One gut microbiota, *Fusobacterium nucleatum* aggravates Neonatal necrotizing enterocolitis by induction of IRF5 expression through IncRNA ENO1-IT1/miR-22-3p axis

J.-C. LIN¹, X.-Y. MA², J.-Y. LIU³, Y.-Z. LUO¹, L. LIN¹, L.-Y. ZHANG¹

¹Department of Neonatology, Affiliated Fuzhou Children Hospital of Fujian Medical University, Gulou District, Fuzhou, Fujian, China
²Department of Neonatology, Fuzhou Children Hospital of Fujian province, Fuzhou, Fujian, China
³Fujian medical university, Fuzhou, Fujian, China

Jincai Lin and Xiaoying Ma contributed equally to this work

Abstract. – OBJECTIVE: We explored the effects of *Fusobacterium nucleatum* (*F. nucleatum*) in Neonatal necrotizing enterocolitis (NEC) and its possible mechanism.

MATERIALS AND METHODS: Patients with Neonatal NEC and normal healthy volunteers were collected for this study. Neonatal mice were administered with LPS and then exposed to hypoxia as a mice model of NEC. THP-1 cells were stimulated with LPS as an *in vitro* model of NEC.

RESULTS: We have demonstrated *F. nucleatum* abundance correlated with patients with Neonatal NEC or mice with Neonatal NEC. Furthermore, *F. nucleatum* stimulated colitis and increased inflammation in mice and *in vitro* models. LncRNA ENO1-IT1 was an important target for *F. nucleatum* in NEC-inflammation. MiR-22-3p was a target gene of *F. nucleatum* in NEC via LncRNA ENO1-IT1. Next, IRF5 was a target gene of miR-22-3p in the function of *F. nucleatum* in NEC via LncRNA ENO1-IT1. Silencing IRF5 or over-expressing miR-22-3p relieved the role of LncRNA ENO1-IT1 on inflammation in NEC via CD206 and CD86 expression.

CONCLUSIONS: Taken together, these results demonstrate that *F. nucleatum* is mechanically, biologically and clinically connected to NEC. LncRNA ENO1-IT1 may be important targets for *F. nucleatum* in NEC-inflammation, and a meaningful in treating patients with Neonatal NEC with elevated *F. nucleatum*.

Key Words: Gut microbiota, *Fusobacterium nucleatum*, Neonatal necrotizing enterocolitis, MiR-22-3p, ENO1-IT1.

Introduction

Neonatal necrotizing enterocolitis (NEC) is an acquired disease, which is common as a digestive system disease in newborns, seriously threatening the life safety of children¹. The epidemiological reports on NEC vary greatly from country to country². The incidence of NEC in live births abroad is reported to range from 0.1% to 0.3%, accounting for 2% to 5% of inpatients in neonatal critical care unit (NICU)². 85% of NEC patients are premature infants, while late preterm infants and term infants account for only 7% to 15%. The incidence of NEC in very low birth weight (VLBW) infants is approximately 7%, and the incidence is negatively correlated with gestational age³. Studies have shown that the incidence of NEC in preterm infants at 22-28 weeks of gestational age is the highest (11%)³.

Some studies⁴,⁵ have reported that the application of probiotics can cause fungemia, bacteremia and sepsis; however, children treated with probiotics all have digestive system complications. The reason is that the bacterial translocation occurs easily after the intestinal mucosal barrier is destroyed, which causes bacteremia after entering the intestinal wall into the blood, further aggravating intestinal mucosal damage and systemic inflammation⁶. The application of probiotics can decrease the risk of NEC in premature infants. However, there is currently no definite evidence revealing the direct relationship between the improved clinical symptoms and the improvement of the microecological flora structure by probiotics⁶,⁷.

The progress of genomics has revealed that most of the transcripts of human genes are microRNA and lncRNA⁸. LncRNA, as a mechanism of transcription regulation, plays a key role
in regulating gene expression, which has been confirmed to be involved in various physiological and pathological processes9-11. Multiple studies12-14 have confirmed that apart from catalyzing the conversion between PGA and PEP, ENO-1 also plays an important role in multiple biological processes, including tumorigenesis and tumor development, apoptosis, plasminogen activation and plasmin activity, myogenesis and muscle regeneration, etc. We explored the effects of Fusobacterium nucleatum (\textit{F. nucleatum}) in Neonatal necrotizing enterocolitis (NEC) and its possible mechanism.

\section*{Materials and Methods}

\subsection*{Clinical Research Model}

30 patients with Neonatal NEC and 30 normal volunteers were collected from Affiliated Fuzhou Children Hospital of Fujian Medical University. Intestinal contents and serum were collected and saved at -80°C. This experiment was performed in accordance with the Guide for the Care and Use of US National Institutes of Health. Experimental protocols were approved by the Affiliated Fuzhou Children Hospital of Fujian Medical University. Each patient provided their written informed consent for study participation. The enrollment and selection of inclusion in NEC neonatal patients: clinical evidence of perforation in the joint opinion by surgeon and the neonatologist; age < 34 weeks; birth weight, <1500 g; evidence of intestinal perforation: free intraperitoneal air on an abdominal radiograph (96 infants); stool, bile, or pus found at paracentesis.

The enrollment and selection of exclusion in NEC neonatal patients: bilateral grade IV intraventricular hemorrhage (i.e., severe intraventricular hemorrhage); previous abdominal operation; infants with gastrointestinal anomalies.

\subsection*{Bacterial Strains and Detection of Bacterial Abundance}

\textit{Fusobacterium nucleatum}, \textit{Enterotoxigenic Bacteroides fragilis}, \textit{Peptostreptococcus anaerobius}, \textit{Parvimonas micra} and \textit{Prevotella intermedia} were purchased from American Type Culture Collection (ATCC, Manassas, VA, USA). FFPE colon tissue was used to extract genomic DNA (gDNA) with QIAamp DNA FFPE Tissue Kit (QIAGEN, Hilden, Germany). gDNA was subjected detecting the 16S ribosome genes using real-time PCR.

\subsection*{Animals Model}

Mice (C57BL/6) were performed in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health. C57BL/6 male mice were obtained from the Model Animal Research Center of Nanjing University (Nanjing, China). All aspects of the animal care and experimental protocols were approved by the Affiliated Fuzhou Children Hospital of Fujian Medical University. Committee on Animal Care.

A total of 76 newborn male (C57BL/6, weight 2-4 g) and female C57BL/6 mice (8 weeks old, weight 20-22 g) placed into an incubator with a constant temperature of 36°C and a humidity of 55% on the day of birth. Neonatal mice were fed with LPS (2 mg/kg) for 3 days, then exposed to hypoxia (99% N2) for 1 min followed hypothermia (4°C) for 10 min twice daily for 3 days. Neonatal mice were orally administered with Fusobacterium nucleatum (2×109 CFU) once a day at 800 mg/kg/day for 3 days.

\subsection*{In Vitro Experimental Design}

THP-1 cells (Cell Bank of the Chinese Academy of Sciences, Shanghai, China) were grown in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, Grand Island, NY, USA), with 5% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA), in a humidified 5% CO\textsubscript{2} incubator at 37°C. HSMECs were performed transfections using Lipofectamine 2000 (Thermo Fisher Scientific, Waltham, MA, USA). LncRNA ENO1-IT1 (0.4 μg/ml, Sangon Biotech Co., Ltd. Shanghai, China), miR-22-3p (0.4 μg/ml, Sangon Biotech Co., Ltd. Shanghai, China), IRF5 (20 nmol/ml, Sangon Biotech Co., Ltd. Shanghai, China), LncRNA ENO1-IT1 siRNAs (20 nmol/ml, Sangon Biotech Co., Ltd. Shanghai, China) or miR-22-3p siRNAs (20 nmol/ml, Sangon Biotech Co., Ltd. Shanghai, China) or lncRNA ENO1-IT1 siRNAs (20 nmol/ml, Sangon Biotech Co., Ltd. Shanghai, China) or miR-22-3p siRNAs (20 nmol/ml, Sangon Biotech Co., Ltd. Shanghai, China) were transfected in the serum-free and antibiotic free media. After 48 h of transfection, siRNAs (20 nmol/ml, Sangon Biotech (Shanghai) Co., Ltd.) were stimulated with LPS (200 ng/ml) for 4 h.

\subsection*{Quantitative Polymerase Chain Reaction (qPCR)}

Total RNAs were isolated with TRIZOL (Ta- kara, Dalian, China) and cDNA was synthesized using PrimeScript RT Master Mix (Takara, Dalian, China). qPCR was performed with the ABI Prism 7500 sequence detection system according
to the Prime-Script™ RT detection kit. Relative levels of the sample mRNA expression were calculated and expressed as 2-DDCt. Primer sequences for RT-qPCR are available in Table I.

Western Blot
Colon tissue or cell samples were lysed with ice-cold RIPA buffer with complete protease and phosphatase inhibitors. The protein concentrations were measured using bicinchoninic acid (BCA) protein assay kit. Total proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto polyvinylidene difluoride (PVDF) membranes. The membranes were incubated with primary antibodies: IRF5 (ab181553, 1:1000, Abcam, Shanghai, China), CD86 (ab239075, 1:1000, Abcam, Shanghai, China), CD208 (ab153932, 1:1000, Abcam, Shanghai, China) and β-Actin (ab6276, 1:5000, Abcam, Shanghai, China) after blocking with 5% bovine serum albumin (BSA) in TBS, followed by incubation with peroxidase-conjugated secondary antibodies (Santa Cruz Biotechnology, Santa, China). The signals were detected with the enhanced chemiluminescence (ECL) system and exposed by the ChemiDoc XRS system with Image Labsoftware (Bio-Rad).

Enzyme-Linked Immunosorbent Assay (ELISA)
Total protein was diluted using phosphate-buffered saline (PBS), and measurement was performed according to the instructions of the manufacturer. MPO activity (A044-1-1), TNF-α (H052), IL-1β (H002), IL-8 (H008) and IL-6 (H007) levels were measured from cell samples or tissue samples using commercial ELISA kits (Nanjing Jiancheng Institute of Biological Engineering, Nanjing, China).

Histological Examination
Colon tissues were harvested from each group and immersion fixated in 4% formaldehyde, em-bedded in paraffin. Heart sections (4 μm) were cut from Aneurysm tissue and stained with HE. Sections were viewed with a fluorescent microscope.

Microarray Experiments
Microarray experiments were performed at Gennminix Informatics (China). Gene expression profiles were analyzed with the Human Exon 1.0 ST GeneChip (Affymetrix).

Immunofluorescent Staining
THP-1 cells were fixed with 4% paraformaldehyde for 15 min and incubated using 0.15% Triton X100 for 15 min at room temperature. H9c2 cells were incubated with IRF5 (ab181553, 1:500, Abcam) at 4°C overnight after blocking with 5% BSA for 1 h. hASMCs were incubated with goat anti-rabbit IgG-c-FITC 555 antibody (1:100) for 2 h at room temperature and stained with DAPI for 15 min and washed with PBS for 15 min. The images of hASMCs obtained using a Zeiss Axioplan 2 fluorescent microscope (Carl Zeiss AG, Oberkochen, Germany).

Statistical Analysis
The data were entered into GraphPad Prism 5.01 Software and represented as mean values ± SD and a p-value <0.05 is considered statistically significant. Comparisons of data between groups were followed using Student’s t-test or one-way analysis of variance (ANOVA), followed by Tukey’s post hoc test. p < 0.05 was considered to denote a statistically significant difference.

Results

F. nucleatum Correlates with Patients with Neonatal NEC or Mice with Neonatal NEC
First, to investigate the function and active form of gut microbiota in NEC, we collected

Table I. Primer sequences for RT-qPCR.

<table>
<thead>
<tr>
<th></th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRF-5</td>
<td>5'-GGAGTAGGGAGGATTTATTGG-3'</td>
<td>5'-AACTACTACAAACCCACRCCTCC-3'</td>
</tr>
<tr>
<td>miR-22-3p</td>
<td>5'-GCTGAGCCGCAGTAGTTCTT-3'</td>
<td>5'-GGCAGAGGGCAACAGTTCTT-3'</td>
</tr>
<tr>
<td>EN01-IT1</td>
<td>5'-TCCAGAGAAGATGTTGGAGG-3'</td>
<td>5'-TTCTGAGTTTGGAAGTCAGG-3'</td>
</tr>
<tr>
<td>U6</td>
<td>5'-CGCTTCACGAATTTGCGTGCAC-3'</td>
<td>5'-AGAGGGAAATCTGGCAGGCT-3'</td>
</tr>
</tbody>
</table>

4716
Fusobacterium nucleatum aggravates Neonatal necrotizing enterocolitis

testinal contents for metagenome analysis of gut microbiota composition. Metagenome analysis revealed the related changes of phylum, class and family of gut microbiota have occurred in patients with Neonatal NEC (Figure 1A). We performed real-time PCR analysis for bacterial species of patients with Neonatal NEC and the content of F. nucleatum in patients with Neonatal NEC was observed (Figure 1B-1C). We observed the most significant correlations between 18F-FDG maximum uptake values (SUVmax) and the abundance of F. nucleatum in patients with Neonatal NEC (Figure 1D). Additional Principal coordinates analysis (PCoA) plot analysis showed the hypothesis that the change of gut microbiota in patients with Neonatal NEC and F. nucleatum (Figure 1E). The content of F. nucleatum by real-time PCR in mice with Neonatal NEC was elevated (Figure 1F). Consequently, F. nucleatum may be the most effective pathogenic factor for Neonatal NEC.

F. nucleatum Promoted Colitis in Mice of Neonatal NEC or in Vitro Model of Neonatal NEC

To test the effects of F. nucleatum in mice or in vitro model, mice of Neonatal NEC were treated with high, middle or low dose of F. nucleatum. F. nucleatum aggravated colitis and histochemical score, increased MPO activity levels, and promoted TNF-α, IL-1β, IL-17 and IFN-gamma levels in colon tissue of mice with Neonatal NEC in time dependence (Figure 2A-2G). Similarly, F. nucleatum increased IL-1β, IL-8, TNF-α and

Figure 1. F. nucleatum correlates with patients with Neonatal NEC or mice with Neonatal NEC. Compositional analysis of mouse gut microbiota using 16 S rRNA full sequencing (A). Spearman’s correlation between taxa enrichment and 18F-FDG uptake in patients with Neonatal NEC by real-time PCR (B), the content of F. nucleatum by real-time PCR (C), the most significant correlations between 18F-FDG maximum uptake values (SUVmax) and the abundance of F. nucleatum in patients with Neonatal NEC (D), Principle coordinates analysis (PCoA) plot with the weighted Unifrac distance matrix (E) in patients with Neonatal NEC; the content of F. nucleatum by real-time PCR in mice with Neonatal NEC (F). Normal, normal group; patients with Neonatal NEC group; sham, sham control group; NEC, mice with NEC group. **p<0.01 compared with normal group or mice with NEC group.
IL-6 levels in vitro model (Figure 2H-2K). In general, data suggest that *F. nucleatum* promotes colitis in Neonatal NEC.

F. nucleatum Activates Inflammation Via a Selective Increase of LncRNA ENO1-IT1

To investigate the mechanism of *F. nucleatum* in Neonatal NEC, we analyzed the target gene in Neonatal NEC. Microarray analysis showed that lncRNA ENO1-IT1 may be a target gene of *F. nucleatum* in vitro model of NEC (Figure 3A-3B). LncRNA ENO1-IT1 expression was induced in mice treated with high, middle or low dose of *F. nucleatum* (Figure 3C). *F. nucleatum* enhanced lncRNA ENO1-IT1 expression in vitro model, other microbiotas not affected the expression of lncRNA ENO1-IT1 (Figure 3D-3E). Next, we used si-ENO1-IT1 mimics to reduce IL-1β, IL-8, TNF-α and IL-6 levels in vitro model by treated with *F. nucleatum* (Figure 3F-3I). Next, we analyzed the function of lncRNA ENO1-IT1 in neonatal NEC. There were increases of lncRNA ENO1-IT1 expression in lncRNA ENO1-IT1 group and the inhibition of lncRNA ENO1-IT1 expression was observed in si-lncRNA ENO1-IT1 group (Figure 4A). Over-expression of lncRNA ENO1-IT1 increased IL-1β, IL-8, TNF-α and IL-6 levels in vitro model inducted with LPS (Figure 4B-4D). Down-regulation of lncRNA ENO1-IT1 reduced IL-1β, IL-8, TNF-α and IL-6 levels in vitro model inducted with LPS (Figure 4F-4I). In conclusion, these finding indicate that *F. nucleatum* activates inflammation via a selective increase of lncRNA ENO1-IT1.

LncRNA ENO1-IT1 the Regulation Network Associated with MiR-22-3p

The study further investigated the mechanism of *F. nucleatum* in Neonatal NEC via lncRNA ENO1-IT1 using microarray analysis. MiR-22-3p was screened and may be a target spot for LncRNA ENO1-IT1 in the effects of *F. nucleatum* on inflammation in Neonatal NEC (Figure 5A). Subcellular analysis demonstrated that miR-22-3p was located in the cytoplasmic portion, suggesting potential post-transcriptional regulation (Figure 5B). The wild-type (WT) and corre-
Fusobacterium nucleatum aggravates Neonatal necrotizing enterocolitis

Figure 3. F. nucleatum activates inflammation via a selective increase of lncRNA ENO1-IT1. Heat map (A) and analysis result (B); lncRNA ENO1-IT1 expression in mice with Neonatal NEC by F. nucleatum (C); lncRNA ENO1-IT1 expression in vitro with Neonatal NEC by F. nucleatum (D and E); IL-1β (F), IL-8 (G), TNF-α (H) and IL-6 (I) levels in vitro model. NEC, mice with Neonatal NEC; NS, normal saline; F. nucleatum-low, mice with Neonatal NEC by low dose of F. nucleatum; F. nucleatum-middle, mice with Neonatal NEC by middle dose of F. nucleatum; F. nucleatum-middle, mice with Neonatal NEC by high dose of F. nucleatum; Model+NS, in vitro model by normal saline; Model+ F. nucleatum, in vitro model by F. nucleatum. **p<0.01 compared with mice with Neonatal NEC or in vitro model by normal saline.

Corresponding mutant (Mut) were constructed targeting miR-22-3p, and a Luciferase reporter assay illustrated that lncRNA ENO1-IT1 WT closely correlated with miR-22-3p (Figure 5C). F. nucleatum reduced miR-22-3p expression in mice with neonatal NEC and in vitro model of neonatal NEC (Figure 5D-5E). The inhibition of lncRNA ENO1-IT1 increased in vitro model of neonatal NEC by F. nucleatum (Figure 5F). RNA-FISH demonstrated the distribution of lncRNA ENO1-IT1 and miR-22-3p in cytoplasm and nuclear material (Figure 5G). Over-expression of lncRNA ENO1-IT1 inhibited the expression of miR-22-3p and down-regulation of lncRNA ENO1-IT1 increased miR-22-3p in vitro model inducted with LPS (Figure 5H-5I).

Next, miR-22-3p plasmid increased the expression of miR-22-3p, and increased IL-1β, IL-8,
TNF-α and IL-6 levels in vitro model of neonatal NEC by F. nucleatum (Figure 6A-6E). MiR-22-3p plasmid or si-miR-22-3p mimics increased miR-22-3p expression or reduced miR-22-3p expression in vitro model inducted with LPS (Figure 6F-6G). Over-expression of miR-22-3p reduced IL-1β, IL-8, TNF-α and IL-6 levels in vitro model inducted with LPS (Figure 6H-6I). Down-regulation of miR-22-3p induced IL-1β, IL-8, TNF-α and IL-6 levels in vitro model inducted with LPS (Figure 6J-6O). These data suggest that miR-22-3p plays an essential role in F. nucleatum mediated-inflammation of Neonatal NEC.

miR-22-3p Associated with IRF5 Expression in F. nucleatum in Neonatal NEC Via lncRNA ENO1-IT1

The study further investigated the mechanism of F. nucleatum in Neonatal NEC via lncRNA ENO1-IT1 by miR-22-3p using microarray analysis. IRF5 was screened and may be a target spot for lncRNA ENO1-IT1/miR-22-3p in the effects of F. nucleatum on inflammation in Neonatal NEC (Figure 7A). Over-expression of lncRNA ENO1-IT1 increased the mRNA expression of IRF5, over-expression of miR-22-3p suppressed IRF5 mRNA expression, and over-expression of miR-22-3p reduced the effects of lncRNA ENO1-IT1 on the increases of IRF5 mRNA expression in vitro model (Figure 7B). Down-regulation of lncRNA ENO1-IT1 decreased the mRNA expression of IRF5, down-regulation of miR-22-3p induced IRF5 mRNA expression, and down-regulation of miR-22-3p reversed the effects of si-lncRNA ENO1-IT1 on the increases of IRF5 mRNA expression in vitro model (Figure 7C). The wild-type (WT) and corresponding mutant (Mut) were constructed targeting miR-22-3p, and a luciferase reporter assay illustrated that IRF5 WT closely correlated with miR-22-3p (Figure 7D). Over-expression of miR-22-3p reduced IRF5 expression in vitro model (Figure 7E).

Next, F. nucleatum induced IRF5 protein expression in mice model of Neonatal NEC or in vitro model of Neonatal NEC (Figure 8A-8D). Si-lncRNA ENO1-IT1 suppressed IRF5 protein expression in vitro model of Neonatal NEC by F. nucleatum (Figure 8E-8F). Over-expression of ENO1-IT1 induced IRF5 protein expression, and down-regulation of ENO1-IT1 suppressed IRF5 protein expression in vitro model inducted with LPS (Figure 8G-8H). Down-regulation of ENO1-IT1 suppressed IRF5 protein expression in vitro model inducted with LPS (Figure 8I-8J). Fur-
Fusobacterium nucleatum aggravates Neonatal necrotizing enterocolitis

Figure 5. LncRNA ENO1-IT1 the regulation network associated with miR-22-3p. Heat map and analysis result (A); relative mRNA expression (B); relative luciferase activity (C); miR-22-3p mRNA expression in mice with Neonatal NEC by F. nucleatum (D); miR-22-3p mRNA expression (E) in vitro with Neonatal NEC by F. nucleatum; miR-22-3p mRNA expression (F) in vitro with Neonatal NEC by F. nucleatum and down-regulation of ENO1-IT1; RNA-FISH demonstrated the distribution of IncRNA ENO1-IT1 and miR-22-3p (G); miR-22-3p mRNA expression (H) in vitro model by over-expression of IncRNA ENO1-IT1; miR-22-3p mRNA expression (I) in vitro model by down-regulation of IncRNA ENO1-IT1; NEC, mice with Neonatal NEC; NS, normal saline; F. nucleatum-low, mice with Neonatal NEC by low dose of F. nucleatum; F. nucleatum-middle, mice with Neonatal NEC by middle dose of F. nucleatum; F. nucleatum-middle, mice with Neonatal NEC by high dose of F. nucleatum; Model+NS, in vitro model by normal saline; Model+F. nucleatum, in vitro model by F. nucleatum; Negative, in vitro model by negative group; ENO1-IT1, in vitro model by over-expression of ENO1-IT1 group; Si-ENO1-IT1, in vitro model by down-regulation of ENO1-IT1 group. **p<0.01 compared with mice with Neonatal NEC or in vitro model by normal saline.
thermore, miR-22-3p over-expression suppressed IRF5 protein expression in vitro model of Neonatal NEC by F. nucleatum and over-expression of ENO1-IT1 (Figure 8K-8L). Over-expression of miR-22-3p induced IRF5 protein expression, and down-regulation of miR-22-3p suppressed IRF5 protein expression in vitro model inducted with LPS (Figure 8M-8P).

The Inhibition IRF5 Reduced the Effects of F. nucleatum on Inflammation In Vitro Model of Neonatal NEC Via CD206 and CD86 Expression

In order to investigate the role and mechanism of IRF5 in the effects of F. nucleatum on inflammation in vitro model of Neonatal NEC. Si-IRF5 suppressed IRF5 protein expression in vitro model by over-expression of lncRNA ENO1-IT1 (Figure 9A). IRF5 plasmid induced IRF5 protein expression, si-IRF5 suppressed IRF5 protein expression in vitro model inducted with LPS (Figure 9B-9C). Over-expression of IRF5 increased IL-1β, IL-8, TNF-α and IL-6 levels in vitro model inducted with LPS (Figure 9D-9G). Down-regulation of IRF5 reduced IL-1β, IL-8, TNF-α and IL-6 levels in vitro model inducted with LPS (Figure 9H-9K). Then, we found that Si-IRF5 suppressed CD68 protein expression and induced CD206 protein expression in vitro model by over-expression of lncRNA ENO1-IT1 (Figure 9L-9O).

Figure 6. MiR-22-3p reduced inflammation in vitro model of F. nucleatum. MiR-22-3p expression (A), IL-1β (B), IL-8 (C), TNF-α (D) and IL-6 (E) levels in vitro model by F. nucleatum, down-regulation of lncRNA ENO1-IT1 and over-expression of miR-22-3p; miR-22-3p expression (F and G) in vitro model; IL-1β (H), IL-8 (I), TNF-α (J) and IL-6 (K) levels in vitro model by over-expression of ENO1-IT1 group; IL-1β (L), IL-8 (M), TNF-α (N) and IL-6 (O) levels in vitro model by down-regulation of ENO1-IT1 group. Model+F, in vitro model with Neonatal NEC by F. nucleatum; Model+F+si-ENO1-IT1, in vitro with Neonatal NEC by F. nucleatum and down-regulation of ENO1-IT1; Model+F+si-ENO1-IT1+NC, in vitro with Neonatal NEC by F. nucleatum, down-regulation of ENO1-IT1 and negative mimics; Model+F+si-ENO1-IT1+miR-22-3p, in vitro with Neonatal NEC by F. nucleatum, down-regulation of ENO1-IT1 and over-expression of miR-22-3p; Negative, in vitro model by negative group; miR-22-3p, in vitro model by over-expression of miR-22-3p group; Si- miR-22-3p, in vitro model by down-regulation of miR-22-3p group. **p<0.01 compared with mice with Neonatal NEC or in vitro model by normal saline.
Fusobacterium nucleatum aggravates Neonatal necrotizing enterocolitis

9L-9M). Over-expression of IRF5 induced CD68 protein expression and suppressed CD206 protein expression in *vitro* model inducted with LPS (Figure 9P-9Q). Therefore, IRF5 might play an important role in the effects of *F. nucleatum* on inflammation in *vitro* model of Neonatal NEC via CD206 and CD86 expression.

Figure 7. MiR-22-3p associated with IRF5 expression in *F. nucleatum* in Neonatal NEC via lncRNA ENO1-IT1. Heat map and analysis result (A), IRF5 mRNA expression (B and C), relative luciferase activity (D), IRF5 expression (400X, F, E). Negative, negative group; miR-22-3p, over-expression of miR-22-3p group. **p<0.01 is considered statistically significant.
NEC is a common disease in newborns, characterized by high incidence and high mortality15. However, the pathogenic factors of NEC have not yet been fully clarified, which is considered to be associated with neonatal congenital malformations, hypoxia and asphyxia16. Some scholars believe that bacterial infection and abnormal red blood cells may be one of the main causes of NEC. NEC is characterized by rapid onset and rapid progress17. It is a relatively severe digestive system disease in the newborn period, which can cause death in lethal cases18. Therefore, early diagnosis and timely treatment of children are of great significance to the prognosis. The present study demonstrated that the content of \textit{F. nucleatum} was increased in patients with Neonatal NEC. Liu et al19 showed that \textit{F. nucleatum} aggravates colitis via M1 Macrophage Polarization. The above results indicated that \textit{F. nucleatum} may be the most effective pathogenic factor for Neonatal NEC.

In recent years, many reports have shown that the imbalance of gut microbiota is an important and basic cause of NEC20. Therefore, the key to attenuating NEC damage is prevention. Among them, the application of probiotics is currently the research focus21. Our data showed that \textit{F. nucleatum} promoted colitis in mice of Neonatal NEC.

Figure 8. IRF5 promoted inflammation \textit{in vitro} model of \textit{F. nucleatum}. IRF5 protein expression in mice with \textit{F. nucleatum} (A and B), IRF5 protein expression \textit{in vitro} with \textit{F. nucleatum} (C and D), IRF5 protein expression \textit{in vitro} with \textit{F. nucleatum} and si-IncRNA ENO1-IT1 (E and F), IRF5 protein expression \textit{in vitro} by over-expression of IncRNA ENO1-IT1 (G and H), IRF5 protein expression \textit{in vitro} by down-regulation of IncRNA ENO1-IT1 (I and J), IRF5 protein expression \textit{in vitro} with \textit{F. nucleatum}, si-IncRNA ENO1-IT1 and over-expression of miR-22-3p (K and L), IRF5 protein expression \textit{in vitro} by over-expression of miR-22-3p (M and N), IRF5 protein expression \textit{in vitro} by down-regulation of miR-22-3p (O and P). Model+F, \textit{in vitro} model with Neonatal NEC by \textit{F. nucleatum}; Model+F+ENO1-IT1, \textit{in vitro} model with Neonatal NEC by \textit{F. nucleatum} and over-regulation of ENO1-IT1; Model+F+ENO1-IT1+NC, \textit{in vitro} with Neonatal NEC by \textit{F. nucleatum}, over-regulation of ENO1-IT1 and negative mimics; Model+F+ENO1-IT1+siIRF5, \textit{in vitro} with Neonatal NEC by \textit{F. nucleatum}, over-regulation of ENO1-IT1 and down-regulation of IRF5; Negative, \textit{in vitro} model by negative group; IRF5, \textit{in vitro} model by over-expression of IRF5 group; Si-IRF5, \textit{in vitro} model by down-regulation of IRF5 group. **p<0.01 compared with mice with Neonatal NEC or \textit{in vitro} model by normal saline.
Fusobacterium nucleatum aggravates Neonatal necrotizing enterocolitis

Figure 9. The inhibition IRF5 reduced the effects of F. nucleatum on inflammation in vitro model of Neonatal NEC via CD206 and CD86 expression. IRF5 protein expression (A, B and C), IL-1β (D), IL-8 (E), TNF-α (F) and IL-6 (G) levels in vitro model by overexpression of IRF5; IL-1β (H), IL-8 (I), TNF-α (J) and IL-6 (K) levels in vitro model by down-regulation of IRF5; CD206 and CD86 protein expressions (L and M) in vitro model; CD206 and CD86 protein expressions (N and O) in vitro model by over-expression of IRF5; CD206 and CD86 protein expressions (P and Q) in vitro model by down-regulation of IRF5. Model+F, in vitro model with Neonatal NEC by F. nucleatum; Model+F+ENO1-IT1, in vitro with Neonatal NEC by F. nucleatum and over-regulation of ENO1-IT1; Model+F+ENO1-IT1+NC, in vitro with Neonatal NEC by F. nucleatum, over-regulation of ENO1-IT1 and negative mimics; Model+F+ENO1-IT1+siIRF5, in vitro with Neonatal NEC by F. nucleatum, over-regulation of ENO1-IT1 and down-regulation of IRF5; Negative, in vitro model by negative group; IRF5, in vitro model by over-expression of IRF5 group; Si-IRF5, in vitro model by down-regulation of IRF5 group. **p<0.01 compared with mice with Neonatal NEC or in vitro model by normal saline.
NEC or in vitro model of Neonatal NEC. Liu et al. reported that F. nucleatum exacerbates colitis by inducing aberrant inflammation. Our results demonstrated that F. nucleatum was an important pro-inflammatory factor in model of Neonatal NEC.

LncRNAs play different roles in different biological processes and LncRNAs function as a key regulator in immunity and gene regulation. In-depth research to understand the function of LncRNA and its immune regulation in UC, as well as the specificity of LncRNA can provide novel approaches for targeted therapy and diagnosis of UC. Our results supported that F. nucleatum activates inflammation via a selective increase of LncRNA ENO1-IT1. Hong et al. supported F. nucleatum promoted oncogenesis in colorectal cancer by LncRNA ENO1-IT1. Similarly, F. nucleatum promoted inflammation by targeting LncRNA ENO1-IT1 in Neonatal NEC.

Macrophages are an important type of immune cells in the body, which play a vital role in pro-inflammatory, anti-inflammatory and tissue repair processes. Plasticity is an important feature of macrophages, that is, macrophages can adjust their phenotype and function according to changes in the microenvironment, which is also the origin of macrophages polarization. The result showed that miR-22-3p plays an essential role in F. nucleatum mediated-inflammation of Neonatal NEC. Liu et al. confirmed that circ-AMOTL1/ENO1/miR-22-3p implicated in the tumorigenesis of oral squamous cell carcinoma.

IRF5 plays an important role in IFN transcription regulation, pathogen immune response, cytokine signal transduction and immune regulation. IRF5 can regulate the production of IFN-α, induce the expression of various inflammatory factors (including IL-6, IL-12, IL-23, TNF, etc.), playing diverse roles in the body. Our study suggested that miR-22-3p is associated with IRF5 expression in F. nucleatum in Neonatal NEC via LncRNA ENO1-IT1. Fang et al. demonstrated that miR-22-3p reduced the progression of spinal cord I/R injury via IRF5. These results showed that IRF5 might be an important therapeutic target for the effects of F. nucleatum in F. nucleatum through LncRNA ENO1-IT1/miR-22-3p.

CD68 is a protein component mainly expressed on the surface of macrophages and a few monocytes. Functionally, CD68 reflects the presence and chemotactic aggregation of macrophages, and is correlated with inflammation. CD206 is a specific marker of M2 macrophages and an important indicator of NEC treatment. Collectively, we demonstrated that the inhibition IRF5 reduced the effects of F. nucleatum on inflammation in vitro model of Neonatal NEC via CD206 and CD86 expression. Xie et al. suggest that IRF5 is involved in the M1 polarization of macrophages. These data showed that IRF5 regulated CD206 and CD86 expression in model of Neonatal NEC by F. nucleate via LncRNA ENO1-IT1/miR-22-3p.

Conclusions

Collectively, the present study confirmed that F. nucleatum promoted inflammation of Neonatal NEC by LncRNA ENO1-IT1/miR-22-3p/IRF5 pathway. LncRNA ENO1-IT1 may be important targets for F. nucleatum in NEC-inflammation, and significant in treating patients with Neonatal NEC with elevated F. nucleatum. Furthermore, the present results provide a theoretical basis for gut microbiota as a preventive and therapeutic agent for Neonatal NEC in the future. LncRNA ENO1-IT1 might provide a new insight into Neonatal NEC.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Acknowledgements

This work was supported by the Fuzhou Key Clinical Specialty Construction Project (20191-2007) and the Fuzhou Science and Technology Plan Project (2019-SZ-54, 2020-S-wq23, 2020-WS-62, 2020-WS-75) and Fuzhou Key Clinical Specialty Construction Project (201912007).

References

3. Good M, T Chu, P Shaw, L Mcclain, A Chamberlain, C Castro, JM Rimer, B Mihi, Q Gong, LS Nolan, K Cooksey, L Linneman, P Agrawal, DN Fink...
Fusobacterium nucleatum aggravates Neonatal necrotizing enterocolitis

23) Ng PC, KY Chan, KT Leung, YM Tam, TP Ma, HS Lam, HM Cheung, KH Lee, KF To, K Li. Comparative miRNA Expression Profiles and Molecular Networks in Human Small Bowel Tissues of Necrotizing Enterocolitis and Spontaneous Intestinal Perforation. PLoS One 2015; 10: e0135737.

24) Pu Z, M Xu, X Yuan, H Xie, J Zhao. Circular RNA circCUL3 Accelerates the Warburg Effect Progression of Gastric Cancer through Regulating

4727

31) Li P, H Lv, H Yang, JM Qian. IRF5, but not TLR4, DEFB1, or VDR, is associated with the risk of ulcerative colitis in a Han Chinese population. Scand J Gastroenterol 2013; 48: 1145-1151.

36) Ren CX, RX Leng, YG Fan, HF Pan, BZ Li, CH Wu, Q Wu, NN Wang, QR Xiong, XP Geng, DQ Ye. Intratumoral and peritumoral expression of CD68 and CD206 in hepatocellular carcinoma and their prognostic value. Oncol Rep 2017; 38: 886-898.
