with post-hoc means comparisons to assess any statistical difference in the pairwise difference between specified time windows were performed. The R software was used for this purpose, and statistical significance was evaluated using a 5% threshold.

Results

Study Population

A total of 26 consecutive patients (17 were females, mean±SD age was 53±4 years) were included in the study; 11 patients were treated with the standard therapy (control group) and 15 with the CHC add-on.

A total of 43 eyes out of 52 were included in the statistical analysis: nine eyes were excluded (4 in the control and 5 in the CHC group) because they were affected by retinal or optic disc atrophy with a CMT <300 µm (4 eyes), macular pucker (3 eyes) or dense vitreal opacities (2 eyes).

All patients presented intermediate or posterior uveitis. At the baseline, macular edema’s mean (±SD) duration was 15 (±4) days from the onset.

The anatomic classification of uveitis according to the study group is summarized in Table I.

BCVA Evaluations

The outcome was homogeneous at T_0 ($p=0.482$). In the CHC group, a significant improvement of the mean BCVA was reported between T_0 and T_6 (0.34±0.05 vs. 0.20±0.02, respectively; $p≤0.05$) and this improvement further increased at T_{12} (0.19±0.02; $p≤0.01$), compared to T_0 evaluations.

The mean BCVA remains stable in the control group during the study period.

Statistical comparison between the two study groups showed a significant improvement of mean BCVA in the CHC group at T_6 and T_{12} ($p≤0.01$), compared to the control group (T_6: 0.20±0.02 vs. 0.37±0.06; T_{12}: 0.19±0.02 vs. 0.40±0.07).

CMT Measurements

The outcome is homogeneous at T_0 ($p=0.213$).

In the CHC group, the mean CMT significantly decreased from T_0 to T_6 (320.0±40.8 vs. 278.0±46.3; $p≤0.05$) and T_{12} (272.0±51.9; $p≤0.01$) (Figures 1 and 2). Reduction corresponds to 14% at T_6 and 15% at T_{12}, compared with baseline values.

A trend towards the mean CMT reduction was observed in the control group, although not statistically significant (Figure 1).

Secondary Outcomes

FAZ

The outcome was homogeneous at T_0 ($p=0.928$). There is no significant change in the mean FAZ area. However, a trend towards restoring the normal architecture and perfusion of the perifoveal capillary net is mainly evident in the eyes of the CHC group (Figure 3).

IOP

The outcome was homogeneous at T_0 ($p=0.078$).

Table I. Anatomic classification of uveitis.

<table>
<thead>
<tr>
<th>Type</th>
<th>Underlying pathology</th>
<th>CHC group (n)</th>
<th>Control group (n)</th>
<th>Total (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panuveitis</td>
<td>Sarcoidosis</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Posterior uveitis</td>
<td>Idiopathic uveitis</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Behçet disease</td>
<td>3</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sarcoidosis</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Autoimmune retinal vasculitis</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Intermediate uveitis</td>
<td>Idiopathic uveitis</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Multiple sclerosis</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>11</td>
<td>26</td>
</tr>
</tbody>
</table>

CHC: Curcumin formulation with the hydrophilic carrier.
Efficacy of oral curcumin in NIUME

No clinically significant changes in mean pressure values were recorded for both groups. For the CHC group, a trend towards lower pressure mean values throughout the study period was observed (Figure 4).

Safety Data

No clinically significant adverse events were recorded during the study period; one patient only in the CHC group reported epigastric disturbances without a need for CHC discontinuation.

Discussion

UME is a common cause of visual loss in patients affected by intraocular inflammation, and it is a frequent complication of intermediate (25-70%) and posterior (19-34%) uveitis. However, it can also be seen in anterior uveitis. It frequently occurs in middle-aged or elderly subjects suffering from chronic forms of uveitis and can suddenly appear and recur along the disease course.

Different and independent factors may play a role in the pathogenesis of ME, mainly the breakdown of the inner and outer blood-retinal barrier produced by vasogenic and cytotoxic effects derived from inflammation (pro-inflammatory cytokines are delivered to the retina, namely prostaglandins, leukotrienes, protein kinase C, nitric oxide, TNF-α, interleukins, insulin-like growth factor and VEGF); different hypotheses have been postulated, including metabolic variations, toxic effects and hydrostatic forces on RPE and retinal capillaries, thus inducing an increased deposition of fluids, especially in the outer plexiform layer18-22. The endothelial damage due to leukocytes’ adherence to vessel walls, the so-called “leukostasis”, represents another co-factor in capillary wall injury23.

Prognostic factors, such as older age, low color or contrast sensitivity, long ME duration, and macular complications (ischemia, pucker or atrophy) are associated with visual impairment24,25.

First-line anti-inflammatory local treatment has a beneficial effect on recent-onset acute forms

![Figure 1. Mean±SD CMT measurements. CHC group shows a statistically significant improvement at T0 (* (p ≤0.05) and T12 ** (p≤0.01), compared to baseline values (T0).](image)

![Figure 2. Heidelberg SD OCT Thickness Map and Macula 30°. The right eye of a CHC-treated patient showing CMT thickness reduction from 314 µm (A) to 270 µm (B) at T0 (A) and T12 (B).](image)
Corticosteroids inhibit the inflammatory mediator’s cascade (i.e., arachidonic acid) and can delay the deterioration of endothelial tight-junctions and block the blood-retinal barrier permeability. Nevertheless, they have the potential for causing local or systemic adverse events. In addition, despite adequate control of the inflammatory activity, UME may persist after this first-line treatment. Consequently, an improvement of available therapies is a clinical need.

It has been previously analyzed the anti-inflammatory and immunomodulating effects of curcumin in the treatment of different retinal conditions. Indeed, curcumin can upregulate many factors involved in vessel wall damage and hyperpermeability and can downregulate the enzymatic activity of COX-2, NOS and other kinases of UME. Corticosteroids inhibit the inflammatory mediator’s cascade (i.e., arachidonic acid) and can delay the deterioration of endothelial tight-junctions and block the blood-retinal barrier permeability.

Nevertheless, they have the potential for causing local or systemic adverse events. In addition, despite adequate control of the inflammatory activity, UME may persist after this first-line treatment. Consequently, an improvement of available therapies is a clinical need.

It has been previously analyzed the anti-inflammatory and immunomodulating effects of curcumin in the treatment of different retinal conditions. Indeed, curcumin can upregulate many factors involved in vessel wall damage and hyperpermeability and can downregulate the enzymatic activity of COX-2, NOS and other kinases of UME. Corticosteroids inhibit the inflammatory mediator’s cascade (i.e., arachidonic acid) and can delay the deterioration of endothelial tight-junctions and block the blood-retinal barrier permeability.

Nevertheless, they have the potential for causing local or systemic adverse events. In addition, despite adequate control of the inflammatory activity, UME may persist after this first-line treatment. Consequently, an improvement of available therapies is a clinical need.

It has been previously analyzed the anti-inflammatory and immunomodulating effects of curcumin in the treatment of different retinal conditions. Indeed, curcumin can upregulate many factors involved in vessel wall damage and hyperpermeability and can downregulate the enzymatic activity of COX-2, NOS and other kinases of UME. Corticosteroids inhibit the inflammatory mediator’s cascade (i.e., arachidonic acid) and can delay the deterioration of endothelial tight-junctions and block the blood-retinal barrier permeability.

Nevertheless, they have the potential for causing local or systemic adverse events. In addition, despite adequate control of the inflammatory activity, UME may persist after this first-line treatment. Consequently, an improvement of available therapies is a clinical need.

It has been previously analyzed the anti-inflammatory and immunomodulating effects of curcumin in the treatment of different retinal conditions. Indeed, curcumin can upregulate many factors involved in vessel wall damage and hyperpermeability and can downregulate the enzymatic activity of COX-2, NOS and other kinases of UME. Corticosteroids inhibit the inflammatory mediator’s cascade (i.e., arachidonic acid) and can delay the deterioration of endothelial tight-junctions and block the blood-retinal barrier permeability.

Nevertheless, they have the potential for causing local or systemic adverse events. In addition, despite adequate control of the inflammatory activity, UME may persist after this first-line treatment. Consequently, an improvement of available therapies is a clinical need.

It has been previously analyzed the anti-inflammatory and immunomodulating effects of curcumin in the treatment of different retinal conditions. Indeed, curcumin can upregulate many factors involved in vessel wall damage and hyperpermeability and can downregulate the enzymatic activity of COX-2, NOS and other kinases of UME. Corticosteroids inhibit the inflammatory mediator’s cascade (i.e., arachidonic acid) and can delay the deterioration of endothelial tight-junctions and block the blood-retinal barrier permeability.
es by suppressing the transcription factor NF-kB. In addition, curcumin downregulates the expression of pro-inflammatory cytokines (ILs, TNF-α) and proteins (MCP and MIP). It also inhibits the VEGF release, which downregulates vascular permeability and retinal neo-angiogenesis. Müller cells and activated microglial cells take part in this process20,28-36. Lastly, it has been demonstrated that the activation of the PPAR-γ31 mediates the anti-inflammatory activity of curcumin.

Different approaches have been proposed to enhance curcumin absorption, bioavailability and stability, such as 1) integration of curcumin in different systems (nanoparticles, copolymers, micelles, exosomes, cyclodestrins and hydrogels); 2) pro-drugs; 3) complexation with other substances (piperine and phospholipids, such as phyto-somes); and 4) combination with a polyvinyl-pyrrolidone-hydrophilic carrier (CHC, Diabec®)37-45.

CHC oral administration showed a significantly enhanced plasma and retinal concentration of active curcuminoids33,45,46. Ferrara et al47 studied oral CHC efficacy to treat post-operative ME and chronic-CSC; statistically significant results in improving visual acuity (VA) and SD-OCT findings, without any side effects, and a global complete resolution of ME in the 74% of cases were obtained.

Functional and anatomical evaluation on the effectiveness and safety of CHC as an add-on therapy to standard therapy to treat NIUME were the objectives of the present observational study.

Improvements in BCVA and CMT were the primary targets of the study and were observed at 6- and 12-months follow-up visits in the CHC group.

CMT showed no statistical evidence in the control group, even if a trend in CMT improvement was detected. Statistical comparison between the two groups showed significant results (p≤0.01) favoring CHC treatment considering BCVA at T₆ and T₁₂. This suggests that rapidly decreasing oxidative stress and delivery of toxic molecules may result in a faster reduction of damage to retinal cells and vessels. Unexpectedly, the BCVA remains stable in the standard treatment group over the study period. This could be caused by the greater number of patients affected by sarcoidosis in the control group (Table 1). It is possible that these patients had a greater degree of impairment of the optic nerve and retina than patients in the CHC group. Thus, this aspect needs to be verified in an additional trial with a larger number of patients48.

Disorganization of the retinal layers with a larger FAZ (which also correlates with lower VA) was seen at T₀ and T₁₂ in most of the enrolled patients, despite a resolved UME.

Persistent damage to perifoveal area microvasculature may explain abnormal VA at T₁₂, although a complete recovery in CMT was achieved.

Mean FAZ area at superficial vessels layer was 0.31±0.3 mm² in both groups at baseline, whereas 0.328 mm² plus abnormal vessel density and shape after 12 months (p=0.1). However, an aspect towards normal round vascular perifoveal architecture was mainly seen in CHC eyes. This was probably due to a re-perfusion attempt49,50.

IOP variations were not clinically nor statistically significant throughout the study period (p=0.16).

Any adverse effect was reported. Although liver toxicity may be present in some sensitive subjects38, our patients did not show any systemic intolerance (except for gastric low tolerability of one patient) along the study period.

None of the enrolled patients presented a ME relapse. This is somewhat surprising if we consider that, following recent literature51,52, ME relapses are frequent in a mean period of 6 months. We suppose that: a) lots of them suffered from systemic autoimmune diseases, which can be successfully treated with oral steroids; b) acute onset ME (mainly of the diffuse type) is more responsive to therapy; c) patients showed high treatment compliance because the COVID-19 lockdown forced them to stay at home and correctly take their medications. For instance, during the COVID-19 lockdown, the Ocular Inflammatory Diseases Center in Rapallo continued its routine activities, and patients regularly underwent periodic visits.

Conclusions

UME is currently a therapeutic challenge, and aggressive systemic treatment is frequently required at disease onset. Even if this study presents some limitations, as the observational nature and the reduced number of patients, to the best of our knowledge, this is the first study concerning CHC therapeutic activity on acute onset NIUME. It showed that a CHC adjunctive-to-reference treatment might result in a faster anatomical and functional improvement than the sole systemic treatment, which may be maintained once reference therapy is discontinued. Further studies analyzing a greater number of subjects with recent-onset NIUME are therefore guaranteed.
Acknowledgments

The authors would like to thank prof. Ilknur Tugal Tutkun (Uveitis Center, Istanbul University Eye Clinic) for the fundamental scientific support and Dr. Anna Rita Blanco (Medical Scientific Liaison, Alfa Intes) for the collaboration. Editorial assistance was provided by Simonetta Papa, PhD, and Aashini Shah (Polistudium SRL, Milan, Italy). Graphical assistance was provided by Massimiliano Piana (Polistudium SRL, Milan, Italy). This assistance was supported by Alfa Intes.

Conflict of Interests

No funding was received for this work. The authors declare that there are no conflicts of interests regarding the publication of this paper. They have no financial interest in any of the products mentioned in the article.

Authors’ Contributions

References

Efficacy of oral curcumin in NIUME

