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Abstract. — OBJECTIVE: Cancer patients fre-
quently experience Chemotherapy-Induced Pe-
ripheral Neuropathy (CIPN), as a typical side ef-
fect related to time of administration and dose
of anticancer agents. Yet, CIPN pathophysiolo-
gy is poorly understood, and there is a lack of
well-tolerated pharmacological remedies help-
ful to prevent or treat it. Therefore, new safe
and effective compounds are highly warranted,
namely if based on an adequate understanding
of the pathogenic mechanisms.

MATERIAL AND METHODS: Herein we re-
viewed and discussed scientific data related
to the beneficial role of some non-convention-
al treatments able to counteract CIPN, focus-
ing our attention on alpha-lipoic acid (ALA) and
L-acetyl-carnitine (LAC), two natural products
that have been demonstrated to be promising
preventive drugs.

RESULTS: Although a growing body of in vitro
and in vivo studies support ALA as a molecule
able to counteract CIPN symptoms, mostly due
to its antioxidant and anti-inflammatory proper-
ties, only two randomized clinical trials evalu-
ated ALA usefulness in preventing chemother-
apy-related neuropathy. Unfortunately, these
studies were inconclusive and clinical outcomes
showed to be highly dependent on the route of
administration (oral versus or intravenous injec-
tion). LAC has demonstrated beneficial effects
on both in vitro and in animal studies. Yet, some
controversies aroused from randomized clinical
trials. Indeed, while CIPN-patients treated with
Taxane showed no benefit from LAC treatment,
CIPN-patients treated with platinum compounds
exhibit significant improvement of CIPN-relat-
ed symptoms. Therefore, LAC treatment should
be used, and thoroughly investigated only in pa-
tients treated with chemotherapy protocols Tax-
anes-free.

CONCLUSIONS: Mechanisms of toxicity trig-
gered by each single drug need to be deeply ex-
plored to better identify effective compounds to
prevent or treat them. Moreover, additional ex-
periments are mandatory to establish effective
doses and length of treatment for each clinical
situation in order to perform large and long-term
randomized studies.
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Introduction

Chemotherapy (CT)-Induced Peripheral Neu-
ropathy (CIPN) is a frequent and potentially de-
bilitating side effect of cancer treatment. Periph-
eral neuropathy, manifested by neuropathic pain
and axonal degeneration, is indeed one of the
major sources of disability in patients follow-
ing antineoplastic therapy after hematological
and renal toxicity'?. Availability of efficient an-
ti-emetic drugs and hematopoietic colony stim-
ulating factors has allowed in the last decades
high-dosage CT regimens, especially those in-
cluding ‘aggressive’ antineoplastic drugs. Con-
sequently, serious side effects including CIPN
are currently more frequently observed than
in the past and often represent a dose-limiting
factor in treatment delivery. Despite its clinical
relevance and common occurrence, the epide-
miology as well as the pathophysiology of CIPN
in the different groups of chemotherapies is still
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largely unknown and a hypothetical etiological
mechanism can be hypothesized only in less
than 50% of cases®.

Several reviews and meta-regression analyses
suggest high overall prevalence of CIPN, mostly
within the first month after treatment, and falling
over time. Usually, the development of CIPN is
related to time of administration and to dose and
its incidence steadily increases with combination
regimens.

Symptoms typically begin several weeks to
months after initiation of the therapy and prog-
ress while treatment continues; for many com-
pounds, toxicity progressively develops once the
cumulative dose has been exceeded®. Moreover,
according to different reports (for a review, see
ref.®), approximately from one-third to 50% of
patients can expect to have chronic CIPN six
months after the completion of specific treat-
ments. Undoubtedly, this has a significant nega-
tive impact on long-term quality of life and may
impair the possibility to start with new therapeu-
tic protocols, if needed.

Platinum compounds constitute a remarkable
exception, as appearance of neurological side
effects is often an early symptom.

Pathogenesis of Neuropathy

Despite its clinical relevance and common
occurrence, the pathophysiology of CIPN is still
insufficiently understood and extensive investi-
gations are warranted. However, it is worth of
note that the chemotherapy-related damage is se-
lectively oriented towards the peripheral nervous
system®. This implies that the peripheral nervous
system is vulnerable because of several unique
characteristics. Indeed, primary sensory and au-
tonomic neurons are contained in ganglia that lie
outside the blood-brain barrier and are supplied
by capillaries with fenestrated walls that allow
free passage of molecules between the blood cir-
culation and the extracellular fluid in the ganglia.
Thus, drugs can easily penetrate in ganglia and
diffuse along peripheral nerve axons, where they
can induce axonal damage by interfering with
cytoskeleton, intracellular transport of metabo-
lites, energy metabolism (hitting mitochondria
function), and DNA function. In fact, longer pe-
ripheral nerves, such as sensory fibers, are chiefly
susceptible to any interference impairing energy
metabolism, mitochondrial function, or axonal
transport’.

Yet, the exact pathophysiology of CIPN is
still barely understood, and different underlying
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mechanisms have been proposed. Furthermore,
each pharmacological compound may enact sev-
eral pathogenic mechanisms at the same time.
Schematically, anticancer drugs may hit a dis-
crete number of targets, including microtubules,
mitochondria, DNA, and ROS production.

Microtubule disruption. Integrity of axonal mi-
crotubules is essential for the development and
maintenance of neurons. Microtubule elonga-
tion contributes in shaping neurite formation
and in promoting its growth. Additionally,
microtubule are the mayor elements sustaining
axonal anterograde and retrograde transport
of neurofilaments, degradative organelles and
endosomes containing signaling platforms.
Among the antineoplastic drugs, Taxanes (Pa-
clitaxel and Docetaxel) disrupt microtubule
structure and coherency, thus impairing the
transport along the axons, as demonstrated by
in vitro studies®’.

It is estimated that at standard doses, about
70% of patients have grade 1, very mild pe-
ripheral neuropathy, and up to 10% of patients
have grade 3 peripheral neuropathy. The preva-
lence is higher in paclitaxel-treated (57%-83%)
than in docetaxel-treated patients (11-64%)"*!".
New Taxane formulations are being developed
to improve antineoplastic properties and mini-
mize toxicities, but CIPN remains an unsolved
problem. Indeed, phase III clinical trials com-
paring standard Paclitaxel with nab-Paclitaxel
(second generation of Taxane) showed an even
higher incidence of grade 3 neuropathy in
nab-paclitaxel than in the standard treatment'?.
Use of Vinca alkaloids is accompanied by se-
vere side effects, including CIPN and chronic
neuropathic pain. Vincristine-induced periph-
eral neuropathy is dose dependent, as up to
60% of patients may develop a clinically sig-
nificant (grade 1-2) primarily sensory or senso-
rimotor neuropathy at Vincristine cumulative
doses between 30-50 mg". Peripheral neuropa-
thy in Vincristine-treated patients is character-
ized by disturbances in both sensory and motor
functions”. Vinca alkaloids disrupt B-tubulin
assembly and disassembly, by preventing tu-
bulin polymerization from soluble dimers into
microtubules. The resulting perturbation in
microtubule-dependent axonal flux leads to ax-
onal swelling in myelinated and unmyelinated
fibers and to nervous fiber damage'*'>. Affin-
ity for tubulin differs among Vinca-alkaloid
compounds (decreasing in order Vincristine,
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Vinblastine, Vinorelbine), which might explain
the distinct neurotoxic profiles of these che-
motherapeutic agents'®. Epothilones — a novel
class of microtubule targeting agents — are
used in breast cancer treatment and, similarly
to Taxanes, they bind to tubulin, hindering
their stability and inducing therefore cell apop-
tosis"”. Eribulin mesilate, used in breast can-
cer therapy, is another microtubule disrupting
agent, which prevents microtubule growth and
sequesters tubulin into non-productive aggre-
gates'®. Given that sensory neurons within dor-
sal root ganglion require proper microtubule
dynamics for axonal transport, it is not sur-
prising that microtubule-targeting drugs can
cause abnormalities in peripheral nerve fibers
function and structure.

Mitochondria damage. Chemotherapeutic drugs
can induce toxic effect on mitochondria in
primary afferent neurons leading to deficit in
axonal energy supply and chronic sensory neu-
ropathy”. In the rat, paclitaxel neuropathy is
associated with significant increase of swollen
and vacuolated mitochondria in the axons. Pa-
clitaxel opens the mitochondrial permeability
transition pore (mPTP), which is a multi-mo-
lecular complex containing the voltage depen-
dent anion channel. Paclitaxel evoked opening
of the mPTP causes the calcium release from
the mitochondria. This calcium mediated neu-
ronal excitability is suggested to play a role
in neurotoxicity. Impairment in mitochondria
function may explain the observed changes
in neuronal metabolism, as a deficient oxygen
consumption in the dorsal root sensory axons
from animals treated with paclitaxel, with in-
creased amounts of ATP produced by both re-
spiratory complex I and 11?°. Several evidences
suggest that mitochondrial toxicity may be a
pivotal feature in many, if not most, chemo-
therapy-induced peripheral neuropathy. There-
by, drugs that protect mitochondrial function,
likewise acetyl-L-carnitine, may be very use-
ful protecting adjuncts?'.

Dorsal root ganglion (DRG) damage. The dorsal
root ganglion appears to be the primary site
of cisplatin-induced neural damage. Cisplatin
accumulates in the cell body of the dorsal root
ganglia, reducing their nuclear size, and inhibit-
ing axonal growth and neuronal metabolism in a
dose dependent manner®#. Similarly, bortezo-
mib-associated peripheral neuropathy seems to
disrupt ganglia neuronal functions, with periph-
eral nerve degeneration occurring later*.

Oxidative stress. Deregulated ROS produc-
tion and increased oxidative stress have been
thought as main mechanism supporting CIPN
pathogenesis. Indeed, promising results ob-
tained both in pre-clinical models and in clin-
ical practice with antioxidant treatments have
provided strong support to this hypothesis.
Moreover, since ROS production occurs when
mitochondria structure and function are im-
paired, it has been hypothesized that CT-in-
duced damages on mitochondria might likely
raise oxidative stress*. However, despite the
empirical use of antioxidants in the therapy of
CIPN, and some experimental evidence hith-
erto published, the relationship between ROS
generation after CT-treatment and peripheral
neurotoxicity is still debatable.

Unknown mechanisms. A group of anticancer
drugs, including Thalidomide, Nelarabine, and
Cytarabine, induces peripheral neuropathy as
main neurotoxic side effect. Mechanisms sup-
porting that effect are still unknown, notwith-
standing that deregulation of immune function
or direct neurotoxic effect on Schwann cells
have been already postulated?s. Obviously, dif-
ferent drugs may share some common mech-
anisms. However, critical differences exist
among different anticancer agents and, as it
will be showed later, they could likely account
for the different responsiveness highlighted by
clinical trials when using similar protective
compounds.

Conventional Treatments

It would seem a truism stating that efficacy
of peripheral neuropathy treatment depends, at
large, on the cause of the neuropathy. Indeed,
suspending the therapy of reducing the dose can
usually result in resolution of the symptoms (even
if resolution may require different time laps).

Etiology of CIPN is very poorly understood,
and consequently treatment options for estab-
lished drug-based neuropathy are limited. Yet,
increasing evidence suggests that different mech-
anisms are at play when different chemotherapeu-
tics are used?’.

Although several gene-based studies have
been promoted to investigate the relationship be-
tween single nuclear polymorphisms (SNPs) in
genes involved in the pharmacokinetic and phar-
macodynamics properties of neurotoxic drugs,
during the last decade, no reliable biomarker has
thus far been identified. Though some different
gene expression patterns have been associated

4741



S. Dinicola, A. Fuso, A. Cucina, M. Santiago-Reyes, R. Verna, V. Unfer, G. Monastra, M. Bizzarri

with different drug regimens®*%, results were al-
together inconclusive. These investigations were
biased by several methodological flaws, includ-
ing small sample size, inaccurate retrospective
study design, lack of a pre-study hypothesis
based on the known role of the investigated
targets and inappropriate outcome measures for
neurological impairment’®?'. Definitely, some
studies have identified genetic polymorphisms
associated with Taxane-associated CIPN, most
of them with inconclusive results*®*** and only
few accompanied with replication or validation
studies**.

Moreover, clinical trials of antiepileptic or
antidepressant agents to treat neuropathic pain
have generally been negative®, besides few ex-
ceptions in which minimal benefit has been ob-
tained in duloxetine treated patients®’. The 2014
American Society of Clinical Oncology CIPN
guidelines cautiously designate treatment with
duloxetine, even claiming for further research in
this area®®. Conclusively, based on the paucity of
high quality, consistent evidence, currently there
are no pharmacological agents recommended for
the prevention/treatment of CIPN*. Thereby,
new safe and effective treatments are clearly
needed™®.

Non-Conventional Treatments

The lack of effectively curative strategies for
CIPN promotes the urgent need to seek help
from Complementary and Alternative Medicine
(CAM). As a key complement for conventional
medical therapy, CAM has been paid attention
by the western countries because it is less inva-
sive and more safe, effective, with convenient
therapeutic benefits. CAM emphasizes both on
disease prevention and treatment and has be-
come an important alternative in treating chron-
ic disease. Recently, several CAM methods in-
cluding traditional herbal medicines and acu-
puncture have been described to be beneficial
on CIPN, although only a few studies have been
properly conducted. The Society of Integra-
tive Oncology Guidelines* include within the
definition of complementary therapies: dietary,
acupuncture, touch therapy, mind-body modal-
ities, and physical activity. These interventions
have become significant resources in the field of
cancer clinical management, and an increasing
number of patients are currently using them.
Overall, the prevalence for current use of CAM
across the different studies averages 40%. Me-
ta-analysis investigations suggested an increase
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in CAM use from an estimated 25% in the 1970s
and 1980s to more than 32% in the 1990s and to
49% after 2000, with highest trends recorded in
the US*.

Only few comprehensive reviews** on
the mechanisms and the clinical reliability
(assessed by means of Randomized Clinical
Trials, RTCs) have been so far conducted,
especially by focusing on some ‘major’ play-
ers represented by natural compounds like al-
pha-tocopherol*#¢, magnesium*’, Omega-3 fat-
ty acids*®, herbal remedies*’, vitamin B supple-
mentation®’, glutamate and glutamine®', Gosha-
jinkigan®?. Those studies provided mixed and
controversial results, and currently no standard
regimen can reliably be recommended. Several
limitations may explain why no firm conclusion
can be drawn based on the published evidence.
Objectives across trials were different, with
some focusing on CIPN prevention (before
any CT delivery), while others are conceived
for treating established CIPN. Moreover, lack
of long-term follow-up for outcomes, and the
use of different evaluation scales and types of
chemotherapeutic agents are also major factors
preventing useful comparison®,.

The goal of this article is to focus specifically
on alpha-lipoic acid (ALA), and L-acetyl-Carni-
tine (LAC) and their usefulness in counteracting
CIPN.

Alpha-Lipoic Acid (ALA)

Discovered in 1937°* and recognized as an es-
sential factor for potato growth, alpha-lipoic ac-
id (ALA) — 1,2-dithiolane-3-pentanoic acid — has
a redox active disulfide group. The carbon atom
at C, is chiral and the molecule exists as two
enantiomers (R)-(+)-lipoic acid (the biologically
active enantiomer) and (S)-(-)-lipoic acid (SLA).
The reduced form of ALA, the dihydrolipoic
acid (DHLA) — a dithiol compound after ALA
has been internalized in the cytosol® — interacts
with reactive oxygen species (ROS), and both
ALA and DHLA are considered to be potent
anti-oxidants®, in some cases, at least in vitro.

In eukaryotes, ALA is endogenously synthe-
tized from octanoid acid or from a mitochondrial
pathway. The octanoid residue is transferred as
a thioester of acyl carrier protein to an amide of
the lipoyl domain protein by octanoyltransferase.
Further, two hydrogens of octanoate are replaced
with sulfur groups through S-adenosyl-L-methi-
onine dependent mechanism via a radical SAM
mechanism®’. Lipoic acid is definitively synthe-
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sized attached to proteins as no free lipoic acid is
produced. Yet, ALA can be removed by lipoam-
idase, when proteins are committed to degrada-
tion**, or by the ATP-dependent lipoate protein
ligase™.

Under physiologic conditions ALA is preva-
lently represented as lipoate (the conjugate basis
of ALA), acting as cofactor in many enzymatic
systems, chiefly within the pyruvate dehydroge-
nase complex (PDC)%%¢!,

Lipoic acid is widely present in several foods
(chiefly in kidney, heart, liver, spinach, broccoli,
and yeast extract), even if at very low amount®.
However, ALA provided by from dietary sources
is covalently bound to proteins® and it has thus
poor bioavailability®*-¢.

Clinical use of ALA is dating back from the
eighties, when ALA was recognized as a pow-
erful, easily water-soluble antioxidant (due to its
amphipathic properties)”’. Not only ALA is able
at neutralizing free radicals, but also increas-
es glutathione synthesis® and, through DHLA,
regenerates other important antioxidants®, and
prevents formation of glycosylated end products
(AGE)" as well as mitochondria damage from
oxidative stress’!. Later on, ALA was shown to be
beneficial in chelating heavy metals’, and in the
adjuvant treatment of a number of diseases, in-
cluding hypertension’, hyperglycemia™, insulin
resistance and diabetes”, liver diseases’, when
the pathological cues should be mostly ascribed
to toxic and oxidant factors, like heavy metals,
free radicals, venoms and microbe toxins (for a
comprehensive review, see ref. 77).

Moreover, several studies reported that ALA
exerts multiple pharmacological actions, overall
preventing nervous tissue damage from oxidant
species’, nerve degeneration in experimental in
vitro models of diabetes mellitus’®, Parkinson’”
and Alzheimer’s, diseases®.

ALA 1is able in restoring important immu-
nological functional defects in peripheral blood
mononuclear cells isolated from cancer patients®,
mostly by counteracting pro-inflammatory fac-
tors (including IL-6 and TNFa)*, or downreg-
ulating the expression of genes involved in in-
flammatory-related pathways®, thereby reducing
the overall inflammatory burden®*. Indeed, recent
comprehensive reviews provide compelling ev-
idence of ALA usefulness as anti-inflammato-
ry ally in several human diseases, including
rheumatoid arthritis, chronic pain, neuropathy,
ulcerative colitis and splenic inflammatory re-
sponse®>%, Finally, it has been demonstrated that

ALA can reduce the expression of IL-1b and IL-
6, via epigenetic mechanisms, in in vitro models
of ovarian and neuronal cancer®’ ®*.

It is worth of noting that several reports sug-
gested ALA usefulness in the management of
diabetes-induced neuropathy®-°!. Indeed, in a
placebo-controlled trial of symptomatic diabetic
polyneuropathy, a significant relief of neuropathic
symptoms was observed in patients who received
alpha-lipoic acid®?>. Similarly, since the first an-
ecdotal report”, and despite some controversial
results, a growing body of evidence points out
that ALA could also be beneficial in CIPN. ALA
at pharmacological doses (600 mg daily iv/p.os)
quickly ameliorates both pain and neurological
deficit®*?%. Adverse effects have been noticed on-
ly for higher doses (1200 mg/day), in a significant
percentage of patients (~15-20%)°". As a result,
ALA is approved in Germany as a drug for the
treatment of diabetic neuropathy since 1966%. A
large, randomized study is currently under way
to evaluate usefulness of ALA — alone or in com-
bination with Pregabalin — as analgesic remedy
for neuropathic pain®. It is noteworthy that ALA
treatment presents a very reassuring profile of
safety and tolerability’!.

Those results prompted in evaluating ALA
in antagonizing chemotherapy-induced CIPN,
differences in pathophysiological mechanisms
between diabetic and CT-related neuropathy not-
withstanding'®. In an in vitro model of chemo-
therapy induced peripheral neuropathy in which
primary cultures of dorsal root ganglion (DRG)
sensory neurons were exposed to paclitaxel and
cisplatin, ALA was highly effective in reducing
neuron damage. Both cisplatin and paclitaxel
cause early mitochondrial impairment with loss
of membrane potential and induction of auto-
phagic vacuoles in neurons. Alpha-lipoic acid
exerts neuroprotective effects by rescuing the
CT-induced mitochondrial toxicity, and induces
the expression of frataxin, an essential mitochon-
drial protein with anti-oxidant and chaperone
properties'®,

In a pilot study involving 14 cancer patients,
after a median of eight chemotherapy courses
and a median cumulative docetaxel dose of 400
mg/m2, all patients suffered from CIPN grade
2 (10 patients) or 3 (four patients). ALA was ad-
ministered 600 mg i.v. once a week for 3-5 weeks
followed by 1800 mg td p.o. until full recovery
from neurological symptoms with an average
treatment duration of 2 months. Eight out of 14
patients showed significantly reduction in CIPN
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grade, with a median time to response of 4
weeks'®. Similarly, promising results have been
obtained in another pilot study in which ALA,
altogether with Boswellia and Bromelain, sig-
nificantly reduced neuropathic pain in CT-treated
patients in a 12 weeks treatment regimen'*.
However, only two randomized study evalu-
ated ALA usefulness in preventing CT-related
neuropathy. In the first'®, patients were ran-
domized to receive oral ALA 1.800 mg daily
or placebo for 24 weeks (excluding days in
which platinum-based chemotherapy was ad-
ministered). Clinical parameters were assessed
according to the 11-item Gynecologic Oncologic
Group-Neurotoxicity Component (FACT/GOG-
Ntx, Version 4) at week 24. Only 70 patients
completed the study due to change of regimens,
non-compliance, missing data, or unknown rea-
sons. No between-group statistical differences
were found. However, this result could had been
biased by the high withdrawal rate from the
study, given that only 28% of patients in ALA
group were eligible for clinical assessment at the
end of the investigation. Moreover, the overall
platinum dose delivered in the trial — >750 mg/
m? — was a huge one, even for the current cispla-
tin-based CT regimens'®. These shortcomings
prompted the Authors of the paper to outline
“the inconclusive nature of our trial”, eventually
suggesting that “future investigation of ALA as
a potential prophylactic against CIPN should
not be dismissed if innovative approaches and
trial designs can be identified and pursued”'®.
Indeed, results that are more promising have
been provided by a recent investigation. In a
randomized, multicentric study'”’, 126 patients
with chemotherapy-induced peripheral neurop-
athy were randomly divided into two groups (of
63 cases each) to be treated with either ALA
(600 mg iv/daily) plus mecobalamin (500 pg iv),
or with mecobalamin (500 pg iv, control group)
for 2 weeks. The response rate in the treatment
group was significantly better than in the control
group [80.95% (51/63) vs. 47.62% (30/63)]. This
second study, besides using a reduced dose in
respect to the dosage reported in the previous
trial (600 mg vs. 1.800), delivered ALA through
intravenous injection. It can be surmised that
some differences in the resulting pharmacoki-
netics could account for the observed differ-
ences between the two trials. Indeed, it has al-
ready been recognized that oral administration
of ALA is characterized by pharmacokinetic
limitations that reduce its therapeutic efficacy.
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Indeed, phenomena such as reduced solubility,
lack of gastric stability and hepatic degradation
determine a bioavailability of around 30% and
a short half-life of ALA (30 minutes), while in-
creased bioavailability has been obtained with
intravenous injections of ALA!%, Recent inno-
vative oral formulation has the potential to over-
come these pharmacokinetic limitations as it uses
only R-ALA enantiomer as liquid solution, with
greater solubility and stability in gastric environ-
ment'”.

Acetyl-L-Carnitine (ALC)

Carnitine is a B-amino acid, which plays an
important role in the transport of fatty acids into
the mitochondria for subsequent beta-oxidation''?,
while acetyl-L-carnitine (ALC) is the acetylated
form of L-carnitine. Moreover, it has been ob-
served that Carnitine can work as an antioxidant,
thus protecting various tissues from oxidative
injury'"'. Numerous studies performed in rats
exposed to pharmacological doses of neurotox-
ic chemotherapeutic agents, showed appreciable
reduction in neuropathic symptoms in animals
treated with ALC'"*!""*, namely by antagonizing
the mechanisms triggering painful symptoms'*.
Additionally, treatment with ALC significantly
attenuates mitochondrial and cytological chemo-
therapy-induced damages in peripheral nerves
and tissues''*!, without affecting CT efficacy"®.
ALC prevents Bortezomib induced impairment
in mitochondrial respiration and ATP production
in rat models of paclitaxel-induced and oxalipla-
tin-induced painful peripheral neuropathy''.

However, despite the promising effects of ALC
on CIPN in rats, results found in humans are
quite controversial.

A survey of the recent literature allows to
retrieve seven studies (published in full text in
peer-reviewed journals) investigating the puta-
tive usefulness of ALC in preventing/treating of
CIPN.

Among these, four studies showed improve-
ment of CIPN occurrence and/or intensity in
patients treated with ALC!"7'2° in one study
ALC had no significant effect on neuropathy in
patients treated for multiple myeloma'?', whereas
the last two studies performed by the same group,
reported a worsening of CIPN among patients
prophylactically treated with ALC'**!%,

In the majority of these studies, ALC proven
to be beneficial for CIPN bearing patients. How-
ever, to date, only three papers reported results
from randomized controlled trials (RCT), while
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the others have been designed as case series or
pilot control studies. In most cases, these inves-
tigations lack a control group or have enrolled
patients with different anamnestic (age, type of
CT) or pathological (neuropathy at its beginnings
or already established from years) data. In ad-
dition, it is usual not to indicate data about the
incidence of diabetes in such groups. Given that
diabetes neuropathy may likely superimpose to
CT-induced neuropathy, thus leading to ‘mixed’
clinical pictures, this aspect is of great relevance
and should be addressed by future clinical trials.

Moreover, the overall design, the methodolog-
ical set up and clinical end points greatly differ
from each other. Confusion may also arise when
considering ALC as ‘preventive’ or ‘treatment’
option. Differences in posology, duration and
route of administration add further complex-
ity. A main concern is the diversity in grad-
ing scales used for assessing CIPN, as some of
which are based on patient reported outcome
[like Functional Assessment of Cancer Therapy
— Gynecologic Oncology Group — Neurotoxici-
ty (FACTGOG-NTx)], while others are clinical
grading scales [likewise National Cancer Insti-
tute — Common Toxicity Criteria (NCICTC), or
Total Neuropathy Score (TNS)].

Differences in eligibility criteria and che-
motherapy protocols are probably of utmost
relevance in understanding why trials aimed at
ascertaining ALC efficacy provided conflict-
ing and even opposite results. Both studies
performed by Hershman et al'** involved only
female patients with breast cancer treated with
only Taxane based chemotherapy regimens. In
those studies, ALC showed to be ineffective
after 12 weeks of therapy and to even signifi-
cantly worsen CIPN symptoms after 24 weeks.
Notwithstanding the choice of the grading scale
for evaluating CIPN is debatable'** — given that
FACT-NTX scale chiefly relies on ‘subjective’
patient report — these RTC studies have been
rigorously conducted. These results are at odds
with those reported by Sun et al'?’. In a clinical
trial that meets the criteria of rigorous random-
ization and proper selection, the therapeutic
effect of ALC on neurotoxicity became evident
after 8 weeks of treatment, and neuropathy was
significantly reduced only in patients treated
with ALC. At week 12, a significant differ-
ence between ALC and placebo group persists,
demonstrating that ALC confers a long-lasting
protection. Yet, it is noticeable that patients
enrolled in this experimentation have been treat-

ed by a mix of anticancer agents, in which a
predominantly role was supported by Platinum
compounds instead of Taxanes. Although Tax-
anes and Platinum compounds share some basic
neurotoxic mechanisms, critical differences still
exist (Table I)". Indeed, Taxanes specifically
hinder microtubules organization and impair
Ad and C fibers, thus chiefly affecting sensory
fiber function'”. Regarding the neurons that are
affected in most kinds of peripheral neuropathy,
it is the length of their axons that best accounts
for their selective vulnerability!?. Moreover,
the axonal transport efficiency mostly relies on
the integrity of the microtubule system. On the
other hand, a global inhibition of ROS trough a
mix of anti-oxidant agents significantly reduces
CIPN-associated pain in Taxane-treated rats, but
without affecting other CIPN clinical features,
thus evidencing that Paclitaxel-induced CIPN
only partially depends on ROS increase'?".

It is hardly believable that ALC could counter-
act this kind of damage, given that no significant
effects on cytoskeleton can be actually ascribed
to ALC.

Acetyl-L-carnitine has been shown to prevent
the development of paclitaxel-induced pain''® and
the paclitaxel-induced increase in atypical mi-
tochondria in C-fibers, but not the paclitaxel-in-
duced loss of intraepidermal nerve fibers'?®. Fur-
thermore, ALC is unable to antagonize CIPN in
patients treated with other drugs that, as Tax-
anes, chiefly target cytoskeleton (microtubules)
components. In the study from Campone et al'*®
patients treated with Sagopilone, a specific mi-
crotubule-stabilizing agent acting alike Taxanes,
were randomized to receive either ALC or place-
bo. Even if CIPN events observed in ALC group
were low grade respect to the control group, the
overall incidence of CIPN did not significantly
differ between the two groups. Similar consid-
erations can be made for Bortezomib-induced
CIPN. Bortezomib, an inhibitor of the 20S sub-
unit of the proteasome currently used in myeloma
therapy, induces peripheral sensory neuropathy.
Bortezomib exerts a microtubule stabilizing ac-
tivity similar to paclitaxel in addition to prote-
asome inhibition and it is likely that peripheral
neurotoxicity could be ascribed to that mecha-
nism'?. Even in this case, ALC supplementation
does not afford any protection nor prevents CIPN
onset'?!.

These studies further suggest that ALC
could be ineffective in counteracting neurotoxic
drug-dependent effects on microtubules.
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Table I. CIPN mechanisms — Taxanes vs. Platinum compounds.

Taxanes  Platinum Targets Mechanisms References
Paclitaxel - Loss of intra- * Loss of warm and cool specific Ad and C fibers Siau et al'
epidermal leading to heat and cold allodynia
nerve fibers
Paclitaxel - Calcium * Increased expression of 02-61 subunits in dorsal Sun and
horn and DRG Windebank?
« Increase in cytosolic calcium from extracellular (by Siau and
channels) and intracellular stores from mitochondria Bennett?
Xiao et al*
Kaur et al®
Paclitaxel - Microtubule * Microtubule disruption Scripture et al®
Paclitaxel - Inflammation * Increase in number of LC cells on skin Siau et al'
* Increased release of TNF-alpha and
IL-1, IL-6 and NO from glial cells, macrophages and
LC cells
- Cisplatin, Mitogen activated e« Activation of p38 and ERK1/2 in DRG neurons Scuteri et al’
Oxaliplatin protein kinase along with down regulation of JNK/Sapk
* Dual role of ERK1/2 depending on the cellular
stimulation
- Oxaliplatin Nitric oxide * Dysfunction of the spinal NO/cGMP pathway Kamei et al®
* Increase in NOS particularly, nNOS in spinal dorsal horn Mihara et al’
- Oxaliplatin Protein kinase C * Increased PKC activity in supra-spinal regions Norcini et al'®
 Up-regulation of gamma/epsilon isoforms of PKC Galeotti et al"
within thalamus and periaqueductal area
- Oxaliplatin Potassium * Decreased expression of TREK1, TRAAK type of Descoeur et al'?
channels inhibitory channels and increased expression of
pro-excitatory channels, HCNs
References

1) Siau C, Xiao W, Bennert GJ. Paclitaxel- and vincristine-evoked painful peripheral neuropathies: loss of epidermal innervation
and activation of Langerhans cells. Exp Neurol 2006a; 201:507-514.
2) Sun X, Winpeeank AJ. Calcium in suramin-induced rat sensory neuron toxicity in vitro. Brain Res 1996; 742:149-156.
3) Siau C, Bennert GJ. Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy.
Anesth Analg 2006b; 102:1485-1490.
4) Xiao W, Borouserol A, BenneTT GJ, Luo ZD. Chemotherapy-evoked painful peripheral neuropathy: analgesic effects of gab-
apentin and effects on expression of the alpha-2-delta type-1 calcium channel subunit. Neuroscience 2007; 144:714-720.
5) Kaur H, Jagal AS, SingH N. Modulation of neuroprotective effect of ischemic post-conditioning by dichlorobenzamil a Na(+)/
Ca(2+) exchanger inhibitor in mice. Biol Pharm Bull 2010; 33:585-591.
6) Scripture CD, Ficc WD, Sparreoom A. Peripheral neuropathy induced by paclitaxel: recent insights and future perspectives.
Curr Neuropharmacol 2006; 4:165-172.
7) Scuteri A, GAumeerTi A, Ravasi M, Pasini S, Donzelwl E, Cavaletti G, Treoial G. NGF protects dorsal root ganglion neurons from ox-
aliplatin by modulating JNK/Sapk and ERK1/2. Neurosci Lett 2010; 486:141-145.
8) KawmelJ, Tamura N, SairoH A. Possible involvement of the spinal nitric oxide/cGMP pathway in vincristine-induced painful neu-
ropathy in mice. Pain 2005; 117:112-120.
9) MiHARA Y, EGasHIRA N, SApA H, KawasHiri T, UsHio S, Yano T, Ikesue H, OisHi R. Involvement of spinal NR2B-containing NMDA re-
ceptors in oxaliplatin induced mechanical allodynia in rats. Mol Pain 2011; 7:8.
10) Norani M, Vivou E, Gateotti N, Bianchi E, Bartouini A, GHeLarpint C. Supraspinal role of protein kinase C in oxaliplatin-induced
neuropathy in rat. Pain 2009; 146:141-147.
11)  Gateorn N, Vivou E, Biua AR, Vincier FF, GreLaroini C. St. John'’s Wort reduces neuropathic pain through a hypericin-mediated inhi-
bition of the protein kinase C gamma and epsilon activity. Biochem Pharmacol 2010; 79:1327-1336.
12) DescoEur J, PErReirA V, Pizzoccaro A, FrRaNcors A, LING B, Marrre V, CoueTTe B, BusseroLLes J, CourTeix C, NoEL J, LAzpunski M, EscHA-
LiER A, AuTHIER N, BourineT E. Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in no-
ciceptors. EMBO Mol Med 2011; 3:266-278.

anti-oxidant effects, some of which can neutralize
ROS increase within the dorsal horn in Oxaliplatin
treated rats"*''*2, thus inhibiting neuron damage.
Yet, ALC displays several other — usually under-

On the other hand, ALC can conceivably antag-
onize platinum-based damages by acting on sever-
al targets inside the peripheral nervous system'*’.
As previously mentioned, ALC displays specific
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estimated - neuroprotective effects. ALC provides
acetyl groups for acetylcholine synthesis, thus
exerting a cholinergic effect and optimizing the
balance of energy processes. By acting as a donor
of acetyl groups to NF-kb p65, ALC enhances the
transcription of the GRM2 gene encoding the mG-
LU2 receptors, inducing long-term upregulation of
the mGluR2". In addition, through its free radical
scavenging activity, ALC improves mitochondrial
function and ATP production'”, thus restoring
mitochondria function, a pivotal target of plati-
num-based compounds. Indeed, recent data sug-
gest that prophylactic ALCAR treatment against
the paclitaxel-evoked pain may be chiefly related
to a protective effect on mitochondria within pe-
ripheral, sensory c-fibers'*.

ALC also had a strong antinociceptive ef-
fect when given once neuropathic pain has been
established”*. In addition, ALC improves the
function of peripheral nerves by increasing nerve
conduction velocity, by reducing sensory neuro-
nal loss'*® and by promoting nerve regeneration'?®,
as reported in a number of in vitro and in vivo
studies (for a review see ref. 13).

Besides the very considerable overlap in the
pathophysiological mechanisms, CIPN induced
by Taxanes (and other microtubule-disrupting
agents) can involve very different mechanisms
in respect to those triggered by Platinum com-
pounds'¥’.

For instance, both Platinum-based compounds
and Taxanes produce acute neuropathies that are
clinical distinct from each other*>'*.

Thereby, drugs aimed at preventing or con-
trolling the painful peripheral neuropathy pro-
duced by one chemotherapeutic agent may not
be effective for all anticancer drugs. Indeed,
available data seem to suggest that a different
treatment strategy should be planned in ad-
dressing such issue, chiefly by considering if
patients are treated with either Taxane or Plat-
inum compounds. Currently, as far as ALC is
concerned, we suggest that valuable evidence
does exist only for an ALC-based supplementa-
tion of patients in treatment with Platinum com-
pounds. About Taxane and other similar acting
drugs (Epothilones, Eribulin mesilate), CIPN
is a direct consequence of their specific mech-
anism of action: interference with microtubule
activity. Unless we could identify compounds
that selectively protect normal cells from the
microtubule-disrupting effect of Taxanes, while
preserving the anticancer activity, CIPN pre-
vention/treatment will be difficult if not impos-

sible'*. A promising option is currently under
scrutiny, and is focusing on myo-inositol, a safe
natural polyol, which specifically targets sev-
eral cytoskeleton components, thus promoting
microtubules remodeling while displaying at
the same time significant anticancer effects'.
Furthermore, melatonin, already known as an-
ti-oxidant, has recently been shown to promote
microtubule remodeling and to inhibit calpain
activity'®”. As both microtubule deregulation
and calpain activation'*! have been implicated
in Taxane-induced CIPN, it is not surprising
that a pilot study has evidenced the usefulness
of melatonin in antagonizing Taxane-induced
neurotoxicity'¥.

Conclusions

The need for well-tolerated effective therapy for
CIPN is a high priority in oncology because an
increasing number of effective anticancer agents
results in dose-limiting neurologic toxicity. A pre-
liminary requirement is to explore in depth the
mechanisms of toxicities triggered by each single
drug to better identify effective means to prevent
or treat them.

Second, there is a wide consensus about the
need for large trials exploring possible neuro-
protective agents. However, the evaluation of
compounds intended to prevent/treat chemother-
apy-induced neurotoxicity should be pursued by
considering separately each neurotoxic antican-
cer drug, given that each regimen can trigger
different pathophysiological mechanisms. As a
result, no firm conclusion can be drawn about
the efficiency of anti-CIPN agents when patients
with different cancers, and consequently treated
with promiscuous chemotherapy regimens, are
investigated collectively in the same trial'¥. In
addition, these studies should rely on adequate
measures of assessment including nerve con-
duction study and validated neurotoxicity scale.
Clinical recording of CIPN is still ambiguous,
given that scales currently in use do not rely on
a formal neurological evaluation and mostly de-
pend on patient’s reports and physician’s inter-
pretation. Ultimately, large and long-term ran-
domized clinical trials are mandatory. With only
few exceptions, clinical data have been mainly
provided by pilot or case studies, in which small
subsets of patients are involved. Again, no con-
clusive information can be obtained by such
investigations.
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In addition, some warnings should be recalled,
namely when using ALA formulations. Despite
its beneficial properties, oral assumption of ALA
is characterized by poor bioavailability (~30%
of the dose)'%®. Therefore, it is critical to conduct
additional experiments in humans to establish
effective doses and length of treatment for each
clinical situation studied, along with a definite
proof of antagonism/synergism effects when
combinatorial approaches are used. Needless to
say, that ALA and ALC, in both prevention as
well as treatment of CIPN, should be better eval-
uated at the experimental level in order to set
adequately any further randomized clinical trial.
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