Abstract. – OBJECTIVE: To evaluate whether Sudden Sensorineural Hearing Loss (S-SNHL) may be an early symptom of Multiple Sclerosis (MS).

MATERIALS AND METHODS: A systematic review was conducted using the following keywords: “Multiple sclerosis, hearing loss, sudden hearing loss, vertigo, tinnitus, magnetic resonance imaging, otoacoustic emission, auditory brainstem responses, white matter lesions, sensorineural hearing loss, symptoms of MS and otolaryngology, nerve disease and MS”. Only the articles that included results of at least one auditory test and MRI were considered. We evaluated the prevalence of SNHL in patients with MS, the presence of different forms of SNHL (S-SNHL and Progressive SNHL (P-SNHL)) and their correlation with the stage of MS, the results of electrophysiological tests, and the location (if any) of MS lesions as detected by white matter hyper-intensities in the MRI.

RESULTS: We reviewed a total of 47 articles, which included 29 case reports, 6 prospective studies, 6 cohort studies, 4 case-control studies, and 2 retrospective studies. 25% of patients suffered from SNHL. S-SNHL typically occurred in the early stage of the disease (92% of patients) and was the only presenting symptom in 43% of female subjects. Instead, P-SNHL occurred in the late stage of MS (88% of patients). Auditory Brainstem Responses (ABR) were abnormal in all MS patients with S-SNHL. When S-SNHL appeared during the early stage of the disease, MS lesions were found in the brain in 60% of patients and in the Internal Auditory Canal in 40% of patients. ABR remained abnormal after recovery.

CONCLUSIONS: S-SNHL can be an early manifestation of MS and should always be considered in the differential diagnosis of this condition, especially in women. The pathophysiology can be explained by the involvement of microglia attacking the central and/or peripheral auditory pathways as indicated by WMHs.

Key Words: Multiple sclerosis, Hearing loss, Sudden hearing loss, Auditory findings, Disease onset.

Introduction

Multiple sclerosis (MS) is one of the most common neurodegenerative diseases in the United States and Europe. Sudden Sensorineural Hearing Loss (S-SNHL) is one of the symptoms of MS. In MS patients SNHL can present in different forms; it can appear as S-SNHL early in the disease process or as P-SNHL in late stages of the disease as a result of a progressive involvement of the hearing pathways. The origin of SNHL can be peripheral or central; SNHL can be due to damage involving brain, nerve, or inner ear cells. Although more common in early stages of the disease, S-SNHL can also occur in later stages, albeit rarely. The often-reported temporary nature of hearing loss can be related to relapsing/remitting events that occur during the course of MS or to the use of corticosteroids which are able to fight the systemic inflammation generated by MS.

While the importance of hearing symptoms such as SNHL and tinnitus as early symptoms of MS has been highlighted by many studies, the significance of S-SNHL as a presenting symptom of MS is largely underestimated. Arguably, this is due to its temporary nature and to the relatively high frequency of S-SNHL. There are more than 66,000 new cases of S-SNHL in the United States every year and in 90% of cases S-SNHL is diagnosed as idiopathic and treated with corticosteroids. We speculate that a percentage of patients diagnosed with idiopathic S-SNHL may be affected by MS and a prompt treatment with steroids can contribute...
A. Di Stadio, L. Dipietro, M. Ralli, F. Meneghello, A. Minni, A. Greco, M.R. Stabile, E. Bernitsas

Aim of this review is to evaluate whether S-SNHL in MS patients may be an early symptom of the disease. The awareness of MS-associated SNHL as a single presenting symptom of MS could decrease the risk of misdiagnosis and enable early intervention. To this end, we calculated the prevalence of SNHL in our sample of MS patients, we identified the patients with S-SNHL and P-SNHL, and we analyzed whether there is a difference in the hearing frequencies (from 250 to 8000 Hz) involved in each form of SNHL. Finally, we looked for the presence of WMHs in patients’ MRIs of hearing pathways and assessed the correlation between WMHs presence and SNHL.

Materials and Methods

Two researchers independently searched PubMed, Scopus, and Google Scholar using the following keywords: “Multiple sclerosis (MS), hearing loss, sudden hearing loss, tinnitus, Magnetic Resonance Imaging (MRI), Pure Tone Audiometry (PTA), Otoacoustic Emission (OAE), Auditory Brainstem Responses (ABR), white matter lesions, White Matter Hyperintensities (WMH), sensorineural hearing loss (SNHL), symptoms of MS and otolaryngology, nerve disease and MS". Both researchers independently selected and reviewed the abstracts that included the term “multiple sclerosis" and at least one of the keywords listed above. The selected articles were then thoroughly read. All publication types from 1960 to December 2017, in English, French, or Italian were considered for analysis, including case reports, case series, epidemiological studies, case-control studies, as well as prospective and retrospective studies. Articles were evaluated by a native speaker. In order to be included the articles had to contain results of at least one auditory test (Pure Tone Audiometry, OAE, and/or ABR).

For the patients with SNHL we recorded gender, age, stage of MS, frequency range lost due to the hearing loss (Table I), results of ABR (latency and amplitude shape, presence/absence of response) and OAE (presence/absence) tests, presence and location (brain or IAC/cochlea) of WMHs in T2-MRI sequences, and symptoms resolution. SNHL was classified as S-SNHL or P-SNHL. The MS stage was recorded as reported in each study, namely “early” when patients were first diagnosed with the disease, and “late” when patients had been diagnosed with MS several years (> 2 years) prior to enrollment into the study.

Statistical Analysis

The analysis aimed at investigating whether there was a time difference between S-SNHL and P-SNHL presentation in the disease process. Chi-Square (χ^2) was used to evaluate the time difference in the presentation of S-SNHL and P-SNHL in the early or late stage of the disease. One-way ANOVA and Holm-Bonferroni were used to evaluate the difference in the hearing frequencies for S-SNHL and PSNH. Spearman test was used to identify the correlation between the location of the lesions in the MRI and the type of SNHL. χ^2-test was used to evaluate whether a gender difference existed in association with onset and type of SNHL. For all tests, p-values <0.05 were considered statistically significant.

Results

Review of Literature

We reviewed 177 publications. Among them, 47 articles matched our criteria for inclusion in the review and included 29 case reports, 6 prospective studies, 6 cohort studies, 4 case-control studies, and 2 retrospective studies (Table I). Data from a total of 1533 patients were collected and analyzed (Figure 1); data from 39 patients were published in the form of case reports (0.02% of patients). 72% of patients were women, 28% were men, and average patient age was 35.7 years old (SD: 9.5; C.I. 95%: 13-82). 83% of patients were affected by relapsing-remitting MS and the remaining 17% by the progressive form. 69% of patients were affected by S-SNHL and the 31% from P-SNHL. 92% of S-SNHL episodes appeared in the early stage of MS, while P-SNHL occurred in late stages in 88% of cases.

S-SNHL vs. P-SNHL, Distribution in the Different Stages of MS, and Involved Frequencies

Of the 1533 patients included in this analysis, 25% were affected by a form of SNHL (Table I) as demonstrated by the results of their audiometric test; the remainder presented normal hearing functions. S-SNHL was present in 69% of cases (78% of cases were bilateral and 22% were unilateral) with variable severity, from complete deafness to middle-to-severe hearing impairment. P-SNHL (91% bilateral, 9% unilateral) was observed in 31% of cases with a severity range from mild hearing impairment to complete hearing loss.
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type of article</th>
<th>Number of subject</th>
<th>Age</th>
<th>Women (1)</th>
<th>Man (0)</th>
<th>SSNHL symptoms vs MS stage</th>
<th>Type HL</th>
<th>Frequencies Hz</th>
<th>Hearing recovery</th>
<th>ABR and BAEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rataj et al^24</td>
<td>1964</td>
<td>case report</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>later</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>yes complete</td>
<td>n/a</td>
</tr>
<tr>
<td>Metzeger et al^25</td>
<td>1965</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>later</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>yes complete</td>
<td>n/a</td>
</tr>
<tr>
<td>Ravenna et al^26</td>
<td>1965</td>
<td>prospective</td>
<td>38</td>
<td><45</td>
<td>not defined</td>
<td></td>
<td>later</td>
<td>Sequential</td>
<td>(35) 2000 to 8000; (3) 500 to 4000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Conraux et al^30</td>
<td>1969</td>
<td>cohort</td>
<td>25</td>
<td>not defined</td>
<td></td>
<td></td>
<td>later</td>
<td>Sudden</td>
<td>(18) 1500 to 8000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Dayal et al^27</td>
<td>1970</td>
<td>cohort</td>
<td>21</td>
<td>42-82 (average 65)</td>
<td>not defined</td>
<td></td>
<td>not defined</td>
<td>Sequential</td>
<td>(16) 2000 to 8000; (4) all frequencies, (1) 250-1000</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Romanet et al^28</td>
<td>1978</td>
<td>multi case report</td>
<td>2</td>
<td>24-51</td>
<td>1</td>
<td></td>
<td>early for both</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Completely</td>
<td>n/a</td>
</tr>
<tr>
<td>Tabira et al^29</td>
<td>1981</td>
<td>case report</td>
<td>1</td>
<td>29</td>
<td>1</td>
<td></td>
<td>early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Completely</td>
<td>ABR increased latencies in II and V, Cortical auditory potentials markedly reduced</td>
</tr>
<tr>
<td>Jabbari et al^30</td>
<td>1982</td>
<td>multi case report</td>
<td>2</td>
<td>43-26</td>
<td>1, 0</td>
<td></td>
<td>early</td>
<td>Sudden</td>
<td>not defined</td>
<td>Completely</td>
<td>Presence of wave I only</td>
</tr>
<tr>
<td>Daugherty et al^31</td>
<td>1983</td>
<td>prospective</td>
<td>9</td>
<td>not defined</td>
<td></td>
<td></td>
<td>early and later</td>
<td>Sudden</td>
<td>(7) all from 250 to 8000</td>
<td>Completely</td>
<td>6/7 BAEPs showed poor definition of the waves in the ear affected from HL</td>
</tr>
<tr>
<td>Cau et al^32</td>
<td>1983</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Completely</td>
<td>Wave I normal on the right only</td>
</tr>
<tr>
<td>Quevedo et al^34</td>
<td>1984</td>
<td>prospective</td>
<td>29</td>
<td>21-52 (average 35)</td>
<td>not defined</td>
<td></td>
<td>not defined</td>
<td>Sequential</td>
<td>not defined</td>
<td>Completely</td>
<td>Complete waves absence (38.7%); 25.8% waves with increased amplitude and latency</td>
</tr>
<tr>
<td>Fischer et al^35</td>
<td>1984</td>
<td>prospective</td>
<td>10</td>
<td>25-51 (average 37)</td>
<td>6 (1), 3 (0)</td>
<td></td>
<td>early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Completely</td>
<td>Increased waves amplitudes</td>
</tr>
</tbody>
</table>

Continued
Table I. Summary of the articles included in the review with the main findings used in our analysis.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type of article</th>
<th>Number of subject</th>
<th>Age</th>
<th>Women (1); Men (0)</th>
<th>SSNHL symptoms vs MS stage</th>
<th>Type HL</th>
<th>Frequencies Hz</th>
<th>Hearing recovery</th>
<th>ABR and BAEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paludetti et al</td>
<td>1985</td>
<td>case control</td>
<td>13</td>
<td>21-55 (average 40)</td>
<td>10 (1); 3 (0)</td>
<td>later normal hearing</td>
<td>normal hearing</td>
<td>n/a</td>
<td>Presence of ABR recovery</td>
<td>Presence of waves before recovery; persistent altered latency after recovery</td>
</tr>
<tr>
<td>Protti-Patterson et al</td>
<td>1985</td>
<td>multi case report</td>
<td>2</td>
<td>20; 33</td>
<td>2 (1)</td>
<td>not defined Sequential hearing</td>
<td>normal hearing; (1) normal hearing; (1) 4000 to 8000</td>
<td>n/a</td>
<td>Increased waves amplitude and latency; Normal ABR</td>
<td></td>
</tr>
<tr>
<td>Shea</td>
<td>1986</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>early Sudden</td>
<td>all from 250 to 8000</td>
<td>Completely</td>
<td>n/a</td>
<td>Absence of waves before recovery; persistent altered latency after recovery</td>
<td></td>
</tr>
<tr>
<td>Barratt et al</td>
<td>1988</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>later Sudden</td>
<td>1000 to 4000</td>
<td>Completely</td>
<td>n/a</td>
<td>Absence of waves before recovery; persistent altered latency after recovery</td>
<td></td>
</tr>
<tr>
<td>Schweitzer et al</td>
<td>1988</td>
<td>case report</td>
<td>1</td>
<td>0</td>
<td>early Sequential</td>
<td>all from 250 to 8000</td>
<td>Improved ABR</td>
<td>n/a</td>
<td>Prolonged amplitude and latency of waves III-IV</td>
<td></td>
</tr>
<tr>
<td>Franklin et al</td>
<td>1989</td>
<td>multi case report</td>
<td>2</td>
<td>22; 38</td>
<td>2 (1)</td>
<td>early; later Sudden</td>
<td>n/a</td>
<td>Prolonged amplitude and latency of waves I to V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Furman et al</td>
<td>1989</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>early Sudden</td>
<td>2000 to 8000</td>
<td>Completely; WR recovery delayed, auditory immediate</td>
<td>Presence of wave I only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curet et al</td>
<td>1990</td>
<td>retrospective</td>
<td>14</td>
<td>30-59 (average 44)</td>
<td>12 (1); 2 (0)</td>
<td>later Sequential</td>
<td>not defined</td>
<td>n/a</td>
<td>Increased latency and amplitude of waves I to V</td>
<td></td>
</tr>
<tr>
<td>Sasaki et al</td>
<td>1993</td>
<td>case report</td>
<td>1</td>
<td>0</td>
<td>early Sequential</td>
<td>2000 to 8000</td>
<td>Complete in audiometry but ABR showed wave I only</td>
<td>Presence of wave I only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Druholovic et al</td>
<td>1993</td>
<td>multi case report</td>
<td>2</td>
<td>43; 37</td>
<td>2 (1)</td>
<td>early Sudden</td>
<td>all from 250 to 8000</td>
<td>Completely; completely</td>
<td>Only wave I normal on the right; normal waves: I, II and III</td>
<td></td>
</tr>
<tr>
<td>Stach et al (15)</td>
<td>1993</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>later Sudden</td>
<td>1000 to 8000</td>
<td>Completely</td>
<td>Delayed latency waves III-V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silman et al (41)</td>
<td>1995</td>
<td>case report</td>
<td>1</td>
<td>0</td>
<td>early Sudden</td>
<td>2000 to 8000</td>
<td>Complete with recovered ABR</td>
<td>No waves in left</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued
<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type of article</th>
<th>Number of subject</th>
<th>Age</th>
<th>Women (1)</th>
<th>Men (0)</th>
<th>SSNHL symptoms vs MS stage</th>
<th>Type HL</th>
<th>Frequencies Hz</th>
<th>Hearing recovery</th>
<th>ABR and BAEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cevette et al</td>
<td>1995</td>
<td>multi case</td>
<td>2</td>
<td>41; 33</td>
<td>1 (1); 1 (0)</td>
<td>early for both</td>
<td>Sudden</td>
<td>all from 250 to 8000 both</td>
<td>Partially; not reported</td>
<td>Increased amplitude and latency; presence of wave I only</td>
<td></td>
</tr>
<tr>
<td>Nishida et al</td>
<td>1995</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>later</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>yes</td>
<td>Presence off wave I with reduced amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yamasoba et al</td>
<td>1996</td>
<td>case report</td>
<td>1</td>
<td>0</td>
<td>early</td>
<td>Sudden</td>
<td>250 to 2000</td>
<td>Absence of waves on the left side</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marangos et al</td>
<td>1996</td>
<td>multi case</td>
<td>2</td>
<td>39; 55</td>
<td>2 (0)</td>
<td>later; early</td>
<td>Sudden</td>
<td>not defined</td>
<td>yes</td>
<td>Absence of BAEP on the right, absence of wave I in ABR; Absence of BAEP</td>
<td></td>
</tr>
<tr>
<td>Bergamaschi et al</td>
<td>1997</td>
<td>case report</td>
<td>1</td>
<td>28</td>
<td>1</td>
<td>later</td>
<td>Sudden</td>
<td>2000 to 8000</td>
<td>Completely, ABR presented an increased latency of wave I only</td>
<td>Absence of wave I and increased latencies of waves III and V</td>
<td></td>
</tr>
<tr>
<td>Ozunlu et al</td>
<td>1998</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Completely</td>
<td>Presence of wave I only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallico et al</td>
<td>1999</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>later</td>
<td>Sudden</td>
<td>2000 to 8000</td>
<td>Complete with recovered ABR</td>
<td>Complete absence of waves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Seze et al</td>
<td>2001</td>
<td>cohort</td>
<td>14/400 (average 35.2)</td>
<td>15-48</td>
<td>not defined</td>
<td>early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Complete recovery in 13/14</td>
<td>Absence of waves in the side with HL</td>
<td></td>
</tr>
<tr>
<td>Rodriguez-Casero et al</td>
<td>2004</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>early</td>
<td>Sudden</td>
<td>3000 to 8000</td>
<td>Persistence</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tu et al</td>
<td>2004</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>early</td>
<td>Sudden</td>
<td>8000</td>
<td>No</td>
<td>Increased latency wave I-V bilaterally</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadoni et al</td>
<td>2006</td>
<td>case report</td>
<td>1</td>
<td>1</td>
<td>early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Rh complete recovery</td>
<td>Increased latency wave V I on the right side</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeigelboim et al</td>
<td>2007</td>
<td>prospective</td>
<td>19</td>
<td>1</td>
<td>later</td>
<td>Sequential</td>
<td>8000</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coelho et al (13)</td>
<td>2007</td>
<td>prospective</td>
<td>30 (10 with brain lesion) (average 35)</td>
<td>18-50</td>
<td>not defined</td>
<td>not defined</td>
<td>Sequential</td>
<td>not defined</td>
<td>ABR with abnormal aspect in 90% of patients with brain lesion (9/10); TEOAE abnormal in 80% of subject with altered ABR</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table I. Summary of the articles included in the review with the main findings used in our analysis.
Table 1. Summary of the articles included in the review with the main findings used in our analysis.

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Type of article</th>
<th>Number of subject</th>
<th>Age (average)</th>
<th>Women (1); Men (0)</th>
<th>SSNHL symptoms vs MS stage</th>
<th>Type HL</th>
<th>Frequencies Hz</th>
<th>Hearing recovery</th>
<th>ABR and BAEP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mi-Oh et al6</td>
<td>2008</td>
<td>case report</td>
<td>1</td>
<td>17-45</td>
<td>1</td>
<td>early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Complete in audiometry but ABR showed wave I only</td>
<td>Complete absence of waves</td>
</tr>
<tr>
<td>Peyvandi et al55</td>
<td>2010</td>
<td>cohort</td>
<td>30</td>
<td>17-45</td>
<td>not defined</td>
<td>Sequential</td>
<td>(27) from 4000 to 8000</td>
<td>not applicable</td>
<td>In 80% abnormal amplitude and/or latency</td>
<td></td>
</tr>
<tr>
<td>Hellmann et al5</td>
<td>2011</td>
<td>retrospective</td>
<td>1/253</td>
<td>17-52</td>
<td>not defined</td>
<td>early</td>
<td>Sudden</td>
<td>not defined</td>
<td>Complete for all</td>
<td>no</td>
</tr>
<tr>
<td>Saberi et al56</td>
<td>2012</td>
<td>case-control</td>
<td>60</td>
<td>20-50</td>
<td>42 (1); 18 (0)</td>
<td>not defined</td>
<td>Sequential (7) 250 to 2000; (5) 4000 and 8000 Hz; (40) 2000 to 8000</td>
<td>not applicable</td>
<td>TEOAE 20/60 frequency band between 3.5 -4.5; DPOAE abnormal</td>
<td></td>
</tr>
<tr>
<td>Doty et al57</td>
<td>2012</td>
<td>case control study</td>
<td>73 vs 73</td>
<td>36-60</td>
<td>not defined</td>
<td>not defined</td>
<td>all from 250 to 8000</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
</tr>
<tr>
<td>Cabbarzade et al58</td>
<td>2013</td>
<td>case report</td>
<td>1</td>
<td>22-51</td>
<td>29; 29; 25</td>
<td>later</td>
<td>Sequential 1000 to 8000</td>
<td>Complete recovery in the right ear</td>
<td>Reduced latencies waves IV and V</td>
<td></td>
</tr>
<tr>
<td>Barbosa et al59</td>
<td>2014</td>
<td>cohort</td>
<td>7</td>
<td>29; 29; 25</td>
<td>3 (1)</td>
<td>later; early; early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>Complete for all</td>
<td>no</td>
</tr>
<tr>
<td>Fernandez-Menendez et al56</td>
<td>2014</td>
<td>multi-case-report</td>
<td>3</td>
<td>later; early; early</td>
<td>Sudden</td>
<td>all from 250 to 8000</td>
<td>1 recover; 1 not complete; complete</td>
<td>Complete absence of waves; as previous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Takanashi et al57</td>
<td>2014</td>
<td>case control</td>
<td>1</td>
<td>38 to 65</td>
<td>not defined</td>
<td>early</td>
<td>Sequential 2000</td>
<td>Complete with recovered ABR</td>
<td>Reduced amplitude and latency in the Rh; DPOAE normal</td>
<td></td>
</tr>
<tr>
<td>Tanaka et al4</td>
<td>2016</td>
<td>cohort</td>
<td>6/17</td>
<td>not defined</td>
<td>later</td>
<td>Sequential</td>
<td>not defined</td>
<td>not applicable</td>
<td>not reported</td>
<td></td>
</tr>
</tbody>
</table>
Sudden hearing loss and multiple sclerosis (MS) were differently distributed in the different stages of MS (Figure 2). S-SNHL was more frequent in the early stage of MS (92%) ($\chi^2: p<0.0001$) (Odds Ratio: 316; CI 95%: 81.1-1232), while P-SNHL prevalently occurred in the late stage of the disease (88%) ($\chi^2: p<0.0001$) (Odds Ratio: 316 CI 95%: 82-1132).

Figure 1. The plot shows the method used to identify the articles that were included in this review.

Figure 2. A, Distribution of S-SNHL and P-SNHL in the early and later stages of MS. B, Hearing loss frequencies distribution in the early stage (up) and later stage (down) of the disease.
A. Di Stadio, L. Dipietro, M. Ralli, F. Meneghello, A. Minni, A. Greco, M.R. Stabile, E. Bernitsas

S-SNHL and P-SNHL affected different frequencies as shown in Figure 2. S-SNHL equally affected frequencies from 250 to 8000 Hz without statistically significant differences (One-way ANOVA $p=0.3$). P-SNHL mainly affected high frequencies (2000 to 8000 Hz) ($p<0.0001$ for 2000, 4000 and 8000 Hz). 43% of women developed S-SNHL in the early stage of MS. In women, S-SNHL was more common than in men (73% and 27%, respectively; $p<0.0001$) and presented more frequently than P-SNHL both in early and late stages of MS (81% and 19% respectively). In men, there was no significant difference between the prevalence of S-SNHL and P-SNHL (49% vs. 51%), and both forms of hearing loss equally occurred in early and late stages of the disease (χ^2: $p=0.12$). OAEs were altered in 34% of MS patients (52). ABR waves were altered in terms of latency and/or amplitude in all MS patients, even in presence of a hearing threshold near the instrument detection limit (20 dB), as shown in Figure 3. The most common ABR abnormality was a non-specific abnormal wave shape (45%) with abnormal latency and/or amplitude. Residual abnormal ABR waves following S-SNHL recovery were observed in 18% of patients.

WMH Distribution in Brain and Ear

Seventy percent (70%) of patients with S-SNHL in the early stage of MS displayed WMHs in their MRIs in brain and medulla (upper auditory pathways). 75% of patients with P-SNHL in the late stage of MS displayed WMHs in the Roof Entry Zone (REZ), cochlear nerve and cochlea (Figure 4). In patients who manifested S-SNHL as early symptom, the presence of WMHs in the upper hearing pathways was statistically signif-

Figure 3. The figure shows the different findings related to ABR observed in our sample.

Figure 3. The figure shows the different findings related to ABR observed in our sample.

Figure 4. The plot shows the distribution of the WMHs in the presence of S-SNHL and P-SNHL.

Discussion

Our review included 1533 patients with MS, 25% of whom reported either S-SNHL (17%)4,5,11-18,22,24 or P-SNHL (8%)6,8-10. S-SNHL was more common than P-SNHL (70% of patients). S-SNHL and P-SNHL presented in different stages of MS with different manifestations, with the former being more common in the early stage of MS (92%) and involving all frequencies (similarly to the common form of Sudden Idiopathic SNHL), and the latter being more prevalent in the late stage of MS (88%) and involving mainly high frequencies.

S-SNHL was the only initial symptom in the early stage of MS in 43% of women, consistently with the results observed from other authors4,7. In women, S-SNHL was more common than P-SNHL. In men, S-SNHL and P-SNHL presented with equal frequency.

The presence of S-SNHL in the early stage of MS in women was statistically significant compared to men ($p<0.05$). In men, S-SNHL and P-SNHL equally manifested (no statistically significant difference) in all stages of the disease. S-SNHL in women was also more common (81%)
than P-SNHL, which strongly supports the idea that S-SNHL should be considered as an early symptom of MS in young women, especially if they don’t have a history of hearing disorders.

P-SNHL occurred more often in later stages of MS (88%) in both genders. The altered audiometric threshold, which involves frequencies between 2000 and 8000 Hz, can mimic presbycusis and it could be misdiagnosed as early presbycusis rather than a symptom of MS when it appears in young subjects. The average age of the patients we analyzed was less than 40 years old, which supports the idea that MS-related P-SNHL may be easily missed.

ABR allows the investigation of different areas of the hearing pathways (Figure 5); its sensitivity and high specificity in the detection of demyelination is extremely valuable in studying auditory disorders in MS patients, as widely supported by many studies. ABR amplitude and latency were altered in all MS patients with SNHL. The abnormal latency and amplitude reflect the location of the damage in the auditory pathways, as detailed in the table in the left panel of Figure 5. Wave I was detectable only in 10% of cases, indicating a very high chance of cochlear nerve injury during MS attacks. The latency of all waves was increased in 20% of cases indicating a reduction in the velocity of impulse transmission in auditory pathways. Waves were completely absent in 25% of the cases; although damage can occur in one or more areas of the auditory pathways, an early cochlear nerve involvement is plausible. Finally, we identified a 45% of “unspecific alterations” of ABR, namely generic wave alterations for which authors did not provide details.

OAEs investigate the function of outer hair cells in the cochlea, and detect cochlear damage that is not otherwise detectable using ABR. Thirty-four percent (34%) of MS patients displayed abnormal OAE, which suggests cochlear involvement in the context of MS. The relevance of the investigation of outer hair cell function in MS has been recently discussed by Di Stadio and Ralli. We speculate that the altered OAE we observed in our sample may reflect a damage of outer hair cells. In MS hair cells can be directly attacked by macrophages and suffer irreversible damage as a result of oxidative stress; involvement of hair cells can lead to abnormal OAE.
McKenna et al62 found microglia and macrophages in cochlear structures that have been damaged by autoimmune diseases, including spiral ligament, scala tympani, vestibuli surrounding spiral ganglions, modiolus, and the 8th cranial nerves. Microglia has been also found in WMHs of MS patients63,64. In our study, we found that WMHs were mostly present in the brain/medulla areas (70\%) in the early stages of MS, which supports the idea that MS lesions in the upper auditory pathways can cause S-SNHL6,38. WMHs in IAC were more common in later stages of MS, which supports the idea that the nerves of IAC can be affected by the same demyelization process that affects other structures in MS42. In this study, we found WMHs in different parts of the auditory pathways (cortical area, medulla, cochlear nerve, and cochlea). WMHs are associated with activated, pathogenic microglia; the presence of WMSs in different anatomical areas can be explained by the microglia's ability to move, which is typical of macrophages60. Both S-SNHL and P-SNHL may be associated with the pathogenic form of activated microglia. We could define two origins for these forms: a peripheral SNHL when cochlear nerve or cochlea is affected (as in P-SNHL) and a central SNHL when the upper auditory pathways are involved (as in S-SNHL).

The temporary nature of S-SNHL can be explained by the microglia ability to change their phenotype from an aggressive (M1) to a neuroprotective (M2) form65-67. Microglia can be present in a “non-active” or “active” form, although the active form is usually differentiated in M1 or M2 phenotypes (respectively pathogenic and neuroprotective). The M1 form is particularly aggressive and can induce damage by destroying upper auditory pathways64,70 or by directly attacking the peripheral auditory structures such as the cochlear nerve and the cochlea60 (Figure 6). Microglia can also induce a progressive degeneration of the nerve sheath that mimics presbycusis as in P-SNHL; the slow progression of the degeneration may become symptomatic as reduced adaptation to noise70,71, or as recruitment phenomenon71; all these symptoms have been described in MS patients69,71. It is also possible that a massive microglia attack induces an enormous inflammation in the auditory pathways (central and/or peripheral) thereby causing a S-SNHL event71.

As discussed above, microglia can change their form (active vs. non-active) and phenotype (M1 vs. M2), and this ability to change state has been associated with the relapsing and remitting phases of MS72; the same mechanism may explain the spontaneous regression of S-SNHL in patients with MS when benign M2 form is prominent14,39. The change of microglia state can also be induced by drugs such as corticosteroids73. Corticosteroids that are the gold standard in the treatment of S-SNHL, may also contribute to under-diagnosis of MS-related S-SNHL, in fact their anti-inflammatory and immunosuppressive action is systemic by acting also on the inflammatory phenomena that arise from MS.

In the advanced phases of MS, the ability of microglia to change phenotype and state is reduced due to the increase of the oxidative stress72-73. M1 is the prevalent form of microglia and induce progressive neuro-degeneration, which can involve the cochlear nerve and lead to P-SNHL.

Figure 7 summarizes the differential diagnosis of SNHL in MS patients. Microglia can play a predominant role in damaging any area of the auditory pathways, as shown by the presence of WMHs in these locations62 and supported by the alteration observed in ABR (100\% of subjects).

The nature and timing of S-SNHL and P-SNHL manifestation depends on the MS stage. S-SNHL seems to be more common at MS onset, especially in women. In this case, hearing loss is likely correlated to lesions in the auditory pathways, including brain (temporal area and auditory cortex) and medulla; IAC seems to be involved less frequently.

![Figure 6. The ear modiolus of a mouse where it is possible to observe microglia. The red and yellow arrow indicates the staying and active form of microglia, respectively.](image)
Sudden hearing loss and multiple sclerosis

Generally, 90% of patients who suffer from S-SNHL have been previously treated in a hospital setting and dismissed as “idiopathic” S-SNHL. We identified a 17% of S-SNHL in patients with MS. We believe that this percentage is included in the 90% of idiopathic S-SNHL cases and that this data could increase the detection of misdiagnosed MS-related S-SNHL. In the relapsing-remitting MS, corticosteroids are commonly used as first-line treatment; these drugs reduce inflammation and promote SNHL recovery, but at the same time, can mask the actual origin of the symptom.

Our work presents some limitations. There are several case reports included in the study; this may have biased the percentage of MS patients with SNHL. Another limitation is the insufficient number of case-control studies and cohort studies available in the literature, which precluded us from conducting a meta-analysis to correctly estimate the incidence and prevalence of SNHL in MS patients. Only a few studies analyzed hearing parameters in patients with SNHL, and some of these studies had to be excluded from our systematic review due to lack of data or important limitation in the study design.

Conclusions

S-SNHL and P-SNHL present with different timing and frequency features, depending on the MS stage. S-SNHL seems to be more common in the early stage of MS especially in women, but this is probably related to the greater prevalence of the disease in this gender. Hearing loss is likely to be correlated with lesions in the auditory pathways, including brain and medulla; the involvement of the IAC structure during the inflammatory attack is less common. ABR was abnormal in 100% of MS patients; this test detects damage in the auditory pathways even when patients do not perceive it due to the involvement of high frequencies only. In conclusion, SNHL should be always considered in the differential diagnosis of MS, especially given its increased occurrence of S-SNHL in youth. Otolaryngologists should always consider S-SNHL as either an only and/or first symptom of MS, particularly in young women without a history of hearing impairment. Moreover, diagnostic protocols should include ABR and MRI, in addition to a detailed history and neurological examination.

Figure 7. The figure summarizes how M1 microglia aggression may involve the different structures of the hearing pathways (brain, cochlear nerve and cochlea). Microglia have two forms, resting and active: the active form has two phenotypes, the M1 form that induces pathogenesis and the M2 form that is responsible for neurodegeneration.
Acknowledgements:
Thanks to Dr. Felipe Santos for allowing publication of the microglia image, Special thanks to Mrs. Jennifer O’Malley who helped with the immunostaining procedures. Special thanks to the Otopatology Laboratory of MEEI that hosted part of this study.

Conflict of Interest:
Authors’ declaration of personal interests: The authors declare no competing financial interests.

References
Sudden hearing loss and multiple sclerosis

63) Maggi P, Macri SM, Gaitan MI, Leibovitch E, Wholer JE, Knight HL, Ellis M, Wu T, Silva AC, Massacesi L,

