What is the use of nutraceuticals in dentistry?

A scoping review

N. CENZATO¹,², S. KHIJMATGAR¹,², P. CARLONI², P. DONGIOVANNI³, M. MERONI³, M. DEL FABBRO¹,², G.M. TARTAGLIA¹,²

¹Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
²IRCCS Fondazione Ca’Granda IRCCS Ospedale Maggiore Policlinico, Milan, Italy
³General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy

Abstract. – OBJECTIVE: Recently, nutraceuticals have been widely explored in many medical fields and their use is also increasing in oral and dental problems. Since the nutraceutical evidence landscape in the literature has not been fully elucidated yet, this review aims to examine the effects of commercially available nutraceuticals and their potential evidence and applications in dentistry.

MATERIALS AND METHODS: A scoping review was conducted following the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR)” checklist. The electronic search was performed using PubMed/MEDLINE, EMBASE, the Cochrane Library, and Web of Science on March 2022. The inclusion criteria include humans, clinical trials, randomized controlled trials (RCT), reviews, and systematic reviews published over the last ten years.

RESULTS: 18 studies met the eligibility criteria. There were 2 RCTs, 11 systematic reviews, and four narrative reviews. In most studies, the clinical indications were oral leucoplakia, periodontitis, osseointegration of implants, oral mucositis, oral clefts, and oral health. Probiotics, prebiotics, polyunsaturated fatty acids, and vitamins A, B, C, D, and E were the most common nutraceuticals used in dentistry.

CONCLUSIONS: Nutraceuticals are foods that, according to the literature, may be useful for preventing and treating dental diseases.

Key Words: Nutraceuticals, Fortified food, Oral health, Dentistry, Probiotic.

Introduction

Biologically active molecules derived from food are often known as nutraceuticals because they have characteristics similar to both nutrients and pharmaceuticals. The term “nutraceutical” was coined in 1989 by Stephen L. Defelice, founder and president of “The Foundation for Innovation in Medicine” who defined “nutraceutical” as a food or part of a food that has a medical or health benefit. In other words, nutraceuticals are natural bioactive or chemical compounds that, besides having a nutritional role, provide health-promoting, disease-curing, or prevention properties. These foods are generally consumed as part of a regular diet and contain biologically active components that reduce the risk of developing various diseases. Some examples of nutraceuticals include antioxidants or fortified foods, i.e., added at secondary times, and live active microorganisms or probiotics that provide particular benefits as described below. Antioxidants are substances known to scavenge reactive oxygen species (ROS). The excess ROS generated in many chronic inflammatory conditions has a damaging effect known as oxidative stress, culminating in tissue damage in the absence or impairment of antioxidant mechanisms. In periodontal diseases, this concept suggests that oxidative stress derived from ROS is primarily responsible for tissue destruction. Among nutraceuticals, Vitamins C and E and, to a lesser extent, polyunsaturated fatty acids (PUFAs) have an antioxidant effect.

Vitamin C is also considered an essential dietary antioxidant in the maintenance of periodontal health and has been shown to decelerate the rate of progression of periodontitis by stimulating the differentiation of progenitor cells of the periodontal ligament. Therefore, it may represent a preventive agent for gingivitis and an adjunct to the non-surgical treatment of periodontitis. In addition, its antioxidant activity may be directly in-
involved in preventing oral cancer\(^9\). Vitamin E is a fat-soluble substance with potent antioxidant and anti-inflammatory properties that can prevent and treat oral mucositis and other diseases. It has various advantages including control of blood pressure, prevention of cardiovascular events, anti-tumor, anti-diabetic, and anti-obesogenic effects, and protection of the nervous system\(^{10}\).

PUFAs, n-6 and n-3 series with arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), are found in cell membranes where they act as precursors for cell signaling, gene expression, and inflammation. They also contribute to cell membrane integrity and fluidity. The n-6/n-3 ratio in tissues is largely determined by the proportion of PUFAs in the diet. PUFAs have fewer antioxidant effects than Vitamin C but have antimicrobial and anti-inflammatory properties for the treatment of periodontitis, as demonstrated by a recent study\(^8\) that showed antibacterial activities for EPA and DHA, including inhibition of periodontal pathogens.

Vitamins, such as B and D, can improve oral health. Supplementing with Vitamin B (folate) during pregnancy may reduce the risk of facial defects in the fetus, like cleft palates and lips. Vitamin D impacts bone metabolism and regulates mineralization, making it effective for preventing osteoporosis and managing periodontitis and osseointegration of implants\(^{11-14}\).

Prebiotics and probiotics have been shown to be effective in promoting oral health. The oral cavity is a complex microbiological environment that needs to maintain homeostasis. Factors such as poor oral hygiene, diet, immunodeficiency, and other conditions can disrupt this balance and result in dysbiosis, inflammation, and infection. Biofilms formed by pathogenic bacteria on the hard and soft tissues of the oral cavity can lead to additional oral health issues, such as gingival bleeding and caries\(^{15-20}\).

Prebiotics and probiotics can help restore balance to the oral microbiota and modulate the immune response. They have been shown to reduce post-operative pain and prevent and treat various oral diseases including gingivitis, caries, periodontitis, oral candidiasis, recurrent aphthous stomatitis, and even oral cancer. They do this by decreasing the count of cariogenic pathogens, competing with harmful bacteria, regulating innate and acquired immunity, releasing antioxidants and bacteriocins, and having antiproliferative effects on cancer cells\(^{21-25}\).

Therefore, this scoping review aimed to investigate the state-of-the-art and commercially available nutraceuticals and their therapeutic application in dental diseases. Overall, prebiotics and probiotics offer promising solutions for maintaining oral health and treating various oral conditions.

Materials and Methods

Search Strategy

The present systematic review followed the “Preferred Reporting Items for Systematic Reviews and Meta-Analyses” (PRISMA) guidelines. An electronic search was conducted via PubMed/ MEDLINE, EMBASE, Cochrane Library, and Web of Science on March 2022; the keywords used for the research were “nutraceuticals oral health dentistry” OR (‘nutraceuticals'/exp OR nutraceuticals) AND oral AND (‘health'/exp OR health) AND (‘dentistry'/exp OR dentistry)). The review was registered on the open science framework (OSF) on https://osf.io/rtsqv/.

Eligibility Criteria

Inclusion Criteria
- Studies investigating the effect of nutraceuticals in the dental field.
- Studies whose bioactive compounds are of food origin.
- Humans, clinical trial, randomized controlled trial, reviews and systematic review, last ten years.

Exclusion Criteria
- Studies whose nutraceuticals have exclusively systemic effects.
- Systematic reviews carried out on the same nutraceuticals with overlapping results (redundant reviews).
- Studies involving the introduction of substances beneficial to oral health through toothpaste or mouthwashes.
What is the use of nutraceuticals in dentistry? A scoping review

- Studies dealing with a specific bacterium for probiotic use.
- Studies where the full text was not available.

Data Extraction
This scoping review included all types of studies, including both pre-clinical (*in vitro* and *in vivo*) and clinical studies. The data extraction from the included articles involved author names, year, country, funding, journal name, type of article, subject or area of interest, clinical indication, and conclusions. In addition, if there were randomized trials, we extracted the information on the risk of bias (Cochranes 5 domains), personal habits, age, gender, type of intervention in both the groups and the method used for detecting the primary endpoints, doses, etc. The data were extracted by two reviewers, N.C and S.K. The data reported in the graphical form would be excluded as it is difficult to remove the numerical data from the graphs unless the data was provided in numerical form in separate files by the authors.

Data Analysis
The data were extracted using a single Microsoft Excel sheet 2010 for data validation and coding. For scoping review only, qualitative analysis of the data was done. No quantitative data were used.

Outcome Variables
A defined outcome was considered for clinical trials. For example, in the presence of oral cancer lesions or oral cancer tumors, the following outcomes were recorded: complete response (CR), if completely regressed, partial response (PR) with a 50% reduction or more in size, no response or no change (NR/NC) in case of reduction (50%) in size, progressive disease (PD) in the presence of a carcinoma 25% increase in size. Other outcomes include systemic inflammation and immune modulation.

Results
An initial search identified 378 articles on the topic within the PubMed database and 39 in other databases. Fifteen eligible review articles were considered for this scoping review (Table I).

The analysis of the articles showed that the components of nutraceuticals found in dentistry are: probiotics, prebiotics, PUFAs, and vitamins A, B, C, D, E. Specifically:

A review of the state-of-the-art and commercially available nutraceuticals for their therapeutic application in dental diseases was performed. This review analyzed 8 articles, examining the effects of probiotics, with one article also evaluating the use of prebiotics to rebalance the oral flora. Chee analyzed the effects of polyunsaturated fatty acids (PUFAs) on oral health. The review also looked at Nagao et al. that evaluated the effects of vitamin C, with one of them assessing the use of vitamin C in combination with vitamin A (beta-carotene). Nasatri et al., Meghil et al. and Javed et al. focused on the effects of vitamin D, and de Sousa Melo et al. considered the effects of vitamin E.

There were two RCTs and one cohort study found in the literature whose main objective was to determine the effectiveness of nutraceuticals in oral leukoplakia and periodontitis. The study received funding from NIH-NIDCR [R01 DE014328 (to CWC)] to carry out the trial. Nagao et al. trial used 25(OH)D vitamin D supplementation and compared it with the placebo (Table II).

These authors considered N=69 patients, including patients with smoking and alcohol habits, and tobacco chewers and a follow-up of 6 and 4 months, respectively, were conducted in both studies. The overall response rate was 17.40% for the test group and 4.30% for the control group. The risk of bias in both studies was low. Other characteristics of the studies are mentioned in Table I.

Discussion
The main goal of this study was to identify the most used nutraceuticals in dentistry, describe their proprieties and identify some knowledge gaps. Nutraceuticals are in small amounts, mainly in foods such as fruit, vegetables, and whole grains, and are classified according to their source of origin into herbal derivatives and dietary supplements. The presence of nutraceuticals on the market has been rapidly growing since 2000. The use of the word “nutraceutical”, judging by the frequency of articles indexed on PubMed, has increased enormously.

The increased consumption and interest in natural products compared to conventional drugs relies on their comprehensive safety and tolerability. Indeed, conventional drugs may have a higher incidence of side effects, allergies, and resistance, particularly to antibiotics. In detail, we will try
What is the use of nutraceuticals in dentistry? A scoping review

Table I. The 15 review articles that found to be eligible were considered for this scoping review.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Country</th>
<th>Funding</th>
<th>Type of article</th>
<th>Subject</th>
<th>Clinical Indication</th>
<th>Type of samples</th>
<th>Conclusion</th>
<th>Levels of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Sousa Melo</td>
<td>2021</td>
<td>Clinical Nutrition</td>
<td>Brazil</td>
<td>None</td>
<td>Narrative Review</td>
<td>Oral Medicine</td>
<td>Oral mucositis</td>
<td>Humans</td>
<td>This study suggests the effectiveness of vitamin E, zinc and glutamine in preventing and treating oral mucositis. However, the importance of new clinical research to clarify possible doubts is highlighted, as well as the creation of a protocol that includes the dose, route and time of administration, for greater safety in use.</td>
<td>NA</td>
</tr>
<tr>
<td>Fageeh et al</td>
<td>2021</td>
<td>BMC Systematic review update</td>
<td>Kingdom of Saudi Arabia</td>
<td>None</td>
<td>Systematic review</td>
<td>Periodontology</td>
<td>Vitamin C</td>
<td>Antioxidants and immunomodulation</td>
<td>Administration of vitamin C as an adjunct to non-surgical periodontal therapy did not result in clinically significant improvements in pocket probing depths at 3 months in periodontitis patients.</td>
<td>Level 1</td>
</tr>
<tr>
<td>Nastri et al</td>
<td>2020</td>
<td>Nutrients</td>
<td>Italy</td>
<td>Vanvitelli per la Ricerca (VALERE) program</td>
<td>Scoping Review</td>
<td>Implants</td>
<td>Osseointegration of implants</td>
<td>Humans</td>
<td>This scoping review suggests a limited role of nutraceuticals in promoting osseointegration of dental implants, although, in some cases, such as for vitamin D deficiency, there is a clear link among their deficit, reduced osseointegration, and early implant failure, thus requiring an adequate supplementation.</td>
<td>NA</td>
</tr>
<tr>
<td>Hadj-Hamou et al</td>
<td>2020</td>
<td>BMC Oral Health</td>
<td>United Arab Emirates</td>
<td>None</td>
<td>Systematic review</td>
<td>Orthodontics</td>
<td>Probiotic</td>
<td>Prevention and treatment of hard and soft tissues</td>
<td>Probiotic administration does not seem to have an effect on the gingival inflammation and enamel decalcification development in patients under treatment with fixed orthodontic appliances.</td>
<td>Level 1</td>
</tr>
<tr>
<td>Pietri et al</td>
<td>2020</td>
<td>Probiotics Antimicrob Proteins</td>
<td>USA</td>
<td>None</td>
<td>Systematic review</td>
<td>Orthodontics</td>
<td>Probiotic</td>
<td>Prevention and treatment of hard and soft tissues</td>
<td>Probiotics exhibit antimicrobial activity against oral pathogenic bacteria; however, due to the limitations of the studies assessed, further well-designed RCTs are needed.</td>
<td>Level 1</td>
</tr>
<tr>
<td>Cheng et al</td>
<td>2020</td>
<td>Scientific Reports</td>
<td>China</td>
<td>None</td>
<td>Systematic review and meta-analysis</td>
<td>Oral Medicine</td>
<td>Probiotics</td>
<td>Treatment of recurring aphthous stomatitis</td>
<td>Probiotics are promising for the treatment of recurrent aphthous stomatitis.</td>
<td>Level 1</td>
</tr>
</tbody>
</table>
Table 1 (continued). The 15 review articles that found to be eligible were considered for this scoping review.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Country</th>
<th>Funding</th>
<th>Type of article</th>
<th>Subject</th>
<th>Clinical Indication</th>
<th>Type of samples</th>
<th>Conclusion</th>
<th>Levels of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wan Mohd Kamaluddin</td>
<td>2020</td>
<td>Archives of Oral Biology</td>
<td>Malaysia</td>
<td>None</td>
<td>Systematic review</td>
<td>Oral Medicine</td>
<td>Probiotics Lactobacillus plantarum; Lactobacillus salivarius</td>
<td>Oral cancer prevention</td>
<td>It is known that probiotics have the potential to inhibit oral carcinogenesis, thus supporting the hypothesis of the study</td>
<td>Level 1</td>
</tr>
<tr>
<td>Hu et al</td>
<td>2019</td>
<td>BMC Oral Health</td>
<td>China</td>
<td>None</td>
<td>Systematic review</td>
<td>Oral Medicine</td>
<td>Probiotics</td>
<td>Prophylaxis and treatment of oral candidiasis</td>
<td>Probiotics were superior to the placebo and blank control in preventing and treating oral candidiasis in the elderly and denture wearers.</td>
<td>Level 1</td>
</tr>
<tr>
<td>Zauri and Twetman</td>
<td>2019</td>
<td>Caries Research</td>
<td>Netherlands</td>
<td>None</td>
<td>Critical Appraisal</td>
<td>Conservative Dentistry</td>
<td>Prebiotics and probiotics</td>
<td>Prevention and treatment of caries</td>
<td>The development and evaluation of oral symbiotic products, containing both prebiotics and a probiotic, would be of interest in the future management of dental caries.</td>
<td>NA</td>
</tr>
<tr>
<td>Jahanbin et al</td>
<td>2018</td>
<td>Journal of Craniofacial Surgery</td>
<td>Iran</td>
<td>None</td>
<td>Meta-analysis</td>
<td>Oral Surgery</td>
<td>Oral Clefts</td>
<td>The findings of the present meta-analysis showed the protective effect of periconceptional multivitamin containing folic acid on oral clefts.</td>
<td>Level II-2</td>
<td></td>
</tr>
<tr>
<td>Ikram et al</td>
<td>2018</td>
<td>Journal of Investigative and Clinical Dentistry</td>
<td>Pakistan</td>
<td>None</td>
<td>Systematic review</td>
<td>Periodontology</td>
<td>Probiotics</td>
<td>Treatment of chronic periodontitis</td>
<td>Adjunctive probiotics could result in additional benefits in CAL gain in CP.</td>
<td>Level 1</td>
</tr>
<tr>
<td>Seminario-Amez et al</td>
<td>2017</td>
<td>Oral Medicine and Pathology</td>
<td>Spain</td>
<td>None</td>
<td>Systematic Review</td>
<td>Oral Medicine</td>
<td>Oral Health</td>
<td>Probiotics usage could be beneficial for the maintenance of oral health, due to its ability to decrease the colony forming units (CFU) counts of the oral pathogens.</td>
<td>Level 1</td>
<td></td>
</tr>
<tr>
<td>JA VED</td>
<td>2016</td>
<td>Implant Dentistry</td>
<td>USA</td>
<td>No</td>
<td>Systematic Review</td>
<td>Implants</td>
<td>Osseointegration of implants</td>
<td>Animals</td>
<td>Efficacy of VD3 supplementation on osseointegration of implants remains controversial and requires further investigations.</td>
<td>Level III</td>
</tr>
<tr>
<td>Chee et al</td>
<td>2016</td>
<td>Clinical Oral Investigation</td>
<td>Australia</td>
<td>None</td>
<td>Review</td>
<td>Periodontology</td>
<td>Periodontitis</td>
<td>Humans</td>
<td>Dietary supplementation with fish oil could be a cost-effective adjunctive therapy to the management of periodontal disease.</td>
<td>Level II-3</td>
</tr>
<tr>
<td>Inchingolo et al</td>
<td>2022</td>
<td>International Journal of Molecular Sciences</td>
<td>Italy</td>
<td>None</td>
<td>Review</td>
<td>Oral Microbiology</td>
<td>Oral Microbiome</td>
<td>Resveratrol Supplementation</td>
<td>The ability to identify individual microbial families and classify the composition of the MB would allow us to tailor preventive and therapeutic treatment plans with targeted polyphenolic diets when microbial dysbiosis is present.</td>
<td>Level III</td>
</tr>
</tbody>
</table>
Table II. Clinical Study brief characteristics and level of evidence.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Year</th>
<th>Journal</th>
<th>Country</th>
<th>Funding</th>
<th>Type of article</th>
<th>Subject</th>
<th>Clinical indication</th>
<th>Type of nutraceuticals</th>
<th>Clinical effect/outcome measure</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nagao et al⁹</td>
<td>2015</td>
<td>International Journal of Cancer</td>
<td>Japan</td>
<td>Not Mentioned</td>
<td>RCT</td>
<td>Oncology</td>
<td>Oral Leukoplakia</td>
<td>Beta-carotene</td>
<td>Antioxidants and immunomodulation</td>
<td>Level 1</td>
</tr>
<tr>
<td>Meghil et al¹⁴</td>
<td>2019</td>
<td>Oral Diseases</td>
<td>USA</td>
<td>Georgia and NIH-NIDCR (R01 DE014328 [to CWC]).</td>
<td>Randomised Clinical Study</td>
<td>Periodontology</td>
<td>Systemic inflammation in dark-skinned, periodontitis patients</td>
<td>25(OH)D vitamin D supplementation (VDS)</td>
<td>Systemic inflammation</td>
<td>Level 1</td>
</tr>
</tbody>
</table>
to analyze the use of nutraceuticals in the various fields of dentistry.

Nutraceuticals in the Prevention of Various Disease

Dental caries is a multifactorial disease. Its pathogenesis involves the microbiota (mainly *S. Mutans*), the host and its immune system, and diet, among other factors. Even if all these factors must occur to develop dental caries, microbiological factors are still the leading cause of this disease. The metabolism of sugars by the oral microbiota leads to the acidification of the ecosystem, a reduction in microbial diversity, and a shift in the microbial proportion towards highly acid-producing and acid-tolerant bacteria. One way to treat or prevent caries-related microbiological dysbiosis could be to improve the growth and survival of the oral microbiota associated with health, and for this follows an analysis of the effects produced by prebiotics and probiotics.

Of the selected articles, Zaura and Twetman suggested an active role of nutraceuticals in the prevention and treatment of periodontal diseases. In particular, the review on the efficacy of probiotics in oral health was conducted by Amez et al. They concluded that there is a compelling clinical improvement in bleeding on probing, probing depth, and gingival index following the intake of probiotics with supplements or fortified foods (Figure 3). The same conclusions on the use of probiotics in the periodontal field were reached by Ikram et al., who additionally suggested their use in chronic periodontitis in combination with causal therapy.

Chee instead focused on the effects of integrating long-chain n3 PUFAs at the periodontal level. Thanks to their anti-inflammatory and antimicrobial action, they act on three levels: firstly, they reduce inflammation by limiting the production of pro-inflammatory cytokines and eicosanoids. Secondly, they diminish bone resorption by inhibiting osteoclasts, and thirdly they produce an antibacterial effect on various oral pathogens, including *S. Mutans*, *C. Albicans*, and *P. Gingivalis*.

Figure 2. Arginine, in particular, may reduce caries development by acting on acidogenic and aciduric bacteria, enhancing pH recovery through the production of alkalis (Source: Biorender).
What is the use of nutraceuticals in dentistry? A scoping review

Fageeh HN7 and Meghil et al31 investigated the beneficial effect of vitamin supplementation in the management of periodontitis. The first one conducted a systematic review on the efficacy of vitamin C in addition to non-surgical periodontal therapy, which showed no clinically significant improvements in pocket probing depths after three months in patients with periodontitis. Conversely, they showed promising results in preventing periodontal health7. The second one investigated vitamin D supplementation during periodontal therapy, demonstrating a benefit to the immune system in fighting periodontal pathogens without disrupting immune homeostatic function and a vitamin D-mediated immunoregulation that could prove a beneficial local effect in a larger clinical trial in vitamin D deficient patients31. Cassiano et al34 revealed the role of lifestyle in periodontitis incidence. According to the findings of the review, moderate/severe periodontitis appears to be linked to the intake of processed and ultra-processed foods (Figure 3).

Figure 3. Illustration of nutraceuticals in reduction of periodontal problems (A) and the peri-implantitis (B). (Source: Biorender).

Nutraceuticals in Orthodontics

Orthodontic therapy is performed to correct dental malocclusions and craniofacial skeletal discrepancies35,36. To induce tooth movement, appliances such as brackets, orthodontic bands, and wires are attached to the tooth surfaces for a prolonged period37. However, fixed orthodontic appliances can facilitate plaque accumulation on teeth and appliance surfaces, and the microbes it contains can become pathogens under opportunistic conditions such as poor oral hygiene maintenance7,20. As these changes in the oral environment may be detectable even two years after removal of the brackets, meticulous oral hygiene and care of oral health are considered essential for a favorable outcome of orthodontic treatment7,19 (Figure 4).

In this systematic review, Hadj-Hamou et al18 and Pietri et al20 investigated the use of nutraceuticals in the orthodontic field. They studied the hypothesis of using probiotics during fixed orthodontic treatment to reduce the microbial activity...
of oral pathogens responsible for plaque accumulation and the appearance of white spots (Figure 4). However, the results are conflicting according to the systematic review conducted by Hadj-Hamou et al.18 who demonstrated that there is no natural effect on gingival inflammation and the development of enamel decalcification in patients treated with fixed orthodontic appliances. Conversely, the systematic review of RCTs by Pietri et al.20 on probiotics showed antimicrobial activity against oral pathogenic bacteria.

The third study, by Jahanbin et al.11, reported that multivitamin supplementation, including folic acid in the periconceptional period, reduces the risk of forming specific types of oral clefts.

Nutraceuticals in Oral Surgery and Implantology

Osseointegration is “a process by which a clinically asymptomatic rigid fixation of alloplastic materials is achieved and maintained in the bone during functional loading”12. In other words, the formation of direct bone-to-implant contact (BIC) is one of the fundamental criteria for the overall success of implant therapy13.

Osseointegration thus leads to a functional unit that can rehabilitate one or more missing teeth, supporting the dental prosthesis12. In addition to critical factors influencing osseointegration, such as surgical technique, bone quality and quantity, post-operative inflammation or infection, smoking habits, and implant material and surface area, several micronutrients affecting bone metabolism have been shown to influence the skeletal system12.

In particular, in this systematic review, the analysis of the effects of vitamin D supplementation was carried out by Javed et al.13 and Nastri et al.12. Both of them agreed that vitamin D deficiency is often associated with reduced osseointegration and an increased incidence of early implant failure in both animal and human studies.

A third study, Hallström et al.38, investigated the beneficial effect of probiotics in reversible inflammation of the soft tissue around implants. These reversible inflammations of the mucosa are called peri-implant mucositis, and effective early treatment is supposed to prevent the development of more severe and irreversible peri-implantitis. The results of this RCT showed that the reduction in bleeding on probing (BOP) was clear and statistically significant compared to the baseline in both groups. At the same time, the overall improvement in periodontal pocket depth (PPD) of \(\sim 0.5 \text{ mm} \) did not reach statistical significance. However, the probing depth in the deepest pocket of each implant was significantly improved.
What is the use of nutraceuticals in dentistry? A scoping review

Therefore, probiotic therapy did not increase the effectiveness of treatment with mechanical debridement combined with adequate oral hygiene instructions.

Nutraceuticals in Oral Medicine

The importance of diet is even more apparent when it comes to oral diseases such as candidiasis, aphthous stomatitis, leukoplakia, and oral cancer. Oral candidiasis is a fungal infection considered the most common infectious disease of the oral mucosa and is mainly caused by *Candida albicans*. The accepted treatment for oral candidiasis uses antifungal agents, such as nystatin, fluconazole, or miconazole. Due to adverse effects and side effects, such as subsequent candida resistance to antifungal agents, dysgeusia, and gastrointestinal complaints, including nausea, vomiting and diarrhea, the clinical application of antifungal drugs may be limited. Therefore, Hu et al. proposed the exploration of new prophylaxis and therapeutic strategies for oral candidiasis. Specifically, their systematic review concluded that probiotics have a higher performance in the prevention and treatment of oral candidiasis compared to the placebo and control group in both clinical trials, in the elderly and prosthesis wearers and animal experiments, including inhibition of *Candida* colonization on the surface of the oral mucosa and reduction of clinical signs and symptoms due to fungal infections.

Recurrent aphthous stomatitis (RAS) is the most common self-limiting oral mucosal disease in the world, with a prevalence ranging from 5 to 66% in different countries. RAS is characterized by recurrent round or elliptical ulcers that can occur anywhere in the oral cavity and are common in the non-keratinized epithelium, such as the lingual margin and the buccal and labial mucosa. Lesions are often single but sometimes multiple. The symptoms can cause severe oral pain and affect swallowing and chewing, negatively affecting the quality of life. In their study, Cheng et al. suggest using probiotics as an adjuvant in treating RAS. They concluded that probiotics relieve oral pain but do not reduce ulcer severity. The combination of probiotics and steroids or anesthetic, antiseptic gel proved to be more effective than steroids or anesthetic, antiseptic gel alone in reducing ulcer severity and oral pain for patients with RAS. Probiotics are therefore promising for the treatment of recurrent aphthous stomatitis.

Kamaluddin et al. proposed the third use of probiotics in oral medicine, through their meta-analysis, and investigated possible beneficial effects of probiotics in inhibiting oral carcinogenesis. Oral cancer, also known as squamous cell carcinoma of the head and neck (HNC), is the sixth most deadly cancer in the world. It occurs mainly in the buccal mucosa, tongue, floor of the mouth and lips, and the main etiological agents are excessive alcohol consumption and tobacco smoking. This systematic review highlighted the ability of probiotics to inhibit oral cancer cell proliferation through the antiproliferative effects and apoptosis-inducing characteristics of probiotics in cancer cells.

A frequent side effect of cancer treatment in the head and neck region is oral mucositis. Oral mucositis (OM) has a debilitating potential for the health of those affected, interfering negatively with nutritional status and quality of life. Due to the incredible complexity of its pathogenicity, different forms of prevention and treatment interventions are being investigated. In particular, according to de Sousa Melo et al. the use of dietary supplements such as vitamin E, glutamine, and zinc is an essential tool for the treatment and prevention of OM, as well as for the recovery of the health of patients with HNC and the consequent improvement of quality of life.

Other nutraceuticals active in oral medicine are vitamins A and C. Nagao et al. studied the effects of vitamins A and C, through a multicenter randomized, double-blind controlled trial and evaluated the use of low-dose beta-carotene in combination with vitamin C supplements for the treatment and prevention of malignant transformation of oral leukoplakia. Oral leukoplakia is a potentially malignant disease of the oral cavity associated with an increased risk of oral cancer. A multitude of options is currently available for the treatment of oral leukoplakia. Still, there is no consensus on the most appropriate management method, ways to minimize malignant transformation and surgical procedures. Although laser treatment reduces the risk of malignant transformation, it is sometimes associated with recurrence. However, this study concluded that beta-carotene and vitamin C are neither effective for clinical remission nor for protection against cancer development. Therefore, the data from this RCT do not support the hypothesis that chemoprevention with this treatment is effective for oral leukoplakia. Based on the reviews (Table I) and experimental/observation studies (Table II), nutraceuticals have a promising effect on all the specialities of dentistry (Figure 5).
Figure 5. Illustration of biofilm cycle and inhibition of biofilm formation by nutraceuticals. (Source: Biorender).

Figure 6. Dental Specialities and nutraceuticals application (Source: Biorender).
Nutraceuticals in Oral Microbiome

Lorenzini et al. and Inchingolo et al. conducted recent cohort studies that revealed the role of nutraceuticals such as hard cheese and resveratrol supplementation in balancing the oral microbiota for the benefit of oral and general health. When microbial dysbiosis is present, Inchingolo et al. stated that the capacity to identify distinct bacteria families and define the composition of the microbiome would allow us to customize preventive and therapeutic treatment strategies with targeted polyphenolic diets. Furthermore, Lorenzini et al. discovered that eating Italian Grana Padano (GP) cheese after dinner delivers key micronutrients (calcium, vitamins, and certain amino acids like arginine) and shifts mouth pH toward basic conditions, leading to a modest adjustment of the oral microbiome toward a more basic state and hence reduction in the overall number of acidophilic bacteria.

In Table I we highlighted various conclusions regarding the use of vitamins, minerals, and probiotics in oral health. Amanda de Sousa Melo et al. suggest the use of vitamin E, zinc, and glutamine in managing oral mucositis, while others conclude that the addition of vitamin C to non-surgical periodontal treatment is not effective. Nastri et al. suggested a limited impact of nutraceuticals on promoting osseointegration of dental implants, although vitamin D supplementation may be necessary for early implant failure. The use of probiotics has shown to be more effective than placebo in managing oral candidiasis, but further high-quality clinical trials are needed to confirm its effectiveness against oral pathogens. Periconceptional multivitamins containing folic acid have been found to be protective against oral clefts, and dietary supplementation with fish oil has been suggested as a cost-effective adjunctive therapy for periodontal disease. The study suggests that identifying and classifying the composition of the oral microbiome can help tailor preventive and therapeutic treatments in cases of microbial dysbiosis. Further clinical research is needed to confirm the effectiveness of these interventions and establish proper dosing guidelines for safe usage.

In summary, nutraceuticals have become popular in different healthcare fields, including dentistry, where they are used in various specialties. Orthodontics utilizes supplements like vitamin D and calcium to maintain healthy teeth and enhance orthodontic appliances. Periodontics uses antioxidants such as vitamin C and E, and omega-3 fatty acids to prevent or manage periodontal disease. Endodontics uses probiotics and prebiotics to promote beneficial oral microbiome growth to prevent endodontic infections. Neutriceuticals with anti-inflammatory properties, such as Arnica, bromelain, and quercetin, are used in oral surgery to reduce post-operative swelling and discomfort. Additionally, nutraceuticals like xylitol, green tea extract, and cranberry extract are used in dental products to prevent cavities (Figure 6). However, it is important to consider scientific evidence and carefully evaluate their use to ensure safe and effective outcomes.

Conclusions

According to the literature reviewed, nutraceuticals are micronutrients that may be useful in dentistry. This scoping review has revealed that nutraceuticals perform various actions in the human body and are therefore considered promising agents in the prevention and treatment of various systemic and oral disorders. In particular, the literature reviewed highlights their anti-inflammatory, antimicrobial, immune-boosting, and antioxidant properties in fighting against oxidative stress and protecting and preserving oral health. However, further randomized studies with homogeneous methodologies are needed to confirm the actual effectiveness and possibly expand the use of nutraceuticals in dentistry.

Conflict of Interest

The Authors declare that they have no conflict of interests.

Funding

No funding was received.

Authors’ Contributions

The authors confirm contribution to the paper as follows: study conception and protocol design for scoping review: NC, SK, and PC; data collection: NC, SK, and PC; analysis and interpretation of results: NC, SK, PC, PD, MM, MDF, and GMT; draft manuscript preparation: NC, SK, PC, MDF, and GMT. All authors reviewed the results and approved the final version of the manuscript. NC, SK, PC, PD, MM, MDF, and GMT confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.
N. Cenzato, S. Khijmatgar, P. Carloni, P. Dongiovanni, M. Meroni, M. Del Fabbro, G.M. Tartaglia

ORCID ID

Shahnawaz Khijmatgar: 0000-0002-9177-3505
P. Dongiovanni: 0000-0003-4343-7213
M. Meroni: 0000-0002-4161-4178
M. Del Fabbro: 0000-0001-7444-0984
G.M. Tartaglia: 0000-0001-7062-5143

Ethics Approval and Informed Consent

Not applicable.

References

What is the use of nutraceuticals in dentistry? A scoping review

