Differences in pacing during cycling and running in ultra-triathlons – The example of ‘Swissultra’

K. WEISS1,2, C.V. SOUSA3, M. THUANY4, I. CUK5, P.T. NIKOLAIDIS6, B. KNECHTLE1,2

1Medbase St. Gallen Am Vadianplatz, St. Gallen, Switzerland
2Institute of Primary Care, University of Zurich, Zurich, Switzerland
3Health Technology Lab, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
4Centre of Research, Education, Innovation and Intervention in Sport (CIFI2D), Faculty of Sport, University of Porto, Porto, Portugal
5Faculty of Physical Education and Sports Management, Singidunum University, Serbia
6School of Health and Caring Sciences, University of West Attica, Athens, Greece

Abstract. – OBJECTIVE: The knowledge of the most predictive split discipline and the pacing during a triathlon race is of utmost importance for planning an ultra-triathlon race. This study aimed at investigating the pacing during cycling and running splits in three different multi-stage ultra-triathlon race formats (i.e., Quintuple, Deca, and Double Deca Iron ultra-triathlon with 5x, 10x and 20x the daily distance of a full Ironman-distance triathlon).

SUBJECTS AND METHODS: A total of 48 male ultra-triathletes competing in Quintuple (n=14), Deca (n=25), and Double Deca (n=9) Iron ultra-triathlon “swissultra” between 2016 and 2019 in Switzerland were analyzed. For each race day, we calculated the total performance (sum of all laps time), average individual performance (average of all laps time within a race day) and pacing variation (coefficient of variation of race laps time) for cycling and running. Discipline (cycling and running) and race distance (Quintuple, Deca, and Double Deca Iron ultra-triathlon) were used as independent parameters. The primary outcome variables were the time performance (daily and total) and the pacing variation. We applied two general linear models (GLM): the first model was a one-way ANOVA comparing total and daily performance by race distance, and the second model was a two-way ANOVA (race distance ´ discipline) using pacing variation (average pace oscillation) as a dependent variable.

RESULTS: The first GLM identified a significant race distance effect for total performance in both cycling (F = 375.6; p < 0.001; ηp² = 0.943) and running (F = 267.8; p < 0.001; ηp² = 0.922) and Double Deca Iron ultra-triathlon being the fastest and Quintuple Iron ultra-triathlon the slowest. The GLM for daily average performance showed no significant effect of race distance on cycling performance (F = 0.171; p = 0.849; ηp² = 0.008), but on running performance (F = 6.408; p = 0.004; ηp² = 0.222). The two-way GLM comparing pacing variation showed a significant effect for race distance (F = 11.81; p < 0.001; ηp² = 0.344) with Deca presenting larger pace variation than Quintuple and Double Deca Iron ultra-triathlon in both cycling and running, but not for discipline (F = 0.067; p = 0.797; ηp² = 0.001), nor for interaction (F = 1.469; p = 0.241; ηp² = 0.061).

CONCLUSIONS: Athletes achieved a stable cycling performance independent of the length of the race, and the cycling split had an influence on the subsequent running split depending upon the length of the race.

Key Words: Swimming, Cycling, Running, Ultra-endurance.

Introduction

Multi-stage ultra-marathons require athletes to cover a distance longer than a marathon in each day1,2. These running events have a long tradition, with a recent increase in popularity1,3. In particular, running a marathon daily for 7 consecutive days4,5, 10 marathons in 10 days6,7, and up to 100 marathons in 100 days8 are one of the most popular events.

In triathlon, after the invention of the full Ironman-distance covering 3.8 km swimming, 180 km cycling, and 42.2 km running with the “Ironman® Hawaii” the multi-stage ultra-triathlon races have been created, with the first being the Deca Iron ultra-triathlon (10 full Ironman-distance triathlons in 10 days) held for the first time in 2006 in Monterrey, Mexico9,10.
While single athletes were able to cover 33 full Ironman-distance triathlons in 33 days12 up to 40 full Ironman-distance triathlons in 40 days8, the race format of daily competing a full Ironman-distance triathlon were basically the Quintuple Iron ultra-triathlon (5 full Ironman-distance triathlons in 5 days)14,15 and the Deca Iron ultra-triathlon (10 full Ironman-distance triathlons in 10 days)4-17 with the extension to the Double Deca Iron ultra-triathlon covering 20 full Ironman-distance triathlons in 20 days18 and the Triple Deca Iron ultra-triathlon with 30 full Ironman-distance triathlons in 30 days16.

Given the plethora of factors associated with performance, the nature of triathlon, and the relationship between the three race components28,29 triathletes try to calculate their planned splits and overall race times before it starts20. The intensity and influence of each discipline on the subsequent discipline pace (i.e., cycling performance influencing running performance) are essential, and the different distances and disciplines highly influence pacing strategies during a triathlon21-24.

For a sprint distance triathlon, swimming22 or cycling24,25 were the best discipline predictors.

For an Olympic distance triathlon, different studies have obtained contradictory results, indicating the importance of swimming22, cycling24 or running26,27 as the most predictive split discipline. For the half-distance Ironman triathlon (Ironman® 70.3), cycling was the most predictive22, whereas, for the full Ironman-distance triathlon, several studies have found running to be the most predictive split discipline. In one study, running and cycling were predictive26. In other analyses, however, only the cycling split was the most predictive for the full Ironman-distance triathlon29, whereas, in other analyses, running was the most critical split discipline for the full Ironman-distance22.

However, pacing oscillation within the split disciplines cycling and running seems to be of importance as well20,30. This is most likely due to changes in elevation in the course profile30. Another study also identified Ironman® triathletes with a positive pacing and a continuous decrease in speed during both the cycling and the running split11.

Previous literature12-18 also described pacing during multi-stage ultra-triathlons. A female triathlete setting a world record in Quintuple and Deca Iron ultra-triathlon adopted an even pacing strategy for cycling and running, without a variation within- or between race days4. For a Deca Iron ultra-triathlon, the pacing was positive (i.e., daily performance decreased over days)10.

In a Double Deca18 and a Triple Deca Iron ultra-triathlon16, the daily performance remained unchanged across days (i.e., even pacing). An athlete who completed 33 full Ironman-distance triathlons in 33 days achieved an even pacing in cycling and running, resulting in an even pacing in overall race time2. In a self-paced world record attempt in 40 full Ironman-distance triathlons in 40 days, cycling times became slower across days, whereas running times undulated over days13.

Little is known regarding the influence of the single split disciplines on overall race performance in a multi-stage ultra-triathlon. In a case report13 from 40 full Ironman-distance triathlons in 40 days, overall race time was influenced by cycling and running performance but not by swimming performance. Little is also known regarding (i) which split discipline is the most predictive in a multi-stage triathlon; and (ii) how ultra-triathletes pace within the cycling and running split during a multi-stage. Therefore, the present study aimed at investigating the pacing of cycling and running splits in three different multi-stage ultra-triathlon race formats (i.e., Quintuple, Deca, and Double Deca Iron ultra-triathlon). Based upon existing knowledge, we hypothesized that (i) pacing would be even in a Double Deca Iron ultra-triathlon compared to shorter distances and (ii) cycling and running performance would decrease during a single split.

\section*{Subjects and Methods}

\textbf{Ethical Approval}

This study was approved by the Institutional Review Board of Kanton St. Gallen, Switzerland (Ethiskommission St. Gallen), with a waiver of the requirement for informed consent of the participants as the study involved the analysis of publicly available data (EKSG 01-06-2010). All procedures adhered to the ethical standards set by the Declaration of Helsinki.

\section*{The Race}

The ‘swissultra’ (www.swissultra.ch) has been held since 2016, annually, in August. It offers different race formats in the continuous version (no break) and the ‘one per day’ format (i.e., every morning start of a full Ironman-distance triathlon). In 2020 and 2021, the race was not held due to the COVID-19 pandemic.

The formats are five times the full Ironman-distance triathlon (i.e., Quintuple Iron ultra-
Pacing differences in ultra-triathlons

The primary outcome variables were time performance (daily and total) and the pacing variation. All linear variables were tested with the Kolmogorov-Smirnov test and showed normal distribution. Different general linear models (GLM) were applied as follows: the first model was a one-way ANOVA comparing total and daily performance by race distance. The second model was a two-way ANOVA (race distance’ discipline) using pacing variation (average pace oscillation) as a dependent variable. The least significant difference (LSD) technique was used as a post-hoc test for pairwise comparisons. We applied Pearson’s correlation coefficient to identify any potential correlation between pacing variation and performance in different conditions (clustered by race distance and discipline). Partial eta square (η_p^2) was applied for effect size measures. All statistical analyses were carried out using the Statistical Software for the Social Sciences v. 25 (IBM Corp., Armonk, NY, USA), considering a confidence interval at 95%.

Results

The analyses included a total of 48 male ultra-triathletes competing in Quintuple Iron ultra-triathlon ($n=14$), Deca Iron ultra-triathlon ($n=25$), and Double Deca Iron ultra-triathlon ($n=9$), in events that occurred between 2016 and 2019. The first GLM identified a significant race distance effect for total performance in both cycling ($F = 375.6; p < 0.001; \eta_p^2 = 0.943$) and running ($F = 267.8; p < 0.001; \eta_p^2 = 0.922$). Post-hoc comparisons showed Double Deca Iron ultra-triathlon with the best and Quintuple Iron ultra-triathlon with the lowest time performances (Figures 1A and 1B).

The GLM for daily average performance showed no significant effect of race distance on cycling performance ($F = 0.171; p = 0.843; \eta_p^2 = 0.008$), but on running performance ($F = 6.408; p = 0.004; \eta_p^2 = 0.222$). Post-hoc analyses showed that athletes competing in the Deca Iron ultra-triathlon had higher time performances than in the Quintuple Iron ultra-triathlon and in the Double Iron ultra-triathlon (Figures 1D and 1E).

The two-way GLM comparing pacing variation showed a significant effect for race distance ($F = 11.81; p < 0.001; \eta_p^2 = 0.344$), but not for discipline ($F = 0.067; p = 0.797; \eta_p^2 = 0.001$), nor for interaction ($F = 1.469; p = 0.241; \eta_p^2 = 0.061$). Pairwise comparisons showed for athletes...
competing in the Deca Iron ultra-triathlon a larger pace variation than in the Quintuple Iron ultra-triathlon and in the Double Deca Iron ultra-triathlon in both cycling and running (Figure 1C). Cycling pace variation was significantly and positively correlated with daily cycling performances in the Quintuple Iron ultra-triathlon and Double Deca Iron ultra-triathlon, daily running performances in the Quintuple Iron ultra-triathlon, and overall cycling performance in the Double Deca Iron ultra-triathlon and the Quintuple Iron ultra-triathlon, and with overall running performance in the Quintuple Iron ultra-triathlon (Figure 2). Tables I-III display a matrix correlation with the \(p \)-values and coefficients for Quintuple, Deca, and Double Deca Iron ultra-triathlon, respectively.

Running pace variation was significantly and negatively correlated with daily cycling and overall performance in the Deca Iron ultra-triathlon and cycling pace variation in the Deca Iron ultra-triathlon (Figure 3).

Discussion

This study intended to investigate the cycling and running split pacing during three different multi-stage ultra-triathlons (i.e., Quintuple, Deca, and Double Deca Iron ultra-triathlon). We hypothesized that pacing would be even in a Double Deca compared to shorter distances and that cycling and running performance would decrease during a single split. The main findings were as follows: (i) there was no difference in average daily cycling performance, meaning that athletes were not cycling faster because they had more or fewer race days; (ii) athletes competing in the Deca Iron ultra-triathlon were slower than athletes in the Quintuple and the Double Deca Iron ultra-triathlon; (iii) athletes in the Deca Iron ultra-triathlon showed a higher pacing variation in both cycling and running and cycling performance in the Deca Iron ultra-triathlon; (iv) athletes in both the Quintuple and the Double Deca Iron

Table I. Matrix correlation for Quintuple Iron ultra-triathlon. Data expressed as the correlation coefficient (r).

<table>
<thead>
<tr>
<th></th>
<th>Running pace oscillation</th>
<th>Cycle performance (Daily average)</th>
<th>Run performance (Daily average)</th>
<th>Cycle performance (total)</th>
<th>Run performance (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycling pace oscillation</td>
<td>0.165</td>
<td>-0.051</td>
<td>0.165</td>
<td>-0.051</td>
<td>0.165</td>
</tr>
<tr>
<td>Running pace oscillation</td>
<td>-</td>
<td>-0.535*</td>
<td>-0.535*</td>
<td>-0.535*</td>
<td>-0.535*</td>
</tr>
<tr>
<td>Cycling performance (Daily average)</td>
<td>-</td>
<td>0.568*</td>
<td>1.000*</td>
<td>1.000*</td>
<td>0.568*</td>
</tr>
<tr>
<td>Running performance (Daily average)</td>
<td>-</td>
<td>-</td>
<td>-0.568*</td>
<td>0.568*</td>
<td>-0.568*</td>
</tr>
<tr>
<td>Cycling performance (total)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.568*</td>
<td>-</td>
</tr>
</tbody>
</table>

*: \(p < 0.05 \); **: \(p < 0.001 \).

Table II. Matrix correlation for Deca Iron ultra-triathlon. Data expressed as the correlation coefficient (r) and \(p \)-value.

<table>
<thead>
<tr>
<th></th>
<th>Running pace oscillation</th>
<th>Cycle performance (Daily average)</th>
<th>Run performance (Daily average)</th>
<th>Cycle performance (total)</th>
<th>Run performance (Daily average)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycling pace oscillation</td>
<td>0.836*</td>
<td>-0.254</td>
<td>0.836*</td>
<td>-0.254</td>
<td>0.836*</td>
</tr>
<tr>
<td>Running pace oscillation</td>
<td>-</td>
<td>-0.535*</td>
<td>-0.535*</td>
<td>-0.535*</td>
<td>-0.535*</td>
</tr>
<tr>
<td>Cycling performance (Daily average)</td>
<td>-</td>
<td>0.568*</td>
<td>1.000*</td>
<td>1.000*</td>
<td>0.568*</td>
</tr>
<tr>
<td>Running performance (Daily average)</td>
<td>-</td>
<td>-</td>
<td>-0.568*</td>
<td>0.568*</td>
<td>-0.568*</td>
</tr>
<tr>
<td>Cycling performance (total)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-0.568*</td>
<td>-</td>
</tr>
</tbody>
</table>

*\(\chi^2 \) test; **Student’s \(t \)-test; ***Fisher’s exact test.
Pacing differences in ultra-triathlons

No Difference in Average Daily Cycling Performance

ultra-triathlon with a higher pacing variation in cycling showed a slower cycling and running performance compared to the Deca Iron ultra-triathlon; and (v) athletes in the Deca Iron ultra-triathlon with a slower cycling performance had a higher running pacing variation.

Table III. Matrix correlation for Double Deca Iron ultra-triathlon. Data expressed as the correlation coefficient (r) and p-value.

<table>
<thead>
<tr>
<th></th>
<th>Running pace oscillation</th>
<th>Cycling performance (Daily average)</th>
<th>Running performance (total)</th>
<th>Cycling performance (total)</th>
<th>Running performance (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cycling pace oscillation</td>
<td>0.540</td>
<td>0.710*</td>
<td>0.152</td>
<td>0.152</td>
<td>0.152</td>
</tr>
<tr>
<td>Running pace oscillation</td>
<td>-</td>
<td>0.537</td>
<td>0.539</td>
<td>0.539</td>
<td>0.539</td>
</tr>
<tr>
<td>Cycling performance (Daily average)</td>
<td>-</td>
<td>-</td>
<td>0.755*</td>
<td>1.000**</td>
<td>0.755*</td>
</tr>
<tr>
<td>Running performance (Daily average)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.755*</td>
<td>1.000**</td>
</tr>
<tr>
<td>Cycling performance (total)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.755*</td>
</tr>
<tr>
<td>Running performance (total)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*: p < 0.05; **: p < 0.001.

Figure 1. Total performance (A-B), average pace oscillation (C), and average daily performance in 5x (Quintuple Iron ultra-triathlon), 10x (Deca Iron ultra-triathlon), and 20x (Double Deca Iron ultra-triathlon). (D-E)*: All race distances are different (p<0.05) from each other; a: Different from 5x within the same discipline; b: Different from 10x within the same discipline.
and running in a single full-distance Ironman® triathlon. In 7,687 cycling and 11,894 running split times of 1,392 triathletes (1,263 men, 129 women), a study found a continuous decrease in speed for both women and men.

However, ultra-triathletes competing in multi-stage triathlons seemed to adopt an even pacing in order to finish such a race successfully. In a Double Deca and a Triple Deca Iron ultra-triathlon, the daily performance remained unchanged across days (i.e., even pacing). Also, in record attempts, ultra-triathletes maintained their speed over days or even weeks. An athlete who competed for the first time in history the total distance of 33 full Ironman-distance triathlons within 33 consecutive days achieved an even pacing in both split times and overall race times. In a self-paced world record attempt in 40 full Ironman-distance triathlons in 40 days, swimming and cycling times became slower across days, whereas running times got faster until the 20th day and, after that, became slower until the 40th day. Our findings suggest that athletes plan their pacing strategy, probably in a physiological comfortable speed/pace so that they can maintain the pace across all race days.

Decrease in Speed with an Increasing Race Distance

Another important finding was that athletes competing in the Deca were slower than athletes

Figure 2. Correlation between cycling pacing oscillation and performance for cycling and running in 5x (Quintuple Iron ultra-triathlon), 10x (Deca Iron ultra-triathlon), and 20x (Double Deca Iron ultra-triathlon). Linear regression line: significant ($p<0.05$) correlations.
Figure 3. Correlation between running pacing oscillation and performance for cycling and running in 5x (Quintuple Iron ultra-triathlon), 10x (Deca Iron ultra-triathlon), and 20x (Double Deca Iron ultra-triathlon). Linear regression line: significant ($p<0.05$) correlations.
in the Quintuple and the Double Deca Iron ultra-triathlon. The Deca Iron ultra-triathlon seems to be the most popular race distance since several studies have investigated this distance in contrast to the Quintuple and the Double Deca Iron ultra-triathlon. The Deca Iron ultra-triathlon was also the first multi-stage ultra-triathlon, with the first edition held in 2006 in Monterrey, Mexico. Previous studies showed that pacing in a Deca Iron ultra-triathlon was positive, which is mainly due to the decrease in substantial body mass such as fat mass. An essential aspect in a Deca Iron ultra-triathlon is the daily energy deficit, leading to a slowing down and resulting in a positive pacing (i.e., increase in daily race times throughout the race). Since there is no knowledge about the change in body mass and energy deficit of longer distances than the Deca Iron ultra-triathlon, future studies need to investigate this aspect in a Double or Triple Deca Iron ultra-triathlon. Another potential part for slower pacing times in Deca Iron ultra-triathlon could be the participation of less experienced athletes, due to the higher popularity of this distance. Thus, less experience in such events could result in over precautious or reckless pacing strategies, resulting in slower overall race times.

Differences in Pacing Variation for Cycling and Running in Deca Iron Ultra-Triathlon

The last important finding was that Deca Iron ultra-triathletes with a slow cycling performance had a higher pacing variation in running. Several studies have investigated the most predictive split discipline for the single full Ironman® distance. The performance in cycling and running seemed to be the most important, and the performance in cycling influenced the subsequent running split. An analysis of 343,345 athletes competing between 2002 and 2015 in 253 different Ironman® triathlon races showed that the fastest Ironman® triathletes were the relatively fastest in running and transition times. Increased pacing variation could lead to increased physiological distress than a similar average pace within a racecourse. Thus, increased physiological distress during cycling is likely to increase the difficulty for the subsequent running discipline, forcing a change of strategy, increasing pacing variation, and decreasing performance. In this sense, a previous study using a machine learning approach in Olympic distance triathlon showed that for men, the running time was a significant predictor for the final position, with the magnitude of the differences in differential run time being the largest of any race component.

Limitations

This study has some limitations where we were not able to record food and fluid intake, measure changes in body composition, and determine the energy deficit occurring during the race. Knowing these aspects for the different race distances might help in the interpretation of the results and aid the understanding of the athletes’ experience level and effort perception that can impair the pacing. A decrease in body mass such as fat mass leads to a decrease of the energy reserve and will impair performance. We were also not able to record pre-race experience and training in the pre-race preparation, which are both also of importance for the race outcome.

Conclusions

In summary, the analysis of pacing during cycling and running a multi-stage ultra-triathlon showed that these athletes achieved a stable cycling performance independent of the length of the race. The cycling split influenced the subsequent run split depending upon the length.
Pacing differences in ultra-triathlons

of the race. We recommend that future studies monitor the athletes for bathroom stops, nutrition, hydration, and their body composition during and after each race day, as the components transition within a day.

Conflicts of Interest
The authors declare no conflicts of interest.

Ethics Approval
The Institutional Review Board of St. Gallen, Switzerland, approved this study (EKSG 01/06/2010).

Informed Consent
Informed consent was obtained from all individual participants included in the study.

Availability of Data and Material
The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Funding
No funding was used to support this research and/or the preparation of the manuscript.

Authors’ Contributions
K.W. drafted the manuscript, M.T. performed the data processing and statistical analyses, C.V.S. collected the data, P.T.N., I.C. and B.K. helped in drafting the manuscript. All authors approved the final version.

ORCID ID
Katja Weiss: 0000-0003-1247-6754
Caio Victor Sousa: 0000-0002-0499-2372
Mabliny Thuany: 0000-0002-6858-1871
Ivan Cuk: 0000-0001-7819-4384
Pantelis T. Nikolaidis: 0000-0001-8030-7122
Beat Knechtle: 0000-0002-2412-9103

References

