MiR-5692a promotes the invasion and metastasis of hepatocellular carcinoma via MMP9

S.-J. SUN¹, N. WANG², Z.-W. SUN³, J. CHEN⁴, H.-W. CUI⁵

Shijie Sun and Ning Wang contributed equally to this work

Abstract. – OBJECTIVE: To investigate the role of miR-5692a in hepatocellular carcinoma (HCC), and to further study the relationship between miR-5692a expression and clinical pathology as well as the prognosis of HCC.

PATIENTS AND METHODS: The expression level of miR-5692a in 96 pairs of HCC tissues and para-cancerous tissues were detected by quantitative reverse transcriptase-polyme chain reaction (qRT-PCR). The relations tor. tween miR-5692a and pathological in as well as the prognosis of HCC was an ed by Kaplan-Meier curves. For in vitro e ments, qRT-PCR was used to detect the pression of miR-5692a in HCC lines. F thermore, small interference e of mil 5692a was constructed. C ıar ions of knock *+-8 (C/ HCC cells after miR-56 n were വേറdetected by cell count ny formation and transw ly. The underlying p ıR-569∠a in as detectpment of regulating the dev ed by Western b

was overex as overex, ssed in para-cancerous tis-**RESULTS: HCC** tissues an th sues. HCC patients with er miR-5692a expression hibited a higher Mence of lymph stasis and distant h node p astasis, as well r overall survival than those patients as l wit er lev f miR-5692a expression. *In vi*s demo rated that miR-5692a tro e sulted knocka decreased proliferation eased apoptosis of HCC nvasi sults revealed that EMT-re-Vesten late pithelialsenchymal transition) genes, ng N-cadherin, Vimentin, β-catenin and inc M downregulated after miR-5692a Rescue experiments indicated that 5692a promoted malignant progression of ia regulating MMP9.

pressed in HCC patients, which was remarkably correlated with HCC stage, distant metasta-

sis and poor program in addition, miR-5692a program the malignant pression of HCC via remain a MMP9.

√ Words:

iR-5692a, N 9, Hepatocellular carcinoma Malignant gression.

Introduction

Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. In United States, there are about 42,220 new cases and 30,200 deaths of HCC every year, ranking the 10th of cancer incidence and the 5th of cancer death, respectively^{1,2}. In China, there are around 390,000 new HCC cases every year. The incidence of HCC ranks the 5th, and death rate of HCC ranks the 2^{nd 3,4}. Epidemiological investigations^{5,6} have shown that about 80% HCC cases are associated with hepatitis B virus (HBV) and/or hepatitis C virus (HCV) infection. In addition to viral infection, alcoholic liver disease, smoking and obesity are also related to HCC incidence^{7,8}. Seriously, the incidence of HCC in China is increasing year by year, which seriously affects the life and health of the infected population. The high hepatitis infection rate in China also leads to a serious burden on HCC patients^{4,7}. Clinically, over 50% HCC patients experienced micro-metastases before radical surgery. Some factors, including genetics, diet, unhealthy lifestyles and precancerous lesions, are all closely related to the incidence of HCC9. Unfortunately, the unclear pathogenesis of HCC brings huge difficulty in precise diagnosis and treatment^{9,10}. Therefore, it

¹Department of Hepatobiliary Surgery, Yantai Yuhuangding Hospital, Yantai,

²Department of General Surgery, Yantai Yuhuangding Hospital, Yantai, Chir

³Department of Ophthalmology, The Fourth Affiliated Hospital of Kunming Medical University, The Second People's Hospital of Yunnan Province, Kunming Tag

⁴Department of Oncology Medical, Yantai Yuhuangding Hospital, Yantai,

⁵Department of Neurosurgery, Affiliated Hospital of Weifang Medical niverse (eifang Mina

is of great clinical significance to clarify the molecular mechanism of HCC metastasis. With the rapid development of molecular biology and genetic diagnosis technology, HCC is considered as an outcome of the long-term interaction of genetic and environmental factors. Malignant transformation and irreversible genetic changes eventually lead to cell-specific physiological dysfunctions, including proliferation, apoptosis and differentiation^{11,12}. Despite that great progresses have been made so far, other mechanisms involved in the incidence and development of HCC still need to be further explored.

MicroRNA (miRNA) is a type of eukaryotic endogenous small-molecule RNA with 18-25 nt in length. MiRNA and mRNA are not completely complementary paired, thereby exerting a targeted regulatory function on the post-transcriptional level^{13,14}. Therefore, abnormal miRNA expression can lead to the dysfunction of relevant protein 14. Relative experiments¹⁵⁻¹⁷ have shown that differentially expressed miRNAs are closely related to malignancies and can be served as biomarkers in tumors. Recent works16 have found that miRNAs are tissue-specific, which can promote the liferation, invasion and metastasis of tur through various mechanisms, eventually ipating in the incidence and development mors¹⁸. MiRNAs have been found to be invo in multiple tumors, such as colbreast cancer, osteosarcoma mall ce lung cancer¹⁹⁻²¹. The specif ole of NAs in regulating tumor develo nt, how r is not clearly elucidated. It is miRNAs play an i Jrtani 1 regularing the proliferation. cycle, apo differentiation and mig of tumor cel differo, miR-5201 and other ent aspects^{17,22} **Ak** miRNAs have been for participate in the of HCC²³⁻²⁵. ant researches²⁵ as ant researches²⁵ athway, the epidevelopm have d growth actor receptor (EGFR) pathway, derm wth factor-Beta (TGF-β) inhibitra ation appithelial-mesenchymal tion, de potential mechanisms rsition C deve

present ork, we detected the expression of miR-5692a in HCC tissues and paired tissues. Further analysis detected role or miR-5692a in regulating cellular function of HCC cells. The aim of this study was to be returned to the relationship between miR-5692a expression and pathological indicators as well as the prognosis of HCC.

Patients and Methods

HCC Samples

A total of 96 pairs of surgically re tissues and para-cancerous tissue ere collected. All patients were patholog v diagnosed as HCC according to the 8th ed of UICC/ AJCC. HCC patients did no eceive rative anti-tumor therapies. Th *s*tudy was by the Ethics Committ f Yantai Yuhua. Hospital. Informed nt was ained from all the patients.

Cell Culture

cell lines () Six huma 2, HepG2, 7221, Huh7 and Hep3B) and MHCC96 one normal liver e (LO2) were obtained from American Type **EXECUTE** Collection (ATCC) Ils were cultured in ()s, VA, USA). A EM (Dulbecco's Modified Eagle Medium) itaining 10% tal bovine serum (FBS), and a 37°C, 5% CO, incubator maintaine Rockvill MD, USA).

Cell In. dion

Negative control (si-RNA-NC) and small ce sequence of miR-5692a (si-miR-5692a (si-miR-692a). Cell transfection was performed according to the instructions of Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) when the confluence reached 70%. After transfection for 48 h, cells were collected for the following experiments.

Cell Counting Kit-8 (CCK-8) Assay

The cells were seeded in 96-well plates at a density of 2×10^3 /well with 6 replicates in each group. 10 μ L CCK-8 (Dojindo, Kumamoto, Japan) solution was added to each well, followed by incubation for another 2 h. The absorbance at a wavelength of 490 nm was measured with a microplate reader (Bio-Rad, Hercules, CA, USA).

Colony Formation Assay

Transfected cells were seeded into 6-well plates at a density of 200 cells per well. After cell culture for 2 weeks, cells were washed with phosphate-buffered saline (PBS) and fixed with 2 ml methanol for 20 min. After washing with PBS, the colonies were stained with 0.1% crystal violet for 20 min, followed by image capture by using an inverted microscope.

Cell Apoptosis

HepG2 cells in the logarithmic growth phase were seeded into 6-well plates. After specific treatment for 24 h, cells were digested, washed twice with 4°C pre-cooled PBS and centrifuged at 1000 rpm for 5 min. The cells were then resuspended in 100 μL Annexin V Binding Buffer mixed with 5 μL Annexin V-fluorescein isothiocyanate (FITC) and 5 μL PI (propidium iodide) (Thermo Fisher Scientific, Waltham, MA, USA). Subsequently, the cells were incubated at 4°C for 15 min in the dark, followed by flow cytometric analysis (Partec AG, Arlesheim, Switzerland).

Transwell Assay

50 μ L FN and 100 μ L matrigel were added into the lower and the upper chamber, respectively. Cells were seeded in the upper chamber at a density of 2×10^5 cells per well. After 24 h, the transwell chamber was removed from the incubator and placed in a 24-well plate with 500 μ L methanol for fixation at 4°C overnight. After washing with PBS for three times, 5 randomly selected images were captured by using an inmicroscope (Nikon, Tokyo, Japan).

Quantitative Reverse Transcriptase-Polymerase Chain Reaction (qRT-PCR)

Total RNA was extracted fr the tissi and cells according to the ins TRIz kit (Invitrogen, Carlsbad, USA he conected by centration of extracted was an ultraviolet spectropho kyo, Japan). The pleme deoxymose nucleic acid (cD) was then sized according to the tions of the escript ru, Shiga, Jayan). The RT Reagent relative expression level rget genes was cal-2-ΔΔCt. Primer. culated 1 in this study -AGAGGGGTwere ollows: MiR-5692a. GGAGACTAG-3'; U6: 5'-TGCGGGT-GG/ GC CAGC-3'; MMP9: forward, CTTTC 5'-TT GGCGA-3', reverse, '' CAAA AATCACC-3'; β-actin: d, 5'-ACCCAGCACAAT-3', re-GGTGTCCCTTTG-3'. -TGCC

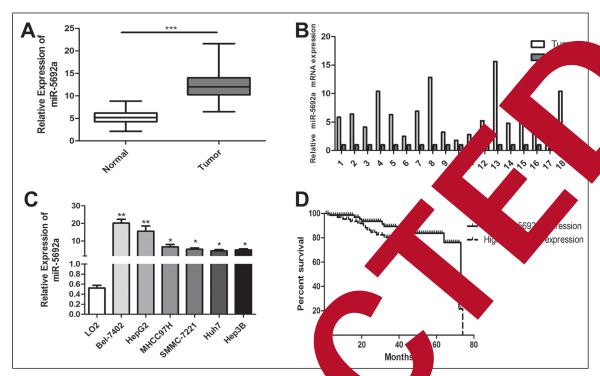
V

the rack-immunoprecipitation assay (RI-protein lysate (Beyotime, Shanghai, China) do to extract total protein of cells and tissus in each group. The BCA (bicinchoninic acid) method (Pierce, Rockford, IL, USA)

was performed to quantitate protein concentrations. Subsequently, protein samples were electrophoresed on polyacrylamide gels transferred to polyvinylidene difluo membranes (Merck Millipore, J rica, MA, USA). After blocking with 5% mmed milk, the membranes were incubated primary hnolo antibody (Cell Signaling **Z** nvers, MA, USA) at 4°C overni After was Tris-buffered saline Tween (TBS) membranes were the cubated ith secondary antibody. Chemilum as used to expose the protein

Statistical Sysis

Statisti and Service Solutions (SPSS) 22.0 Softw ackage (IBM, Armonk, NY, LISA) was used statistical analysis. m-Meier curve performed for anamy the prognosis of HCC patients. Difference T curves was 🚄 pared by using the Log-rank ised to analyze the difference The *t*-test w s, while the x^2 -test was used n two gr classification data. p < 0.05 was for consider astically significant.


Results

MiR-5692a was Overexpressed in HCC Tissues and Cell Lines

QRT-PCR results indicated that the expression of miR-5692a in HCC tissues was higher than that of para-cancerous tissues (Figure 1A and 1B). Besides, miR-5692a was overexpressed in HCC cell lines than that of LO2 cells (Figure 1C). Meanwhile, the Bel-7402 and HepG2 cells exhibited highest expression of miR-5692a, which were then selected for the following experiments.

MiR-5692a Expression was Correlated with Clinical Stage, Lymph Node and Distance Metastasis and Overall Survival in HCC Patients

Based on the expression of miR-5692a, all HCC patients were assigned into the high expression group and the low expression group. The information of age, gender, clinical stage, and lymph node and distant metastasis of each HCC patient were recorded. We found that miR-5692a expression was positively correlated with clinical stage, lymph node and distant metastasis, whereas was not correlated with age and gender of HCC patients (Table I). Follow-up data of these HCC

Figure 1. MiR-5692a was overexpressed in HCC tissues and cell line. **B.** The dession of miR-5692a in HCC tissues was significantly increased. **C,** The expression level of piR-5692a in 6 Hz. Bel-7402, HepG2, MHCC96H, SMMC-7221, Huh7 and Hep3B) and 1 normal hepatic cell and the pixel of patients based on miR-5692a expression. The prognosis of patients are group was poorer than those in low expression group.

patients were collected for analyzing the over survival. The Kaplan-Meier wed that miR-5692a expression was gatively related with the prognosis of H patients < 0.05, Figure 1D).

Knockdown of miR-5692a Inhibited Cell Proliferation and Colony Formation Ability

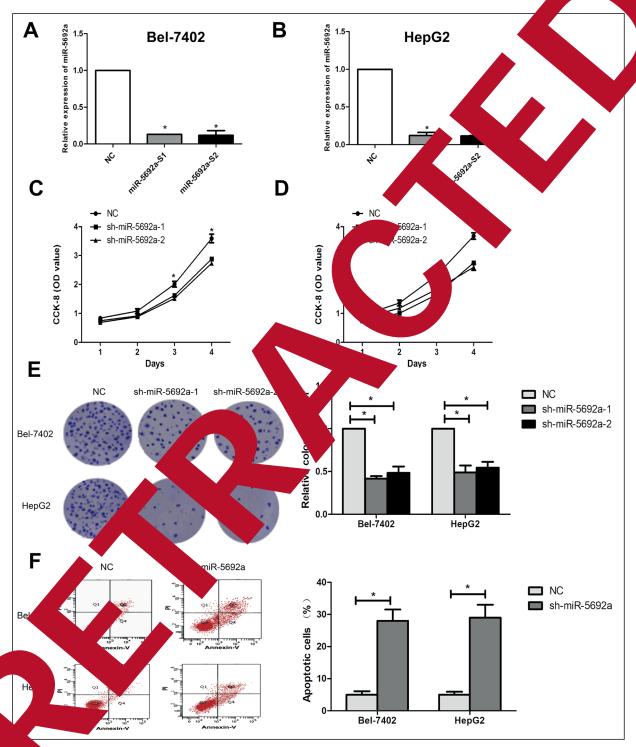

We firstly constructed si-NC and si-miR-5692a. Cell transfection was then performed, and the transfection efficacy was verified by

Table I. Association 2-5692aexpress clinicopathologic characteristics of hepatocellular carcinoma.

Para ers		miR-5692a expression		
	her of cases	Low (%)	High (%)	<i>p</i> -value
Age ars)				0.569
	42	25	17	
	54	29	25	
Gende				0.143
Male	47	30	17	
nale	49	24	25	
1				0.032
12	53	35	18	
	43	19	24	
etastasis				0.035
No	55	36	19	
es	41	18	23	
e metastasis				0.023
	70	45	25	
Yes	26	10	16	

qRT-PCR (Figure 2A and 2B). CCK-8 assay indicated that the knockdown of miR-5692a inhibited the proliferative ability of HCC cells

(Figure 2C and 2D). Similar results were obtained from the colony formation assay (Figure 2E).

2. The effect of miR-5692a on cellular functions of HCC cells. A, B, QRT-PCR was used to verify the transfection of miR-5692a knockdown in Bel-7402 and HepG2 cells. C, D, Growth curve analysis showed the cell growth of Bel-7402 and HepG2 cells after miR-5692a knockdown. E, The efficiencies of colony formation in Bel-7402 and HepG2 cells after miR-5692a knockdown. F, The efficiencies of cell apoptosis in Bel-7402 and HepG2 cells after miR-5692a knockdown.

Knockdown of miR-5692a Induced Apoptosis in HCC Cells

To explore the effect of miR-5692a on the apoptosis of HCC cells, we conducted flow cytometry and found that miR-5692a knockdown remarkably increased the apoptotic rate of HCC cells (Figure 2F).

Knockdown of miR-5692a Inhibited Cell Migration and Invasion

Transwell assay was performed to detect the role of miR-5692a in the migration and invasion ability of HCC cells. Experimental data showed that the ratio of penetrating cells was remarkably lower after transfection with si-miR-5692a when compared with those transfected with si-NC (Figure 3C). Invasion assay demonstrated the same results (Figure 3D), indicating that miR-5692a knockdown inhibited cell migration and invasion.

Knockdown of miR-5692a Downregulated EMT-Related Genes

To further explore the potential mechanism of miR-5692a in regulating HCC cells, we determine the protein expression of EMT-related the Knockdown of miR-5692a led to the do eg-

ulated expression of EMT-related genes, including N-cadherin, Vimentin, β -catenin and MMP9 (Figure 4A).

MMP9 Modulated the Expression of miR-5692a in Human HCC

Bioinformatics methods have noted that MMP9 can interact with min 5692a. The present study, we found that a 1P9 was declared in HCC tissues the shat of para-can tissues (Figure 4B). Sover, to expression of MMP9 in HCC cell in the same were than that of normal liver cell the (Fig. 1).

Furthermo miR-5692 upreg-ACC cells. ulated after P9 knockdov We speci whether mix 5692a could we detected the exregulate MMP9. pression of miR-569. MMP9 in 16 pairs tissues and p cancerous tissues. n protein and mRNA levels of miR-5692a re negatively correlated with MMP9 ex-)). For *in vitro* experiments, sion (Figure was als ownregulated in HCC cells vith that of LO2 cells (Figure mently, we constructed si-MMP9 5A). Su cell transfection, and the transfection efverified by Western blot (Figure

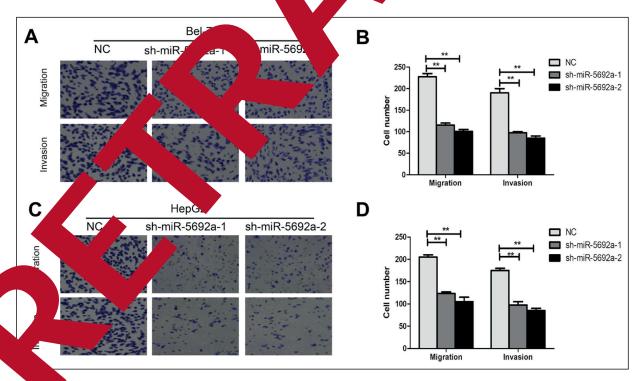
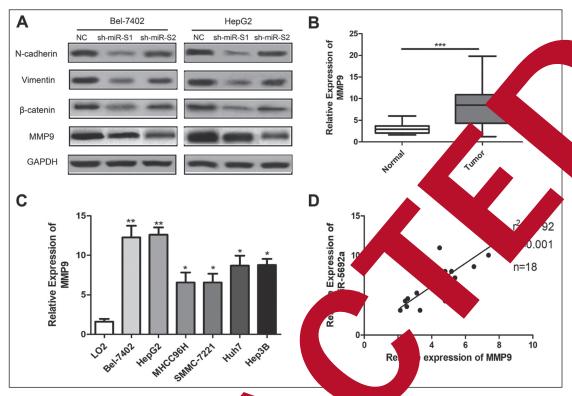
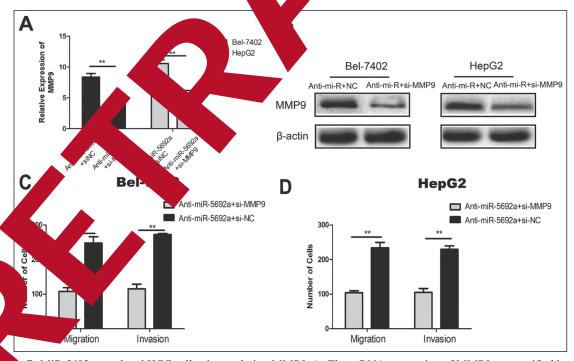




Fig. 8. Knockdown of miR-5692a inhibited the migration and invasion of HCC cells. A, B, Bel-7402 and HepG2 cells transfected with si-miR-5692a displayed significantly lower migration capacity. C, D, Bel-7402 and HepG2 cells transfected with si-miR-5692a showed significantly lower invasion capacity.

Figure 4. MiR-5692a regulated HCC development varieting the EMT pa. A, Knockdown of miR-5692a significantly decreased the expression of EMT-related genes, it is a likely berin, Vimentin, β-catenin and MMP9. **B, C,** The mRNA expression level of MMP9 relative to GAPDH in the property of the property

5. MiR-5692a regulated HCC cells via regulating MMP9. A, The mRNA expression of MMP9 was verified by qRT-5-transfected cell lines. B, Western blot was used to verify the protein expression of MMP9. C, D, The role of miR-5692a and MMP9 in the regulation of cell migration and invasion was examined by transwell assay. A representative data set was displayed as mean \pm SD values (*p < 0.05, **p < 0.01).

5B). The inhibited proliferative and invasive abilities induced by miR-5692a knockdown in Bel-7402 cells were reversed by si-MMP9 transfection, indicating that miR-5692a could negatively regulate MMP9.

Discussion

HCC poses a great burden to the affected population worldwide^{1,2}. In recent years, the morbidity and mortality of HCC in China have gradually increased. More seriously, the early diagnosis rate of HCC patients in our country is extremely low. Most of the patients are already in the advanced or late stage when they are diagnosed. Therefore, advanced HCC cases account for the majority⁷. HCC is manifested as high malignancy, easy relapse and metastasis, and poor prognosis. Early diagnosis and accurate treatment contribute to the improvement of clinical outcomes. It is of great significance to explore effective biomarkers for better treatment of HCC^{4,9}. Genetics, diet, unhealthy lifestyles, and precancerous lesions are closely to the incidence of HCC. Clinically, or HCC patients have experienced micro-n ses before undergoing radical surgery, wh the direct cause of metastasis and postopera recurrence of HCC9. Researche explori postoperative metastasis, re nd adju recogvant therapy of HCC ha oeen nized^{9,12}. Molecular char in HCC lls, such as changes in gene copy in ar tion of coding seque rtant enects ^{2,25}. Multip on tumor phenoty ferentially. expressed miR ve been for HCC, role in the Magnosis, which may p HCC²⁵. Hence, the treatment and prognos. relations between din ially expressed in HCC and clinica prognosis needs miRN ell investigated, so as to improve the to b z patients. out

Ig evide has shown that miR-Acc Ms pai biological behavior of ovide a new direction for gnosis a. reatment of HCC in the futhe MiRNA is a single-stranded non-coding tur acleotides in length. Functionally, KNA upprades target mRNAs or inhibits its lation, thereby regulating the expression of eam genes^{13,14}. MiRNAs can affect cell prolleration, apoptosis, sensitivity to chemotherapy and radiotherapy, tumor metastasis, and may

even define the phenotype of cancer stem cells¹⁸. It has been believed that miRNAs may serve as targets for the development of novel drugs²⁵. In the present study, we role of miR-5692a in HCC and in stigated the potential mechanism. We found t miR-5692a was overexpressed in HCC tisse n that of para-cancerous tissues. The miR-5692a was positively cor red with the stage of HCC, lymph de metastasis, metastasis and poor gnosis o further plore the effects of in 02 n the bidogical functions of HQ we co ells ructed small interfer sequence ⊿a. Subtrated that sequent cell xperiments & n remarkably inhibited the miR-5692 development of He

The FMT pathway important signaling elated to tume nesis^{26,27}. EMT has n greatly focused on because of its role in the evelopment of epithelial cell currence and ignancy²⁸. N iple studies have suggested MT plays votal role in the primary and th ases of breast cancer, colon ancer, prostate cancer, liver cancer, d pancreatic cancer^{28,29}. Therefore, studying the and regulatory mechanism of EMT at significance for finding novel targets for the treatment of malignant tumors, especially the metastasis of tumor cells³⁰. In this experiment, the knockdown of miR-5692a significantly decreased the expression of EMT-related genes. such as N-cadherin, Vimentin, β-catenin, and MMP9, indicating that miR-5692a might promote HCC via the EMT pathway.

Matrix metalloproteinases (MMPs) are a group of metal ion-dependent proteases that can degrade various proteins in the extracellular matrix. MMP activity is closely related to the invasion and metastasis of tumors³¹. MMP9 is a member of the MMPs family, which can degrade almost all the components of the extracellular matrix³². Recent studies^{33,34} have shown that the upregulation of HIF-1 and MMPs mediated by hypoxia may be correlated with tumor angiogenesis. MMP9 amplification is associated with increased cell differentiation, local and distant metastasis, migration, decreased apoptosis, accelerated angiogenesis, and tumor invasion³⁵. Under physiological conditions, MMP9 participates in embryonic development and wound repair. However, it can promote tumor growth, invasion and metastasis by destroying the extracellular matrix and basement membrane barrier of local tissues because of external stimuli^{32,35}. Our study found that higher positive-expressed MMP9 in HCC tissues was positively related to poor differentiation, high lymph node metastasis and high clinical staging, which were consistent with previous studies. Overexpressed MMP9 could promote the metastasis of tumor cells via regulating adhesion factors³⁶. Our data demonstrated that miR-5692a regulated HCC development via MMP9.

To prove whether miR-5692a promoted HCC development through regulating the EMT signaling pathway, we detected the expression of EMT-related genes, including N-cadherin, Vimentin, β-catenin, and MMP9 after miR-5692a knockdown. Western blot results elucidated that the protein expression of EMT-related genes was remarkably downregulated, indicating miR-5692a promoted HCC development via regulating the EMT pathway. Moreover, MMP9 expression was decreased after the knockdown of miR-5692a, further suggesting that miR-5692a participated in the development of HCC via regulating MMP9.

Conclusions

We showed that miRNA-5692a was perexpressed in HCC, which was remain a correlated with clinical stage, distant me tasis and poor prognosis of HCC. In addition miR-5692a promoted malignation assion of HCC via regulating MMP

Acknowledgement

This study was support of Shandong cial Natural Science Foundation (16HL33).

Conflict mterest

The Author eclare that they have anflict of interests.

References

- SIEGEL JEMAL A. Cancer statistics, Clin 2018; 68: 7-30.
- 2) KAMP A, AB, WAHAB R, KUBAN J, ODISIO BC, MAH-SH A, HASSAN MM, QAYYUM A, KASEB A, SHETH RA. Parent diffusion coefficient as a preesponse to liver-directed therapies in hepatocellular carcinoma. J Clin Med 2018; 7(4). ii: E83. doi: 10.3390/jcm7040083.
- 3) NG Y, ZHANG Y, GE L, LIN Y, KWOK HF. The roles protein tyrosine phosphatases in hepatocellular carcinoma. Cancers (Basel) 2018; 10(3). pii: E82.

- SHENG J, QIN H, ZHANG K, LI B, ZHANG X. Targeting autophagy in chemotherapy-resistant of hepatocellular carcinoma. Am J Cancer Res 354-365.
- 5) Yoo J, HANN HW, COBEN R, CONN MARINO AS Update treatment for HBV informand persistent risk for hepatocellular informa: prospect for an HBV cure. Disease 3: 6(2). pii: E27. doi: 10.3390/disease 302002
- 6) SUHAIL M, SOHRAB SS, CASHI A, TARRO AF DEL-HAFIZ H, AL-GHAMF QADRI I. ASSOCIA HCV mutated prote and hos SNPs in the velopment of hos allular acinoma. Infect Genet Evol 2018; 6.
- **М**ои В 7) XIAO J, ZHAG ⁵ото С, VARGHES sse MG, Zi τΥ K, Res-ZHANG L oiomarkers som HW ation of med carcinoma to ugh stratified for he analy s by gesis. Cancer Epic race, and alcoholic cirrho-Biomarkers Prev 2014;
- sive biomarkers in non-alcoholic steatohepatitis-induced by tocellular carcinoma. J Gastrointestin Liver D 114; 23: 425-429.
 - FRT M, Dol Cowski F. [Hepatocellular carcinothe the cirrhotic liver]. Pathologe 2008;
- D'ALEO F, CECCARELLI M, VENANZI RE, FACCIOLA A, DI DOSA M, PINZONE MR, CONDORELLI F, VISALLI G, PICER-ERRETTA M, PELLICANO GF, NUNNARI G. Hepatitre -related hepatocellular carcinoma: diagnostic and therapeutic management in HIV-patients. Eur Rev Med Pharmacol Sci 2017; 21: 5859-5867.
- NIU ZS, NIU XJ, WANG WH, ZHAO J. Latest developments in precancerous lesions of hepatocellular carcinoma. World J Gastroenterol 2016; 22: 3305-3314.
- BANNASCH P, RIBBACK S, SU Q, MAYER D. Clear cell hepatocellular carcinoma: origin, metabolic traits and fate of glycogenotic clear and ground glass cells. Hepatobiliary Pancreat Dis Int 2017; 16: 570-594.
- Gentilin E, Degli UE, Zatelli MC. Strategies to use microRNAs as therapeutic targets. Best Pract Res Clin Endocrinol Metab 2016; 30: 629-639.
- CONNERTY P, AHADI A, HUTVAGNER G. RNA binding proteins in the miRNA pathway. Int J Mol Sci 2015; 17(1). pii: E31.
- 15) XI WD, LIU YJ, SUN XB, SHAN J, YI L, ZHANG TT. Bioinformatics analysis of RNA-seq data revealed critical genes in colon adenocarcinoma. Eur Rev Med Pharmacol Sci 2017; 21: 3012-3020.
- KWAN JY, PSARIANOS P, BRUCE JP, YIP KW, LIU FF. The complexity of microRNAs in human cancer. J Radiat Res 2016; 57 Suppl 1: i106-i111.
- D'Angelo B, Benedetti E, Cimini A, Giordano A. MicroRNAs: a puzzling tool in cancer diagnostics and therapy. Anticancer Res 2016; 36: 5571-5575.

- 18) Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst) 2016; 47: 1-11.
- PALMINI G, MARINI F, BRANDI ML. What is new in the miRNA world regarding osteosarcoma and chondrosarcoma? Molecules 2017; 22(3). pii: F417.
- Nassar FJ, Nasr R, Talhouk R. MicroRNAs as biomarkers for early breast cancer diagnosis, prognosis and therapy prediction. Pharmacol Ther 2017; 172: 34-49.
- 21) ZHOU Q, HUANG SX, ZHANG F, LI SJ, LIU C, XI YY, WANG L, WANG X, HE QQ, SUN CC, LI DJ. MicroR-NAs: a novel potential biomarker for diagnosis and therapy in patients with non-small cell lung cancer. Cell Prolif 2017; 50(6). doi: 10.1111/cpr.12394. Epub 2017 Oct 8. Review.
- DALMAY T. Mechanism of miRNA-mediated repression of mRNA translation. Essays Biochem 2013;
 54: 29-38.
- 23) Xu Q, Zhu Q, Zhou Z, Wang Y, Liu X, Yin G, Tong X, Tu K. MicroRNA-876-5p inhibits epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma by targeting BCL6 corepressor like 1. Biomed Pharmacother 2018; 103: 645-652.
- Du X, Fan W, Chen Y. MicroRNA-520f inhibits hepatocellular carcinoma cell proliferation and invasion by targeting TM4SF1. Gene 2013 30-38.
- 25) Song Y, Wang F, Huang Q, Cao Y, Zhao Y, MicroRNAs contribute to hepatocellular cama. Mini Rev Med Chem 2015; 15: 459-466.
- 26) YAN YO, XIE J, WANG JF, SHI ZF, ZHANG X, DU ZHAO XC. Scorpion inhibits of mesench, mal transition and metast of tocellula carcinoma. Exp Biol Mediaywood 118; 243: 645-654.
- 27) SANTAMARIA PG, MORINO-B.
 A. EMT: present future cal oncoregy.
 Mol Oncol 2017 718-738.
- 28) Ma Z, Xin Z Jiang S, Yang X, Li X, Yang Y, C Jan. Pad box O physins: cru-

- cial regulators of cancer EMT. Semin Cancer Biol 2018 Jun;50:21-31. doi: 10.1016/j.semcancer.2018.02.004. Epub 2018 Feb 7.
- 29) Brabletz T, Kalluri R, Nieto MA, Weing in cancer. Nat Rev Cancer 2018; 1 28-134.
- 30) SMITH BN, BHOWMICK NA. Role of thin metastasis and therapy resistance. J 2016; 5(2). pii: E17. doi: 10.3390/jcm50200
- 31) KUNTE M, DESAI K. The proin extra photoella minutissima inhibits are expression and property of the strain in the strain of the strain of
- 32) Weiler J, Mor M, A. DITTMAP Matrix metalloprote se-9 (Mr. S. invo d. in the TNF-alph Juced fusion S. J3SV1-Cre breast Cells and hun DA-MB-435-pFDF and S. Cell Common Signal 2018; 16: 14s.
- 33) Yang M, Chen BL, North IB, Meng YN, Duan XJ, Li LR, Chen Angiogenesis-related genes may be a more important factor than matrix metalloproteinases in bronchopulmonary dysplasia development. Oncotarget 2017; 8: 18670-18679.
- 34 WAL M, SIDE JE I, WU L, TANG K, BOIVIN F, LIU L, DGEWATER D, WEST-MAYS J, GANGJI A, BRILL WARGETTS PJ. Matrix metalloproteinase 9 is associated with peritoneal membrane solte transport and induces angiogenesis through atenin signaling. Nephrol Dial Transplant 25, 32: 50-61.
- 35) Shokoohinia Y, Gheibi S, Kiani A, Sadrjavadi K, Nowroozi A, Shahlafi M. Multi-spectroscopic and molecular modeling investigation of the interactions between prantschimgin and matrix metalloproteinase 9 (MMP9). Luminescence 2016; 31: 587-593.
- 36) KIANI A, ALMASI K, SHOKOOHINIA Y, SADRJAVADI K, NOWROOZI A, SHAHLAEI M. Combined spectroscopy and molecular modeling studies on the binding of galbanic acid and MMP9. Int J Biol Macromol 2015; 81: 308-315.