miR-564 inhibited metastasis and proliferation of prostate cancer by targeting MLLT3

F.-J. MENG¹, F.-M. MENG², H.-X. WU³, X.-F. CAO⁴

Fanjie Meng and Fanmei Meng contributed equally to this work

Abstract. – OBJECTIVE: MiR-564 has been discovered to be abnormally expressed in human malignancy. Two recent studies suggested that miR-564 plays a role in tumor inhibition in both lung and breast cancer. However, no evidence reported the mechanism and function of miR-564 in prostate cancer (PCa).

PATIENTS AND METHODS: The PCa tissues and their adjacent normal tissues were coll from 50 PCa patients. Expressions of p qF in tissues and cells were evaluated with CR. The MTT [3-(4,5-dimethylthiazol-2-yl) phenyl tetrazolium bromide] assay, flow c etry and Western-blot analysis, were applied detect the proliferation, cell cycle-progress and the protein expression of ines (Po of PCa 3 and DU-145). Migration ınva ys. Furswell a cells were analyzed by and thermore, the correlation veen r MLLT3 was assessed by I fected with say. Also, the PCa s we miR-564 mimics Q ol and inh

RESULTS: In resent resea iR-564 in PCa cells d to act was found dy as a suppres r in F gression (cell cycle, c asion and migration. ML (also known as a proto-oncoch has first reported in leukemia, and gene. Mation tits expression remains incomthe . Also, it is first reported in our ucid ple ing that I results study T3 is a direct target of miR-564 o showed a significant th miR-564 in PCa cells. alation of MLLT3 attenuates more. 364 on the ability of PCa cells. cts of min

e ICLUSIONS: Our research demonstrate sor function of miR-564 in PCa, earning coration of miR-564 as a potential apeutic strategy for the treatment of PCa.

Key ds:

mik-564, MLLT3/Af9, Prostate cancer.

Intre tion

rostate cancer (PCa) is an important public lth problem and the world. Its incidence male tumors, and its fatality nale tumors in the world. Beside rate is 28.5/0.1 million people currently and incidence rate of PCa in China constant increasing trend year by year.

pical symptoms of PCa lack specificino obvious symptoms in the early stage, out hematuria, lower urinary tract obstruction or irritation symptoms may occur in the progressive stage. The main complications of advanced PCa include the refractory ostealgia, pathological fractures, anemia and spinal cord compression, etc. It is reported that the incidence rate of bone metastases is about 65-75%, and the 5-year survival rate of patients is 25% with poor quality of life³. Prostate Specific Antigen (PSA) combined with digital rectal examination is always recognized as the best screening method for early detection of PCa. However, PSA detection still cannot completely distinguish benign from malignant cancer, and PCa cannot be completely ruled out from patients with less than 4 ng/mL antigen, either⁴. PLCO (Prostate, Lung, Colorectal, and Ovarian) study results showed that PSA screening may lead to over-examination and treatment, increased adverse reactions and complications. and higher medical cost, but it cannot reduce the mortality rate of males aged below 55 years old⁵. Therefore, searching for a new screening method of PCa has become one of the research hotspots in recent years. More and more studies have focused on the diagnosis of PCa by detecting the changes in microRNA (miRNA) levels in human blood and

¹Laboratory Medicine, Yidu Central Hospital of Weifang City, Weifang, Shand

²Department of Urology Surgery, Zoucheng People's Hospital, Zoucheng, Midong, China

³Department of Nursing, Binzhou Central Hospital, Binzhou, Shandong,

⁴Department of Urology Surgery, Weifang People's Hospital, Weifang, Surgery, Walland

urine samples. For example, Chen et al⁶ identified five miRNAs that were abnormally expressed in the serum of PCa patient for the differential diagnosis of PCa and benign prostatic hyperplasia. Brace et al⁷ found that miR-141 and miR-375 are important indexes of prognosis estimation of PCa through the screening of plasma in patients with non-PCa metastasis and PCa metastasis.

MiR-564 has firstly been described as potential blood-based biomarkers in schizophrenia patients together with six other miRNAs⁸. The later reports suggested miR-564 has an inhibitory effect on lung cancer and breast cancer^{9,10}. However, the roles of miR-564 in PCa tumorigenesis and underlying mechanisms remain unknown.

MLLT3 (also known as Af9), a proto-oncogene, was first reported in leukemia and involved in many different cellular processes, such as cell differentiation¹¹, cell fate decision¹² and nervous system development¹³. MLLT3 gene has been reported to play a pathological role in neurodevelopmental diseases. A previous study showed that disruption of MLLT3 was associated with mental retardation, epilepsy and ataxia in human¹⁴. A later study demonstrated that MLLT3 has pution function in lymphocytoma¹⁵.

In our study, we analyzed the biologic conction of miR-564 in PCa cells. For the first MLLT3 was identified to be a direct and funding the suppressor in PCa cells. These concentrations in the PCa progress and the progress are progress and the progress and the progress and the progress are progress and the progress and the progress are progress are progress and the progress are progress and the progress are progress and the progress are progress are progress are progress.

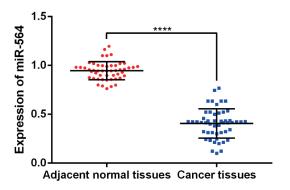
Patie nd Metho

PCa Cases and Cells

This st included 50 natients who reatment with radica. Jostatectomy at ceived People's Hospital and underwent pa-Weif oses to be confirmed as PCa. tho Preop chemoth py or radiotherapy en. The liquid nitrogen for tmeni Ca tissues and corresponsed to al tissues before being kept in jacent ne refrigerator. The adjacent normal tissues cerned by biological biopsy to be e that usey do not include cancer cells. This was approved by the Ethics Committee of People's Hospital. Signed written informed onsents were obtained from all participants before the study.

The human PCa lines (PC-3 and DU-145) together with the adult human prostatic epithelial cell line (RWPE-1) were purchased from nese Academy of Sciences (Shanghai 111d). cells were cultured in Roswell Parl emorial Institute 1640 (RPMI 1640) medi Thermo Fisher Scientific, Inc., Waltham, N A) complemented with 10% fetal FBS). 100 mg/mL streptomycin . 100 IU/m c, Inc., Walthan lin (Thermo Fisher Sci USA) in 5% CO₂ cell ture inc tor.

qRT-PCR Anal


Total RNA s procure reagent the manufa in accordan s protocol. say (Applies Biosystems, TaqMan Foster Chy, CA, was used to measure the level of miR-50 pression normalized U6. SYBR g to qPCR assay (Life ence, San Diego, CA, USA) was used to mere the level MLLT3 expression and end by GAPDH (Life Science, enous contr bА). iego, CA.

Wester. Analysis

Protein concentration was measured by using inic acid (BCA) reagent kit (Merck, J. Cell lysates were separated on polyacrylamide gels and electro blotted onto nitrocellulose membranes. Then, they were blocked with blocking tris-buffered saline (TBS) with 0.05% Tween 20, pH 7.6 with 5% skimmed milk. After that, the blot was washed and incubated with anti-MLLT3 antibody (Abcam, Cambridge, MA, USA, Dilution 1:1000) or anti-GAPDH (Abcam, Cambridge, MA, USA, Dilution: 1:1000) antibody, which was blotted to show equal protein loading at 4°C overnight.

Transfection

MiR-564 mimics control and inhibitor were synthesized and transfected to PCa cell lines to analyze biological function of miR-564. Then, three groups were established to study the potential relevance between miR-564 and PCa. MiR-564 mimics (PCa cell transfected by miR-564 mimics), mimics +MLLT3 (PCa cell transfected by miR-564 mimics and siMLLT3) and NC group (negative control). All the stuff was purchased from Guangzhou RiboBio (Guangzhou, China), and were transfected by using lipofectamine RNAiMAX (Life Technologies, Carlsbad, CA, USA) according to the manufacturer's instructions.

Figure 1. The expressions of miR-564 in prostate tissue samples. Difference in the expression of miR-199a-3p between prostate cancer tissues and corresponding adjacent normal prostate tissues. ****p<0.0001 compared with RWPE-1.

Cell Proliferation and Cell Cycle Assay

PCa cells were harvested and inoculated into 96-well plates at a density of 2×10^3 cells for 48 hours, MTT solution (5 mg/mL, MultiSciences, Hangzhou, China) was appended to each well after 4-hour incubation. Then, 150 μ L of directly sulfoxide (DMSO) was added to each well lubilizing the form azan formed. After 30 hours absorbance was measured by a microplate hour (Bio-Rad, Hercules, CA, USA) set at 490 nm.

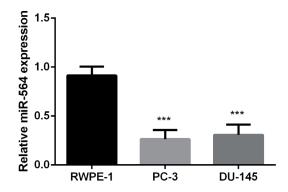
For cell cycle analysis, PCa cell care obtain 3 days after transfection. The property of the cell in different cell phase was resured to the cell cycle staining kit (Multiple ences Blech Co., Ltd., Hangzhou, China) by the cycle of cells in G0/G and S phase presented in the results.

Luciferase F or ssays

ed with pMIR-30U-PCa cells were co-tra TR-MLL or pMIR-300 Lut MLLT3 and miR-5 nimic or negative co. ol (NC), and the enilla physmid (Promega, Madison, WI, pMI US eing seeded into a 24-well plate. low then ly The C post-transfection. The ferase ssessed using a Dual-Luay System (Promega Core Rep WI, USA), and results were n, Madis pol lized to Renilla luciferase activity. nor

All Invasion and Migration Assays

ll invasion and migration assays were pertousing Transwell plates (Corning Incorporated, Corning, NY, USA) with 8-μm-pore size membranes with Matrigel (for invasion assay) or without Matrigel (for migration assay). Briefly, 2 × 10⁴ cells were planted into the upper chambers with serum free medium. On the other lower chamber was offered with r taining 10% fetal bovine serum () as a chemoattractant. After 2 days incu ng, the cells on the top of membrane were w a brush. Subsequently, the membran 0.2% vas sta crystal violet followed dr ned by 95 The cells of migrating avading were no an inverted microsco


Statistical Analis

Statistical a sysis was proceed in a Student's t-test test. All p-valuere two-sided and process of the considered significantly and analyzed by Prism ware (Version X; La Jolla, CA-USA).

Results

R-564 Expression Found Reduced Tissues and Cells of PCa

used question to detect the expression level of iR-564 in PCa tissues and the adjacent normal The results showed that the expression in ... 64 is pretty lower in PCa tissues compared with the adjacent normal tissues (p<0.05) (Figure 1). Furthermore, we found the same results in PCa cells compared to the RWPE-1 cell (p<0.05) (Figure 2). Together, we thought miR-564 might have the regulatory effects in PCa progression.

Figure 2. The expressions of miR-564 in prostate cells. The expression of miR-199a-3p in prostate cancer cell lines (PC-3 and DU145) and normal prostate epithelial cells (RWPE-1). ***p<0.001 compared with RWPE-1.

MiR-564 Suppressed Proliferation of PCa cells

To examine the function of miR-564 on proliferation of PCa cells, we performed MTT assay to detect the cell proliferation rates. The MTT results showed that up-regulation of miR-564 significantly decreased cell proliferation rates in both PC-3 and DU-145 cells. In contrast, down-regulation of miR-564 promoted cell growth of PCa cells (p<0.05) (Figure 3A, B). In order to understand the underlying mechanism, we make a further experiment to explore whether the miR-564 influences on cell cycle progression. We found that overexpression of miR-564 significantly increased the percentage of cells at G0/G1 phase. However, inhibition of miR-564 exhibited an opposite effect (p<0.05) (Figure 3C, D). As a result, the present study suggested that miR-564 inhibited PCa cell growth via inducing cell-cycle arrest at G0/G1 phase.

MiR-564 Inhibited Migration and Invasion of PCa Cells

Migration and invasion are two most key factors in cancer cell proliferation. In the Travelle experiments, results showed that migration in both PC-3 and DU-145 cells vertestricted after up-regulation of miR-564 with mics. However, inhibition of miR-564 results promotion of migration and invasion in PCa ce (p<0.05) (Figure 3G-H).

MLLT3 is a Direct Tar of miR 4 in PCa Cells

In order to explore of mikwe made a predict via search publicly B and available algori Target Scan, e putative and possible microRNA) ta targets of miR-364. Find found the MLLT3 was a su sed target of 64 (Figure 4A) ecent study has des astrated that the (564c)has the function of promotion in lym-MLI s, MLLT3 has caught our attenpho n wheth hiR-564 has regulation tion. y, we established lucifect on containing the wild or mueed sequences of the MLLT3 e miR-5 tan Increase the expression of miR-564 with In the decrease of the luciferase wity or me wide type MLLT3 30UTR reporter but it has no effect on mutant-type (Figure thermore, we found that up-regulation of miR-64 decreases the expression level of protein of MLLT3 in both PC-3 and DU-145 cells in

Western blot experiment (Figure 3E-F). Secondly, we explored the correlation between MLLT3 and miR-564 on PCa cells. We set up three conduct the similar experiments (mil miR-564 mimics group, and the mi s + MLLT3 group) in PC-3 cells. As we exp 1 restoration of MLLT3 has the reverse force of epressing effect induced by miR-564 ration of PCa cells (Figure 4B) Il cycle pr (Figure 4D), protein ex ssion (Figure 41 gration, and invasion ure 4F aken it all, he results indicated that alation a miRwith 1 T3 in 564 has a negat relau PCa cell, miR asis and 4 suppress m proliferation restoration a cells, and N phibition of A.R-564. partially

Discu. n

PCa is a major ublic health problem in deved countries¹ Fraditional treatments of PCa hormone rapy, but the cancer cells grasensitive and resistant to hordua as the disease progress¹⁷. Thus, it important to explore the pathologic process of evelopment. Loss of cycle control is an at pathological factor in the occurrence of tumors including PCa. Cell cycle disorder is an important cause for unstable genetic information and malignant cell transformation¹⁸. Studies have showed a large number of cycle regulatory proteins that are abnormally expressed in PCa. Many cycle regulation- associated proteins will mutate in PCa, which may lead to the activation of oncogenes and inactivation of tumor-suppressor genes¹⁹. The pharmacological basis of a lot of therapeutic drugs of PCa, including the existing chemotherapy drugs, is the cell cycle regulation²⁰. Therefore, the study on the new cycle regulatory genes will undoubtedly bring breakthroughs to the development of new targeted drugs of PCa. At present, studies have demonstrated that miRNAs play an important role in the transformation of stem cells from G1 phase to S phase²¹, but the G1 phase of tumor cells is short and G1/S detection sites are lacked. At this point, tumor cells and embryonic stem cells are similar. There are many miRNAs that inhibit the tumor proliferation by regulating cell cycle. For example, miR-765 arrests the cell cycle in G2 phase via inhibiting HMGA 1²². MiR-107 and miR-449a can induce the G1 phase arrest by targeting CDK4/CDK6²³. This phenomenon suggests that miRNA may be closely related to

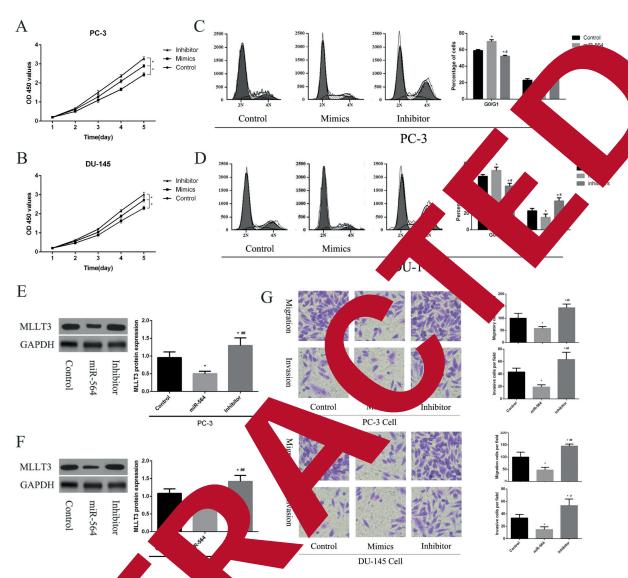
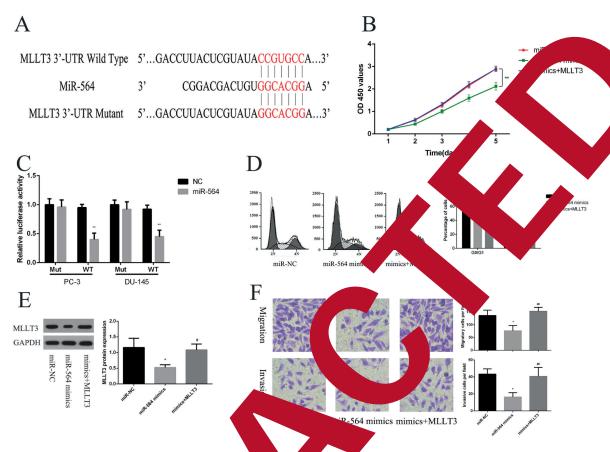



Figure 3. MiR-564 j ts the prolifera motility of prostate cancer cells. PC-3 and DU-145 cells were transfection with miR-564 mimics ar r. *A-B*, Effect 564 on the cell proliferation. The cell proliferation of PCa cell transfection with mimics or i alyzed using M assay. (*p<0.05 vs. control group). **C-D**, Effect of miR-564 on the cell cycle. insfection with mimics or inhibitor were analyzed using flow cytometry, (*p<0.05 vs. control The cell cycle ph es of PC vs. mimics gro F. Effect of miR-564 on the expression of MLLT3. The protein expression of MLLT3 of group; # *p*< PCa cell p inhibitor were analyzed using western-blot assay (*p<0.05 vs. control group; ##p<0.01 ransfection with mi 364 on the invasion and metastasis. The invasion and metastasis of PCa cell post-tranvs. min (roup). **G-H**, Effect of m sfecti or inhibitor were analyzed using transwell assay and detected by microscope ($\times 200$). (*p < 0.05 vs. control 0.05, 0.01 vs. mimics group). gro

nor ce. gulation. All these cycle-relate timor sup, sor microRNAs are expected to be with the ewither apeutic targets for PCa. Here in our set the results indicated that compared with sponding adjacent normal tissues, miR-564 experiments of our was significantly down-regulated in PCa. We also found that expressions of miR-564 in PC-3 and DU-145cell lines were significantly

decreased compared with RWPE-1 cells, suggesting that miR-564 has a significant effect on PCa development. Besides, over-expressed miR-564 inhibited the proliferation of PCa cells and had the function of inducing cell-cycle dispute at G0/G1 phase. The invasion and metastasis of prostate cancer is a multi-step and multi-factor complex process, involving a variety of adhesion-related molecules, proteolytic enzymes, many cytokines

Figure 4. MLLT3 is a direct and functional target of miR-564 on PC-3 cell. *A*, Diagram of putative miR-564 on PC-3 c

and regulatory fag eviden-More a ce suggests tha A is also co related For example, the supto the metast pressor gene or tumor, p an inhibit the tumor metastasi a regulating to ression of miR-205, ar atients with p-63/m. 205 deletion are compared with high Gleason score and ofter stasis²⁵. Our findings suggested eas of migr that th y and invasive of PCa us were ted l p-regulation of miR-564, 64 has a certain inhibitory ting to n tumor Iferation.

sequently, we searched the potential targets the miR-564 exerted its effect on PCa aroused our interest after it was zed in three online bioinformatics databases, we have been suggested to have the function of primotion in malignancy¹⁵. As we expected, we found that the expression of miR-564 nega-

tively correlated with the expression of MLLT3 utilizing in luciferase assay and Western blot. Moreover, MLLT3 overexpression seriously impacts the inhibitive function of miR-564 on PCa cells in cell proliferation, cell cycle, the invasion and metastasis of cell, indicating that miR-564/ MLLT3 axis may be an important mechanism in the tumorigenesis and development of PCa.

Conclusions

We explored the tumor inhibitory function of miR-564 in PCa cells. MLLT3, as the direct and function target of miR-564, attenuated the suppressor effect in metastasis and proliferation of PCa cell. Thus, restoration of miR-564 could be a potential therapeutic strategy for the treatment of PCa.

Conflict of interest

The authors declare no conflicts of interest.

References

- Xu CG, Yang MF, Fan JX, Wang W. MiR-30a and miR-205 are downregulated in hypoxia and modulate radiosensitivity of prostate cancer cells by inhibiting autophagy via TP53INP1. Eur Rev Med Pharmacol Sci 2016; 20: 1501-1508.
- 2) DI FRANCO R, BORZILLO V, RAVO V, AMETRANO G, CAMMAROTA F, ROSSETTI S, ROMANO FJ, D'ANIELLO C, CAVALIERE C, IOVANE G, PORRICELLI MA, MUTO M, BERRETTA M, FACCHINI G, MUTO P. rectal/urinary toxicity after hypofractionated vs. conventional radiotherapy in high risk prostate cancer: systematic review and meta analysis. Eur Rev Med Pharmacol Sci 2017; 21: 3563-3575.
- 3) SMITH JJ, SOLOWAY MS, YOUNG MJ. Complications of advanced prostate cancer. Urology 1999; 54: 8-14.
- CRAWFORD ED, MOUL JW, ROVE KO, PETTAWAY CA, LAMERATO LE, HUGHES A. Prostate-specific antigen 1.5-4.0 ng/mL: a diagnostic challenge and danger zone. BJU Int 2011; 108: 1743-1749.
- 5) Andriole GL, Crawford ED, Grubb RR, Buys SS, Chia D, Church TR, Fouad MN, Gelmann EP, Kvale PA, Reding DJ, Weissfeld JL, Yokochi LA, O'Brien B, Clapp JD, Rathmell JM, Riley TL, Hayes RB, Kramer P, LIAN G, MILLER AB, PINSKY PF, PROROK PC, GO, BERG CD. Mortality results from a randomia, trostate-cancer screening trial. N Engl J Med 360: 1310-1319.
- 6) CHEN ZH, ZHANG GL, LI HR, LUO JD, LI ZX, CHEN C YANG J. A panel of five circular CRNAs a potential biomarkers for produce ca. Prostate 2012; 72: 1443-1452.
- 7) BRASE JC, JOHANNES M, ST. T, FAV.
 STEUBER T, BEISSBARTH T KUN
 lating miRNAs are related from progression in prostate incer. Int J 2011; 128: 608-616.
- 8) LAI CY, YU ASIA CHEN CH, CHEN HY, WEN CC, HUANG A, HSIAO CO, HOU CM, YANG PC, HWU HO CHEN WJ. Mic. expression aberration potential periphera di biomarkers for solo phrenia. PLoS One 20 1, 6: e21635.
- 9) B, Jia J, Jia V, Jia O, Q, Ren H, Hu D, Zhou X, Ren Q, Ye T, A-564 functions as a tumor suppresson function as a function as
- KONU O, PISK and MAPK signaling networand inhibitor or PISK and MAPK signaling networand inhibits proliferation and invasion in breast Rep 2016; 6: 32541.
- PINA C, MAY G, SONEJI S, HONG D, ENVER T. MLLT3 reulates early human erythroid and megakaryocytic fate. Cell Stem Cell 2008; 2: 264-273.
- MGEL T, GRUSS P. Expression of Leukaemia associated transcription factor Af9/Mllt3 in the cerebral

- cortex of the mouse. Gene Expr Patterns 2009; 9: 83-93.
- 13) BUTTNER N, JOHNSEN SA, KUGLER S, VOGEL T interferes with Tbr1 expression throutic modification of histone H3K79 day g development of the cerebral cortex. Proceed A Acad Sci US A 2010; 107: 7042-7047.
- 14) PRAMPARO T, GROSSO S, MESSA J, ZATTER NAGLIA MC, CHESSA L, BALESTRI P, ROCCHI ZUFFARO PROPER R. Loss-of-function mutation and AF9/ML. a girl with neuromotor property delay, cataxia, and epilepsy. A Genet 2005; 118: 76-
- NG JY. MicroR-15) ZHANG T, LUO NA-297b-5p/3p to supp lymtard tion and asion in phoma cell p eration r growth in vitro and t euk Lym-3: 2033-2040. phoma 2
- 16) ZHANG M, SON D, XIE HF, WELL Breast cancer me astasis superson 1 (BRMS1) suppresses prostate cancer processes in the prostate cancer processes in the process of the pr
- STURGE J, CALEY MP, WAXMAN J. Bone metastasis in prostate can be emerging therapeutic strategies. Nat Rev Clin ol 2011; 8: 357-368.
- 18 HERTY SC, N EOWN SR, McKelvey-Martin V, Dow-Yoo JJ, Simpson DA, Kaufmann WK.
 Ce. Eckpoint function in bladder cancer. J
 Natl Cancer Inst 2003; 95: 1859-1868.
- T. LEHMANN BD, TERRIAN DM, CHAPPELL WH, STIVALA A M, MARTELLI AM, STEELMAN LS, McCUBREY JA. Targeting prostate cancer based on signal transduction and cell cycle pathways. Cell Cycle 2008; 7: 1745-1762.
- DIAZ-MORALLI S, TARRADO-CASTELLARNAU M, MIRANDA A, CASCANTE M. Targeting cell cycle regulation in cancer therapy. Pharmacol Ther 2013; 138: 255-271.
- 21) WARD EJ, SHCHERBATA HR, REYNOLDS SH, FISCHER KA, HATFIELD SD, RUOHOLA-BAKER H. Stem cells signal to the niche through the Notch pathway in the Drosophila ovary. Curr Biol 2006; 16: 2352-2358.
- 22) LEUNG YK, CHAN QK, NG CF, MA FM, TSE HM, TO KF, MARANCHIE J, HO SM, LAU KM. Hsa-miRNA-765 as a key mediator for inhibiting growth, migration and invasion in fulvestrant-treated prostate cancer. PLoS One 2014; 9: e98037.
- LIANG LH, HE XH. Macro-management of microR-NAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy. Acta Pharmacol Sin 2011; 32: 1311-1320.
- 24) HUDSON BD, KULP KS, LOOTS GG. Prostate cancer invasion and metastasis: insights from mining genomic data. Brief Funct Genomics 2013; 12: 397-410.
- 25) Tucci P, Agostini M, Grespi F, Markert EK, Terrinoni A, Vousden KH, Muller PA, Dotsch V, Kehrloesser S, Sayan BS, Giaccone G, Lowe SW, Takahashi N, Vandenabeele P, Knight RA, Levine AJ, Melino G. Loss of p63 and its microRNA-205 target results in enhanced cell migration and metastasis in prostate cancer. Proc Natl Acad Sci U S A 2012; 109: 15312-15317.