Abstract. – BACKGROUND: Keloids are benign skin lesions that gradually invade the surrounding normal tissue, and no treatment has proven curative. In our previous clinical practice of autologous cultured fibroblast transplantation, we found that fibroblast injection might have some effect on treating keloids, and we attempted to treat keloids by using fibroblast transplantation after obtaining the patient’s approval.

CASE REPORT: 1 patient was treated from March 2017 to June 2018. Autologous skin fibroblasts were separated from postauricular skin biopsy or resected keloid. They were cultured and expanded with exclusive methods. Cells (3x10^7/ml) within four or five passages were injected intradermally at the keloid at one-month intervals, 15 times in the patient. Shrink of the keloid on the patient was observed. The keloid became softer, flatter, and lighter in color after treatment. The elasticity of the keloid was also increased. The treatment effect was associated with the number of treatment sessions.

CONCLUSIONS: This is the first report in which autologous fibroblast transplantation was used to treat keloids. Despite being only a single case experience, we assume that fibroblast injection might have some effect on treating keloids. After obtaining the patient’s approval, we attempted to treat the keloid by using fibroblast transplantation on one patient to evaluate if autologous fibroblast transplantation could improve the symptom, elasticity, and shape of the keloid.

CASE REPORT

Patient

A 25-year-old male suffered from chest keloid for more than 5 years with severe pruritus and pain. He could not remember the cause of the lesion. The keloid was surgically removed, followed by superficial radiotherapy in 2018 but it recurred 6 months later. From March 2017 to June 2018, we treated him with autologous cultured fibroblast transplantation. Besides the above-mentioned methods, he received no other treatments.
Preliminary clinical observations on autologous cultured skin fibroblasts transplantation in the treatment of keloids: a case report

Cell Culture

The skin sample was harvested by a 3-mm circular punch biopsy instrument from the postauricular area for fibroblast culture. Preparation of the specimens and primary cultivation of autologous fibroblasts were performed using a proprietary process in DMEM/F12 medium (Hyclone) containing 10% fetal calf serum at 37°C and 5% CO₂. Cells at passage 4 or 5 were used for transplantation. One week before the first injection, a supernatant of one randomly chosen flask was aspirated for fungus, bacterial, and mycoplasma tests. Before transplantation, cells were digested and centrifuged at 1,500 rpm (r16 cm) for 8 minutes. The cell pellet was then suspended in a special medium to yield a final cell concentration of 3x10⁷/ml for transplantation. All digestive fluid and transfer mediums are specially made and protein-free. Residual bovine serum albumin (BSA) was analyzed using the ELISA method (BSA kit, Bosheng, Wuxi, China) to ensure BSA concentration was ≤5 ng/ml. If all the results came back negative, cell transplantation could be performed. The remaining cell suspension was cryopreserved for later treatments.

Cell Transplantation

Skin test was performed on the inner volar aspect of the forearm using 10,000-time diluted medium DMEM/F12 medium (containing 10% fetal calf serum) before cell transplantation.

Fibroblast transplantation was performed after applying topical anesthetic cream for 30 minutes. Cells were injected into the keloid using a 30G insulin syringe until the color of the keloid became pale. The average injection volume was about 0.25 ml cell suspension per square centimeter keloid. The treatment was performed once a month for 15 consecutive treatments.

Evaluation

Photographs were taken before each injection and in each follow-up using Nikon D90 under the same condition. A 50-cent coin was used as a control to compare the size and thickness of the keloid. The hardness of the keloid was evaluated using an LX-A durometer (HANDPI) before each treatment. Side effects were followed up one week after each injection by telephone to see if the patient had any red, swollen, or pruritus over the injection point.

Results

After 15 treatments, scar-related symptoms were significantly relieved. He felt no pain or tenderness under normal situations except a little itch when it was very hot or after excessive drinking. The keloid became lower and softer. He felt no pain when pinching the keloid. Clinical examination showed the color of the keloid was lighter and the flush around was disappeared. The hardness of the keloid decreased from 26.2 HA to 11 HA. The height of the keloid clearly decreased. But the size of the lesion increased a little. The length increased from 5.56 cm to 6.50 cm, and the width increased from 6 cm to 6.60 cm (Figure 1). No pain, bruise, allergic reaction, or infection was reported. No skin atrophy or telangiectasia was found. The last follow-up was 4 years after the last treatment. There was no
evidence for recurrence. While subjective complaints remained the same, objective parameters kept on improving. The color of the keloid became even lighter, and the height of the keloid continued to decrease. The border of the keloid became shallower and smoother. The hardness of the keloid continued to decrease from 11 HA to 5 HA, with a significant improvement in keloid pliability. The length of the keloid remained the same, but the width of the keloid continued to increase from 6.60 cm to 7.12 cm. More importantly, we noticed a small untreated lesion next to the big one, enlarged gradually in time, with red and pruritus (Figure 2).

Discussion

Keloids are benign dermal fibroproliferative tumors that occur in areas of cutaneous injury and extend beyond the original margins of the scar\(^9,10\). Very little is known about keloid pathogenesis; it is commonly accepted that keloids are mainly related to abnormal fibroblasts, which express increased growth factors and receptors of these factors and synthesize excessive collagen products and other extracellular matrix components\(^11\). Although numerous therapeutic approaches have been described\(^12-22\), alone or combined for keloids, none are curative. Physically removal of the lesion alone using either a scalpel or laser has consistently shown poor results\(^12,13\), with recurrence rates of 40 to 100 percent\(^14\). Except for silicone gel\(^15,16\), which enhanced the keloid skin hydration, other commonly accepted treatment options are mainly aimed at inhibiting the activity of the keloid fibroblasts, such as intralesional steroid injections\(^7\), Botulinum toxin injections\(^18\), fat graft\(^19\), pressure therapy\(^20,21\) and superficial radiotherapy\(^22\).

In our previous clinical practice of autologous cultured fibroblast transplantation, we noticed hypertrophic scars and atypical keloid on the lower jaw also improved after cell transplantation. This phenomenon was enlightening. Based on that, we assume that fibroblast injection might have some effect on treating keloids, and we attempted to treat keloids by using fibroblast transplantation after obtaining the patient’s approval.

Though the result did not completely erase the keloid, both keloids showed a reduction of height, an increase of pliability, and significant alleviation of subjective symptoms after treatment. Most importantly, keloid continued to improve after treatment stopped. The hardness of the keloid decreased from 11 HA to 5 HA during 4 years after treatment, gradually approaching normal skin hardness of 2-3 HA. We noticed that during the whole process, though the size of the keloid increased a little, its tension and height kept on reducing, with a continuous improvement of its stretchability and elasticity. This suggested that the size enlargement was not caused by growing of the keloid but by the gradual spreading of the keloid after cell transplantation. On the contrary, while the treated one gradually shrank, an untreated small lesion gradually enlarged with aggravated symptoms of erythema and pain, which confirmed the effectiveness of our treatment from another point of view.
In our laboratory research on autologous cultured fibroblast transplantation, we discovered that after fibroblast transplantation, new fibroblasts mainly secreted type III collagen. We think the improvement of the keloid might be caused by the increase of collagen III content and reduction of collagen I/III ratio, and then gradually reach a balance mechanics equilibrium condition.

Cutaneous wound healing in the postnatal organism is a balance between rapid wound closure to reestablish the protective barrier of the skin and over-exuberant wound healing resulting in excessive scar formation. Extracellular matrix (ECM) plays an essential and complex role in tissue repair, regeneration, and maintenance. Collagens are the main structural element of the ECM, forming a relaxed network of cross-linked fibers throughout the dermis to maintain tissue integrity. In adults, type I collagen constitutes approximately 80% of dermal collagen. In contrast, type III collagen is abundant in fast-growing tissue, particularly at the early stages of wound repair, and then replaced by type I collagen as the wound repair process slows down. Keloid is formed by excessive type I collagen accumulation and unbalancing of ECM components. In normal adult skin and hypertrophic scar, the ratio between type I and III collagen is 6:1 and 7:1, respectively. However, in keloid, this ratio abnormally increased to 17:1. Volk proved that diminished type III collagen increased scar deposition in cutaneous wound healing, which suggested that type III collagen was a key mediator of tissue regeneration and might provide a target for therapeutic intervention for impaired wound healing.

Unlike all the existing therapeutic modalities, which inhibit or destroy the keloids, our method focused on adjusting the environment of ECM, reducing the keloid gradually from the inside. We hypothesized that injected fibroblasts would secrete new type III collagen and increase type III collagen levels in keloid, gradually turning a keloid into a hypertrophic scar in terms of collagen proportion. The difference between keloids and hypertrophic scars was that hypertrophic scars would atrophy spontaneously. Increasing type III collagen level would then trigger the remodeling process similar to that of hypertrophic scar until it reached a mechanics equilibrium condition. Based on this hypothesis, we also planned another experiment to treat keloids using freeze-drying type III collagen.

Conclusions

This is the first report of autologous fibroblasts transplantation to treat keloids. However, only one case experience does not allow us to assess the effectiveness of this treatment. Moreover, our evaluation was only based on clinical manifestation; more profound studies on histology, molecular, and gene level are needed to verify our therapeutical hypothesis.

Conflict of Interest

The authors declare no potential conflicts of interest with respect to the authorship and/or publication of this article.

Ethics Approval

Not applicable to a case report.

Funding

This study received no financial support.

Authors’ Contributions

Yuming Zhao contributed to the conception and design, data analysis and interpretation; Xing Han and Shouduo Hu contributed to the manuscript writing and final revision; Dongshuo Ji and Ying Liu contributed to the collection and assembly of data; and all authors have read and approved the final manuscript.

Informed Consent

A signed informed consent agreement form was obtained from the patient.

References

5) Zhao YM, Jing JS, Zuo J, Fang FD, Wang JQ. Observation on proliferation and collagen secre-