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Abstract. – Neurofibromatosis type 1 (NF1) 
is an autosomal dominant genetic disorder as-
sociated with an increased risk of developing 
a variety of benign and malignant tumors. Fif-
teen to 20% of children with NF1 are diagnosed 
with an optic pathway glioma (NF1-OPG) before 
7 years of age, and more than half of them ex-
perience visual decline. At present, no effective 
therapy is available for prevention, restoration, 
or even stabilization of vision loss in subjects 
affected by NF1-OPG. This paper aims to review 
the main emerging pharmacological approaches 
that have been recently assessed in preclinical 
and clinical settings.

We performed a search of the literature us-
ing Embase, PubMed, and Scopus databases 
to identify articles regarding NF1-OPGs and 
their treatment up to July 1st, 2022. The refer-
ence lists of the analyzed articles were also 
considered a source of literature information. 
To search and analyze all relevant English arti-
cles, the following keywords were used in var-
ious combinations: neurofibromatosis type 1, 
optic pathway glioma, chemotherapy, precision 
medicine, MEK inhibitors, VEGF, nerve growth 
factor. 

Over the past decade, basic research and the 
development of genetically engineered mice 
models of NF1-associated OPG have shed light 
on the cellular and molecular mechanisms un-
derlying the disease and inspired animal and 
human testing of several compounds. A prom-
ising line of research is focusing on the inhibi-
tion of mTOR, a protein kinase controlling pro-
liferation, protein synthesis rate and cell motil-
ity that is highly expressed in neoplastic cells. 
Several mTOR blockers have been tested in clin-
ical trials, the most recent of which employed 
oral everolimus with encouraging results. A dif-
ferent strategy aims at restoring cAMP levels in 
neoplastic astrocytes and non-neoplastic neu-
rons, since reduced intracellular cAMP levels 
contribute to OPG growth and, more important-

ly, are the major determinant of NF1-OPG-as-
sociated visual decline. So far, however, this 
approach has only been attempted in preclin-
ical studies. Stroma-directed molecular thera-
pies – seeking to target Nf1 heterozygous brain 
microglia and retinal ganglion cells (RGCs) – 
are another fascinating field. Microglia-inhibit-
ing strategies have not yet reached clinical tri-
als, but preclinical studies conducted over the 
last 15 years have provided convincing clues 
of their potential. The importance of NF1-mu-
tant RGCs in the formation and progression 
of OPGs also holds promise for clinical trans-
lation. The evidence of Vascular Endothelial 
Growth Factor (VEGF)- Vascular Endothelial 
Growth Factor (VEGFR) signaling hyperactivi-
ty in pediatric low-grade gliomas prompted the 
use of bevacizumab, an anti-VEGF monoclo-
nal antibody, which was tested in children with 
low-grade gliomas or OPGs with good clinical 
results. Neuroprotective agents have also been 
proposed to preserve and restore RGCs and 
topical eye administration of nerve growth fac-
tor (NGF) has demonstrated encouraging elec-
trophysiological and clinical results in a dou-
ble-blind, placebo-controlled study.

Traditional chemotherapy in patients with 
NF1-OPGs does not significantly ameliorate vi-
sual function, and its effectiveness in halting tu-
mor growth cannot be considered a satisfacto-
ry result. Newer lines of research should be pur-
sued with the goal of stabilizing or improving 
the vision, rather than reducing tumor volume. 
The growing understanding of the unique cellu-
lar and molecular characteristics of NF1-OPG, 
coupled with the recent publication of promising 
clinical studies, raise hope for a shift towards 
precision medicine and targeted therapies as a 
first-line treatment.
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Introduction

Neurofibromatosis type 1 (NF1) is an autoso-
mal dominant syndrome with a prevalence of one 
individual every  3,000, caused by a germline mu-
tation in the neurofibromin 1 (NF1) gene1,2. NF1 is 
a tumor suppressor gene located on chromosome 
17, which codes for neurofibromin, a cytoplas-
mic protein predominantly expressed in neurons, 
Schwann cells, oligodendrocytes, and leukocytes. 
People with NF1 have a genetic predisposition to 
developing tumors in both the central nervous sys-
tem (CNS) and peripheral nervous system (PNS), 
including benign (such as neurofibromas) and ma-
lignant (such as malignant peripheral nerve sheath 
tumors, or MPNST) neoplasms3-5.

Neurofibromin is involved in downregulat-
ing the activity of proto-oncogene rat sarcoma 
(RAS)6,7 and also has other non-RAS-mediated 
functions relevant to NF1-related tumor initiation 
and progression8.

Similar to other tumor predisposition syn-
dromes, patients with NF1 are born with a ger-
mline mutation in 1 copy of the NF1 gene, but 
tumors only arise following a somatic mutation 
of the other allele, thus leading to the complete 
loss of neurofibromin in specific and vulnerable 
cytotypes9-11.

CNS tumors developed by children with NF1 
are mainly low-grade gliomas (LGGs), and 
most NF1-LGGs are World Health Organization 
(WHO) grade 1 pilocytic astrocytomas (PAs)12, 
whereas high-grade gliomas (HGGs), the most 
common of which is glioblastoma (GB), represent 
approximately 2% of brain tumors in children 
with NF113. Fifteen to 20% of children with 
NF1 develop a LGG anywhere along the optic 
pathway, and 75 to 85% of these NF1-related 
optic pathway gliomas (NF1-OPGs) are located 
in the optic nerves or chiasm, while the remain-
ing 15% of them arise in the post-chiasmatic 
optic pathway (tracts and radiations)2,14. Among 
NF1-associated brain neoplasms, the brainstem 
is the second most frequently involved site (18% 
of all cases)15. At the same time, the cerebellum, 
cerebral cortex, and basal ganglia are uncommon 
locations for pediatric NF1-related LGGs and 
mainly affect adolescents and adults16,17. 

In terms of survival, NF1-OPGs have an ex-
cellent prognosis, and affected children are un-
likely to die from the disease. Furthermore, many 
patients do not display any symptoms and even 
symptomatic forms do not necessarily require 
chemotherapy or any therapy at all18-21. These 

tumors, however, frequently cause visual im-
pairment, which can combine with less common 
clinical manifestations, such as proptosis and, in 
the event of tumor infiltration of the hypothala-
mus, signs and symptoms of the hypothalamic 
syndrome (e.g., precocious puberty)22. Overall, 
patients with NF1-OPGs developing visual loss or 
other symptoms are 30 to 50% of the total2,20,23-25. 
Risk factors for visual impairment are age under 
2 years26, female sex27, and tumor involvement of 
the post-chiasmatic optic pathway26,28.

At present, indications for the treatment of 
pediatric NF1-OPGs are clinical progression (in-
tended as a significant visual decline, whose 
assessment is problematic in preverbal children 
with frequent comorbid learning and attention 
deficits29) and/or radiological progression detect-
ed by magnetic resonance imaging (MRI)18.

Because these tumors are not amenable to 
complete surgical resection due to their critical 
location2, and since radiotherapy in NF1 pa-
tients brings about an elevated risk of secondary 
malignancies30, neurocognitive31 and neuroendo-
crine disorders32, and radiation-induced vasculi-
tis33, chemotherapy is the first line of treatment. 
Among the most frequently employed cytotoxic 
agents, carboplatin and vincristine are well tol-
erated and have been found34 to yield tumor re-
sponse rates that are higher than those of children 
without NF1. In contrast, it is important to avoid 
alkylator agents in hereditary OPGs, as they can 
contribute to the development of secondary tu-
mors35. Although being the best available option 
among traditional therapies and despite its effica-
cy in hindering or halting tumor growth36,37, che-
motherapy is fraught with short- and long-term 
adverse effects and, most importantly, generally 
fails to improve or even preserve visual func-
tion20,26,38-42, which is the main objective in the 
clinical management of these patients.

Challenges of Visual Loss Treatment 
in NF1-OPG

The development of sophisticated technologies 
and efficient preclinical models [such as genet-
ically engineered mice (GEM) strains], as well 
as the institution of international cooperation 
networks (such as the NF Clinical Trial Consor-
tium), has raised the hope of future personalized 
treatment of NF1-related tumors43. At present, 
however, there are no effective therapeutic op-
tions for NF1-OPG-associated vision loss. 
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The development of precision medicine ap-
proaches targeting specific molecules involved in 
NF1-OPG formation, growth, and maintenance 
and in the associated visual decline requires at 
least 3 major obstacles to be circumvented. 

First, an in-depth understanding of the signal-
ing pathways affected by neurofibromin defect 
in neoplastic NF1-deficient cells and in non-neo-
plastic NF1-mutant cells, most notably microglia 
and retinal ganglion cells (RGCs), should be 
achieved. 

Second, since NF1 is a heterogeneous disease, 
the therapeutic results obtained in a patient with 
specific characteristics might not be replicable 
in a patient bearing different features. Thus, it is 
crucial to identify patient subgroups with com-
mon biological profiles and, thus, with a higher 
probability of responding to a particular pharma-
cological treatment43. 

With regards to these two objectives, the ma-
jor challenge is the shortage of biospecimens 
for genomic analysis, since most lesions are not 
biopsied prior to or following treatment37. In ad-
dition, there is a lack of human NF1-pilocytic as-
trocytoma cell lines or patient-derived xenografts 
(PDXs), due to the low clonogenic nature of these 
tumors and to the requirement of a permissive 
microenvironment2. GEM models of NF1-associ-
ated OPG [i.e., Nf1flox/mut glial fibrillary acidic pro-
tein-cyclization recombinase (GFAP-Cre) mice] 
have been developed with the specific purpose 
of finding ways around these obstacles. Although 
not perfectly representative of their human coun-
terpart, such models allowed researchers44 to 
outline the molecular mechanisms underlying the 
development and growth of these neoplasms and 
the associated visual decline, shedding light on 
a variety of pathogenic aspects and inspiring the 
design of numerous trials.

Finally, since many NF1-OPGs are asymp-
tomatic, and not all symptomatic forms require 
treatment, a standardized methodology should 
be developed to identify patients at risk for 
vision loss before serious irreversible damage 
occurs. Consistent with the finding that Nf1flox/
mut GFAP-Cre mice do not show reduced visual 
acuity until 6 months of age44, clinically evident 
visual impairment in NF1-OPG patients is gen-
erally associated with a 30% or more decrease 
in RGCs count44,45. Hence, given the difficult 
assessment of vision in preverbal children with 
comorbid attention deficits, efforts should be 
made to identify reliable biomarkers of impend-
ing visual loss18.

Molecular Pathogenesis of NF1-OPGs

Numerous in vitro and in vivo studies46-51 
have been conducted over the years to reveal 
the mechanisms by which neurofibromin loss 
regulates glial cell proliferation and, more gen-
erally, the cellular and molecular pathogenesis 
of NF1-OPG. The results of these studies made 
it possible to define a multifactorial model of 
pediatric gliomagenesis, wherein tumor forma-
tion requires a number of factors, including 
activation of cellular growth pathways, signals 
from the tumor microenvironment, involvement 
of specific cell types in specific cerebral regions, 
the patient’s genetic profile7,43, etc., thus explain-
ing why only a minority of children with NF1 
develop an OPG.

Neurofibromin and Downstream  
Signaling Cascades

Neurofibromin is a large cytosolic protein (220-
250 kDa) containing a 300-amino-acid guanosin 
triphosphate (GTP)ase activating protein-related 
domain (GAP-related domain, or GRD) involved 
in downregulating the activity of proto-oncogene 
RAS by accelerating the conversion of RAS-GTP 
to its inactive GDP-bound form52,53. Neurofibro-
min can also inhibit RAS-dependent growth inde-
pendently of its GTPase-accelerating function54. 
Normally, following the interaction of a growth 
factor with its tyrosin-kinase or G protein-cou-
pled receptor, RAS-GDP (inactive form) is con-
verted to RAS-GTP (active form) by a guanine 
nucleotide exchange factor2. Once RAS is con-
verted to the GTP-bound form, its downstream 
signaling pathways are activated. 

In NF1, due to neurofibromin loss (in neo-
plastic cells) or heterozygosity (in non-neoplastic 
cells), three main pathways are dysregulated and 
involved in the genesis of OPGs and OPG-asso-
ciated visual loss2, thus constituting ideal targets 
for precision medicine approaches.

First, in neoplastic NF1-deficient astrocytes, 
RAS-GTP activates phosphoinositide-3-kinase 
(PI3K), which in turn, phosphorylates and acti-
vates protein kinase-B (also known as AKT), a 
serine/threonine-specific protein kinase playing a 
key role in multiple cellular processes, including 
cell proliferation, partly through the mechanistic 
target of rapamycin (mTOR) complex. Both AKT 
and mTOR undergo increased phosphorylation 
and activation in human and murine NF1- associ-
ated CNS neoplasms2,48,49.



Emerging treatments in NF1-related optic pathways gliomas

5639

Second, activated RAS binds to the rapid-
ly accelerated fibrosarcoma (RAF) kinase mol-
ecule, triggering the activation of the whole 
RAS-RAF-mitogen activated kinase (MEK)-ex-
tracellular signal-regulated kinase (ERK) signal-
ing pathway, which is dysregulated in sporadic 
LGGs, as well49,55,56.

Notably, these two pathways converge toward 
the activation of mTOR, a protein kinase con-
trolling proliferation, protein synthesis rate, and 
cell motility in astrocytes57, even though the 
RAS-MEK-ERK pathway can control cell growth 
in an mTOR-independent fashion58. These find-
ings indicate mTOR as a potential target for both 
NF1- associated and sporadic PAs7. 

Third, RAS activation reduces cAMP genera-
tion in Nf1-deficient astrocytes through a down-
stream effector pathway involving intermediates 
that converge on adenylyl cyclase, the enzyme 
responsible for the synthesis of cAMP59,60. The 
decrease in cAMP levels is relevant not only for 
Nf1-deficient neoplastic cells but also for Nf1-mu-
tant non-neoplastic RGC neurons. CNS neurons 
are extremely vulnerable to reduced NF1 gene 
expression: in vitro, Nf1+/- CNS neurons (hippo-
campal neurons and RGC neurons) show reduced 
growth cone areas and neurite lengths and in-
creased apoptosis compared to their wild-type 
counterparts; in vivo, GEM modeling NF1-asso-
ciated OPGs show axonal damage in the retroor-
bital optic nerve proximal to the site of glioma 
formation and augmented Nf1+/- RGC apoptosis61. 
This abnormal phenotype results from impaired 
neurofibromin-mediated cAMP generation. 
Moreover, in CNS neurons, the neurofibromin/
cAMP homeostasis operates in a RAS-dependent 
manner through the activation of atypical protein 
kinase C zeta (PCKz), rather than through the 
activation of the MEK/ERK or AKT/mTOR ef-
fector pathways, leading to GRK2-mediated Gas 
inactivation62.

Collectively, these findings indicate that re-
duced cAMP intracellular levels mediate op-
posite effects in neoplastic (Nf1-deficient) as-
trocytes (increased survival response) and in 
non-neoplastic Nf1-mutant RGCs [decreased 
survival, with consequent thinning of retinal 
nerve fiber layer (RNFL) and decline of visual 
acuity in mice]2.

The RAS-regulatory domain, however, only 
comprises 10% of neurofibromin’s entire coding 
sequence63. It has been recently shown64 that 
this protein has numerous binding domains and 
previously undescribed conformational states, ar-

guing that this molecule mediates other RAS-in-
dependent functions. Among these newly report-
ed properties, neurofibromin regulation of hy-
perpolarization-activated cyclic nucleotide-gated 
(HCN) channels is one of the most relevant 
for optic gliomagenesis. Indeed, neurons from 
heterozygous Nf1-mutant mice are hyperexcit-
able at baseline compared to their wild-type 
counterparts and uniquely sensitive to electrical 
activity65,66. The mechanisms underlying Nf1-mu-
tant neuronal hyperexcitability have yet to be 
fully understood. However, Nf1+/- mice exhibit in-
creased gamma amino butirric acid (GABA)ergic 
interneuron excitability, resulting from decreased 
HCN channel activity67, which in turn results in 
increased midkine secretion and downstream ac-
tivation of the neuron-immune-cancer cell axis65, 
as described later in this article.

Role of Non-Neoplastic Cells in the 
Tumor Microenvironment

GEM strains provided evidence44,46 of a tight 
relationship between neurofibromin-deficient 
(Nf1-/-) neoplastic glial cells and neurofibromin 
heterozygous (Nf1+/-) non-neoplastic stromal cells 
in the tumor microenvironment. 

As previously described, optic gliomagenesis 
in mice and humans requires the biallelic inacti-
vation of the NF1 gene in GFAP-positive neurog-
lial progenitors. Since Nf1 knock-out (KO) mice 
(Nf1-/-) die at an embryonic stage68,69, experimen-
tal models harboring a conditional inactivation 
of the NF1 gene in this specific cytotype were 
created by leveraging LoxP-Cre technologies70. 
The surprising evidence71 that the complete loss 
of neurofibromin in GFAP-positive neuroglial 
progenitors, although causing a hyper-prolifera-
tive astrocyte response, is insufficient for OPG 
formation argues that additional factors derived 
from the surrounding NF1-heterozygous brain 
are necessary for tumorigenesis. 

It has been observed that NF1+/- mice under-
going biallelic inactivation of the NF1 gene in 
GFAP-positive neuroglial progenitors during em-
bryogenesis [the so-called Nf1flox/mutGFAPCre 
mice or NF1+/- GFAPcellKO (GFAPCKO) mice 
or fetal microchimeric cell (FMC) mice] develop 
OPGs most of the time46,51. However, additional 
preclinical findings46 demonstrate that Nf1 optic 
gliomagenesis only occurs if Nf1-deficient astro-
cytes receive growth-promoting signals from an 
Nf1-heterozygous tumor microenvironment in the 
surrounding brain.
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The Role of Microglia
Microglial cells make up to 30-50% of tu-

mor mass in human NF1-OPGs72. These cells 
belong to the mononuclear phagocyte system 
and are involved in the maintenance of cerebral 
homeostasis through the promotion of neuronal 
survival, enhancement of synaptic transmission, 
and synthesis of neurotrophins73-76. In addition, 
microglia can also produce chemokines, growth 
factors, and inflammatory mediators77,78 with 
relevance to two aspects of murine optic glio-
magenesis. 

Elevated microglia numbers represent one of 
the earliest events in the natural history of mu-
rine NF1-OPG and may be observed even before 
evident tumor formation in the optic nerves of 
Nf1+/- GFAPCKO mice44,79. It has been hypoth-
esized that Nf1-deficient glial neoplastic cells 
release soluble molecules (i.e., stromagens) that 
recruit or activate Nf1-heterozygous microglia, 
which in turn produces factors promoting tumor 
proliferation (i.e., gliomagens)80-83. 

Recent studies84,85 have focused on the role 
of two gliomagens, namely the Ccl5 chemokine 
and the CXCL12 growth factor, both emerging 
as potential targets for stromal-directed molec-
ular therapies. Second, microglia are involved 
in NF1-OPG-associated RGC death. Specifically, 
two mechanisms (one intrinsic – or cell autono-
mous – and one extrinsic – or cell non-autono-
mous) have been identified to underlie OPG-asso-
ciated loss of Nf1-heterozygous RGCs, with such 
loss starting as a tumor-induced axonal dysfunc-
tion and culminating in death by apoptosis59.

The intrinsic mechanism, as previously de-
scribed, consists of a unique vulnerability of CNS 
Nf1-mutant neurons by virtue of their altered neu-
rofibromin expression and consequent reduction 
in cAMP intracellular levels61. 

The extrinsic mechanism involves microg-
lia and provides insight into the predilection 
of NF1-OPG-associated visual decline for girls. 
Gonadal estradiol binds to the estrogen receptor 
b (ERb) expressed by microglial cells and stimu-
lates them to produce neurotoxin cytokines, able 
to damage RGC axons27,44,86.

The Role of Neurons
Recent studies66 have shown that microgli-

al cells are not the only cytotype involved in 
the tumor-stroma interactions that promote optic 
gliomagenesis. Preclinical studies66 have demon-
strated that also central nervous system neurons 

(i.e., RGCs) may support neoplastic growth by 
secreting paracrine factors necessary for tumor 
initiation and progression in an NF1 mutation- 
and neuronal activity-dependent manner. 

Specifically, a neuronal cell surface protein 
(NLGN3) and a neurite growth-promoting factor 
(midkine), both released in a RAS-independent 
fashion, have been called into question (Figure 
1). NLGN3 is a synaptic adhesion protein ex-
pressed by oligodendrocyte precursor cells and 
neurons, whose ectodomain is cleaved by A Dis-
integrin and Metalloproteinase 10 (ADAM10)87. 
This enzyme, mainly secreted by neurons, is 
activity-dependent: in the context of the baseline 
hyperexcitability of Nf1+/- neurons8, light-evoked 
stimulation of RGCs during a susceptible inter-
val in  Nf1OPG  mice post-natal life results in an 
increased secretion of ADAM10 and, therefore, 

Figure 1. Flowchart summarizing the recently described 
molecular events occurring in Nf1-mutant RGCs and 
leading to NF1-OPG initiation and/or progression. 
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in an increased NLGN3 shedding66. The latter 
event seems to be crucial for both the initiation 
and the progression of murine OPGs, consistent 
with previous studies87-89 in xenografts mod-
els demonstrating the role of this molecule in 
the progression of high-grade gliomas (HGGs). 
For reasons yet to be clarified, Arginige 1809 
Cysteine (Arg1809Cys) Nf1-conditional mutant 
mice which, just like patients with the cyti-
dine-to-thymidine R1809C germline NF1 gene 
mutation90,91, never develop OPGs, do not exhibit 
increased expression of the ADAM10 transcript 
and consequently do not undergo increased NL-
GN3 shedding65. These finding underscores both 
the importance of  NLGN3 in optic glioma-
genesis and the mutation-dependence of NF1-
OPGs formation. Similarly, in a recent study, 
Nf1OPG mice that reared in the dark from 6 to 16 
weeks did not develop OPGs, whereas this tu-
mor formed in all Nf1OPG mice raised in regular 
light cycles66. Taken together, these results raise 
the possibility that neuronal activity-triggered 
NLGN3 shedding into the tumor microenvi-
ronment drives the initiation and promotes the 
maintenance of NF1-OPGs.

The second important OPG trophic molecule 
is midkine, whose secretion depends on the base-
line hyperexcitability exhibited by Nf1-mutant 
RGCs66, caused by HCN channel dysregulation67. 
Indeed, HCN channel targeting using its agonist 
lamotrigin decreased firing rates in vitro, while 
also reducing midkine (Mdk) RNA and protein 
levels and blocking Nf1-OPG progression, but 
not initiation, in vivo (i.e., in OPG-bearing Nf1f/

neo; hGFAP-Cre mice)66.
Studies on human induced pluripotent stem 

cell (iPSC)-derived CNS neurons revealed that, 
similarly to NLGN3, midkine expression is in-
creased in neurons harboring Nf1 mutations that 
are found in NF1 patients who develop OPGs, 
but not in Nf1+/- neurons with the Arg1809Cys 
mutation92.

Midkine is part of the so-called neuron-im-
mune-cancer cell axis. In murine models of Nf1-
OPGs, Nf1-mutant neurons secrete midkine to 
stimulate T-cell C-C Motif Chemokine Ligand 4 
(Ccl4) expression, which induces microglial elab-
oration of Ccl5, an obligate OPG growth factor93. 
Moreover, Nf1+/1809 mice do not develop OPGs, 
even though their T-cells and microglia are able 
to secrete Ccl4 in response to midkine and Ccl5 
in response to Ccl4, respectively, thus suggest-
ing66 that the Arg1809Cy mutation operates at the 
level of the neuron.

Collectively, the above findings reveal that 
tumor-causing NF1 mutations in RGCs regu-
late the production of paracrine factors through 
both visual experience-evoked neuronal activity 
and HCN channel dysregulation-mediated base-
line neuronal hyperexcitability. In this model 
of tumorigenesis, NF1-OPG initiation relies on 
light-induced RGC activation and consequent 
NLGN3 shedding, whereas NF1-OPG progres-
sion requires both NLGN3 shedding and HCN 
channel-dependent baseline neuronal hyperexcit-
ability with consequent midkine production.

Determinants of Disease Heterogeneity
NF1-OPG is a disease of heterogeneity43, mean-

ing that each NF1 patient harbors a unique com-
bination of diversely assorted variables, which 
influence the probability of developing the tumor 
and the risk of experiencing tumor-associated 
visual loss. 

The identification of subgroups of patients with 
similar characteristics is crucial for both risk 
assessment purposes and for the development of 
precision medicine approaches aimed at targeting 
different phenotypes of the same disease.

Many of the determinants of disease hetero-
geneity were first identified using GEM strains. 
In addition to age, gender and tumor location 
(as previously described), other variables have 
recently been taken into account5.

Several studies94-97 leveraging human cell lines 
or iPSCs derived from NF1-patients and mice 
strains engineered to harbor specific mutations 
demonstrated that different Nf1 gene germline 
mutations yield different effects, both in terms of 
neurofibromin levels and function and in terms 
of the tumor phenotype. Further studies are re-
quired to identify predictive phenotype-genotype 
correlations, relevant for tumor-development risk 
assessment and for therapeutic purposes. Impor-
tantly, since the NF1 gene germline mutation is 
likely to impact non-neoplastic cells as well (e.g., 
RGCs), such phenotype-genotype correlations 
will hopefully also be useful for stratifying the 
risk of experiencing vision loss43.

Genomic modifiers have gained interest as po-
tential determinants of disease heterogeneity. The 
first evidence that genomic modifiers play a role 
in gliomagenesis came from a study98 on NPcis 
mice (NF1 GEM strains harboring heterozygous 
mutations in both the Nf1 and p53 genes), which 
revealed that Nf1+/- p53+/- mice maintained on a 
129 mice substrain 129S4sv/Jae (129) background 
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exhibited a low frequency of glioma formation, 
while Nf1+/-; p53+/- mice maintained on a substrain 
C57BL/6J (B6) background even developed 
HGGs. More recently, the first glioma-modifier 
locus was identified in humans, as it was shown99 
that single nucleotide polymorphisms (SNPs) in 
adenylate cyclase 8 (AC8) increases the risk of 
glioma formation in females while decreasing it 
in males. 

Although most patients with hereditary OPGs 
only harbor the NF1 gene inactivation99, recent 
data100 suggest that some of them might present 
additional genetic alterations, such as the fu-
sion event between proteins KIAA1549:BRAF 
(typical of sporadic OPGs) or PTEN monoallel-
ic mutations. Studies43 on GEM harboring these 
genetic alterations reveal a differential behav-
ior in terms of mass volume and proliferation, 
as well as a diversity in the activation of the 
signaling pathways involved in cellular growth, 
suggesting that additional targeted therapies 
might be needed in these subgroups of NF1 
patients.

From Animal Studies to Clinical Trials: 
Difficulties and Limitations

Despite the progress achieved in the field of 
cellular and molecular biology and the possibility 
of testing drugs in animal models, at present, no 
effective treatment is available for the majority of 
NF1-related tumors.

To a large extent, this is due to the difficulties 
with which animal studies are transposed to the 
clinical setting, resulting from the multiple differ-
ences between GEM models from humans43, such 
as the CNS anatomy, the histological features of 
human PAs, and the diversity of the studied pop-
ulations. Indeed, human patients represent a var-
iegated population in terms of age, gender, tumor 
location, and NF1 germline mutation, whereas 
preclinical studies are conducted on a uniform 
genetic cohort.

Moreover, in murine models, histological sam-
ples are always available and homogeneous, as 
opposed to human neoplastic samples, which 
are scant and heterogeneous, making it difficult 
to assess drug bioavailability, including brain 
penetration, and neoplastic target inhibition43. 
Consequently, researchers43 base their evalua-
tion mainly on tumor volume changes, that are 
not necessarily predictive of visual outcomes26, 
and on visual improvements, that might require 

months or years to appear18,40,43. Therefore, results 
obtained in animal studies are not always inter-
pretable and are even less applicable to human 
patients.

On the Road to Precision Medicine

Despite the lack of effective treatment options 
addressing the unique features of NF1-OPGs, 
significant progress has been made in the field of 
molecular and cellular biology, opening the way 
to promising drug design studies. 

Clinical trials adopting tumor growth-halting 
pharmacologic strategies yielded disappointing 
results. Moreover, tumor shrinkage cannot be 
considered the priority endpoint in the manage-
ment of NF1-OPGs for several reasons. First, 
tumor expansion in hereditary OPGs tends to nat-
urally decline after 7 years of age101. Second, pa-
tients rarely die as a direct consequence of tumor 
growth. Third, tumor-related visual loss does not 
primarily reflect a compressive optic neuropathy 
but rather results from cell-intrinsic and cell-ex-
trinsic mechanisms triggered by impaired neu-
rofibromin function. Radiological outcomes are, 
therefore, not closely related to visual outcomes26.

These considerations suggest that reducing or 
stabilizing the volume of the mass is therapeu-
tically suboptimal in NF1-OPGs and that future 
research efforts should focus on the molecular 
mechanisms underlying tumor-associated visual 
decline, in order to develop effective and safe 
neuroprotective strategies.

Herein, we review the main emerging pharma-
cological approaches recently assessed in pre-clin-
ical and clinical settings (Figure 2, Table I).

RAS Effector Inhibition
Since neurofibromin acts as a RAS-GT-

Pase-activating protein, initial targeted therapies 
for NF1-associated tumors leveraged RAS in-
hibitors. Specifically, farnesyltransferase inhibi-
tors blocking isoprenylation (necessary for RAS 
membrane tethering), although showing promis-
ing results in animal studies102, yielded limited 
success in patients with NF1-related plexiform 
neurofibromas103, thus prompting researchers to 
focus on other molecules in the RAS signal-
ing pathways. Mounting evidence102,103 suggests 
that inhibition of the RAS downstream effector 
pathways reduces tumor growth and, to a lesser 
extent, improves vision or prevents further visual 
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decline. So far, however, these therapies have 
largely failed to guarantee a durable effect fol-
lowing their interruption.

Inhibition of mTOR-Converging 
Pathways

Recent studies104 revealed that blocking the 
PI3K/AKT pathway (by means of PI3K inhibitor, 
BMK120, and AKT-inhibitor, MK2206) and the 
MEK/ERK pathway (by means of MEK inhibi-
tor, PD0325901) reduces Nf1-deficient astrocyte 
proliferation to wild-type levels in vitro and 
decreases optic nerve volume and glioma pro-
liferation in vivo (Nf1-OPG mice). In addition, 
both PI3K and MEK inhibition improved retinal 
dysfunction in Nf1+/- GFAPCKO mice, suggest-
ing104 a complementary role for these pathways in 
NF1-OPG-related visual impairment, in addition 
to RAS-dependent reduced cAMP generation. 

Consistently with the convergence of signaling 
pathways on mTOR and with the high levels of 
mTOR expressed by neoplastic cells48, rapamy-
cin-mediated inhibition of mTOR in cultures of 

Nf1-deficient astrocytes abrogated proliferation 
and motility phenotypes48,57. However, decreased 
tumor proliferation was also observed in rapamy-
cin-treated Nf1+/- GFAPCKO mice, the failure of 
low-dose regimens to increase tumor cell apopto-
sis and guarantee a sustained effect in vivo sug-
gests101 a tumoristatic rather than a tumoricidal 
effect of rapamycin.

These encouraging results paved the way for 
clinical studies with mTOR inhibitors. In a recent 
trial105, 19 patients (8 with NF1) received erlo-
tinib and rapamycin for recurrent LGGs failing 
to respond to conventional treatment. While this 
2-drug regimen was well tolerated, no objec-
tive responses were documented in patients with 
sporadic LGGs, while only one NF1 patient had 
a partial response (PR), defined as a ≥50% re-
duction in the bi-directional measurement of the 
tumor. Moreover, only two patients (both with 
NF1) maintained stable disease for more than 1 
year after completion of treatment.

Shortly after the rapamycin-erlotinib trial, oth-
er attempts were made to manage pediatric LGGs 
with non-conventional agents. 

Figure 2. Scheme of the main molecular pathways dysregulated in NF1-OPGs and of the associated potential therapeutic 
targets.
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LGGs = low-grade gliomas; NF1 = neurofibromatosis type 1; PR = partial response; CR = complete response; SD = stable 
disease; MRI = magnetic resonance imaging; RP2D = recommended phase II dose; DLTs = dose-limiting toxicities; PFS = 
progression-free survival; OPG = optic pathway glioma; VEP = visual evoked potential; BCVA = best-corrected visual acuity; 
VF = visual field; PhNR = photopic negative response; RNFL = retinal nerve fiber layer thickness; OCT = optical coherence 
tomography.

Table I. Summary of the most relevant clinical trials in patients with NF1-OPGs.

	 Tested	 Pharmacological	 Trial phase	 Study	 Primary	
	 molecule(s)	 class 	 and Identifier	 population	 endpoint	 Main results

Erlotinib +	 mTOR inhibitor	 Phase I	 19 patients with	 Radiographic	 No objective
Rapamycin		  NCT00901849	 recurrent LGG,	 and clinical	 response, except
			   8 with NF1-LGG	 evaluation 	 for 1 NF1 patient
				    for one year	 who had PR

Everolimus	 mTOR inhibitor	 Phase II	 23 patients with	 Objective	 68% of patients
		  NCT01158651	 radiologic-	 response rates	 exhibited some
			   progressive, 	 (CR, PR, SD	 tumor response
			   NF1-LGG and 	 assessed by	 (shrinkage of
			   prior treatment	 MRI) at 	 arrest of tumor
			   with a carboplatin-	 48 weeks	 growth); of these,
			   containing 		  66% remained
			   chemotherapy		  free of progression.

Sorafenib	 Multikinase	 Phase II	 11 patients with	 Objective	 Acceleration in
	 inhibitor	 NCT01338857	 recurrent LGG, 	 response rates	 tumor growth
			   3 with NF1-LGG	 (CR, PR, SD	 within 3 treatment
				    assessed by MRI)	 cycles in >80% 
					     of patients

Selumetinib	 MEK inhibitor	 Phase I	 38 patients with	 RP2D and DLTs	 4/5 NF1 patients
		  NCT01089101	 progressive LGG, 		  had some tumor
			   5 with NF1-LGG		  response, but none 
					     exhibited PR
		  Phase II (ongoing)	 Patients assigned	 Objective	 10/25 patients in
		  NCT01089101	 to 6 strata. Stratum 	 response rates	 stratum 3 (40%) 
			   3 included 25	 (CR, PR, SD	 achieved PR with a
			   patients with 	 assessed	 2-year PFS of
			   NF1-LGG	 by MRI)	 96±4%. Only 1 
					     patient progressed 
					     while on treatment.

Bevacizumab +	 Angiogenesis	 Phase II	 10 children with	 Objective	 3/3 NF1 patients
irinotecan	 inhibitor	 NCT00381797	 multiply recurrent	 response rates	 exhibited an
			   LGG, 3 with 	 (CR, PR, SD 	 objective response
			   NF1-LGG	 assessed by	 by MRI, 2/3 NF1
				    MRI) sustained	 patients showed
				    for ≥ 8 weeks	 some clinical 
					     improvement 

Nerve Growth	 Neuroprotective	 Phase I	 5 children with	 Median VEP	 Progressive increase
Factor (eye 	 agent	 CHF6467-OPG	 advanced optic	 amplitude	 in median VEP
drops)				    nerve atrophy		  amplitude
				    due to OPG, 		
				    3 with NF1-OPG		
		  Phase II	 18 OPG patients	 BCVA, Goldman	 Significant
		  CHF6467-OPG	 with stable disease	 perimeter VF	 improvements in
			   and severe visual	 size, PhNR	 PhNR amplitude
			   loss, 13 with NF1 	 (amplitude and	 at 180 days, PhNR
			   (10 patients	 latency), VEP	 latency at 15 days,
			   received NGF eye 	 (amplitude and	 and VEP amplitude
			   drops, 8 patients	 latency), RNFL	 at 30 days; 3 patients
			   received placebo)	 thickness 	 experienced a
				    (assessed by	 significant VF 
				    OCT)	 enlargement
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In a multicenter, prospective, open-label, 
phase II clinical trial106, 11 patients with pro-
gressive or recurrent LGGs (3 with NF1) who 
had failed at least 1 regimen of chemotherapy 
were treated with sorafenib, a multikinase in-
hibitor targeting vi-raf murine sarcoma viral 
oncogene homolog B1 (BRAF), vascular endo-
thelial growth factor receptor (VEGFR), plate-
let-derived growth factor receptor alpha (PDG-
FR), and protooncogene receptor tyrosine kinase 
(c-kit), which had yielded promising results in 
preclinical trials. However, since more than 80% 
of patients (irrespective of their NF1 or BRAF 
status) experienced an acceleration in tumor 
growth within 3 treatment cycles, the study was 
terminated early. Subsequent in vitro studies107 
suggested that the observed effect was due to the 
paradoxical activation of ERK.

To bypass this effect, attention was shift-
ed to MEK inhibitors. A phase I trial108 with 
orally-available MEK1/2 inhibitor selumetinib 
(AZD62DD) enrolled 5 patients with NF1-asso-
ciated recurrent or refractory LGG, 4 of whom 
had some tumor response, but none exhibited 
PR (≥50% reduction in the tumor) to the treat-
ment. The phase II trial assigned patients to 
6 strata based on histology, BRAF aberration, 
and NF1 to allow correlation with tumor re-
sponse and progression-free survival (PFS). 
Stratum 3 included 25 patients with NF1-LGG, 
10 of whom (40%) achieved PR with a 2-year 
PFS of 96±4%. Only 1 patient progressed while 
on treatment109.

The most recent mTOR-targeting clinical trials 
employed everolimus, an oral derivative of rapa-
mycin that acts on neoplastic cells directly, by 
inhibiting neoplastic growth and proliferation, and 
indirectly, by down-regulating factors involved 
in tumor vascularity, such as the tumor cell hy-
poxia-inducible factor 1 and VEGF. The phase II 
study110 investigated the safety and efficacy of dai-
ly oral everolimus on radiographically progressive 
NF1-associated pediatric LGGs previously treated 
with chemotherapy. Everolimus resulted in disease 
stability or shrinkage at 48 months (primary end-
point) in 68% of the patients enrolled in the trial 
and was well-tolerated, even though functional 
end-points were not collected.

c-AMP-Elevating Strategies
Since mounting evidence60,61 indicates that re-

duced intracellular cAMP levels contribute to 
OPG growth and, more importantly, are the ma-

jor determinant of NF1-OPG-associated visual 
decline, cAMP-elevating agents have been lever-
aged in preclinical studies. cAMP-restoring strat-
egies (either with an adenylyl cyclase activator, 
forskolin, or with a phosphodiesterase-4 inhibi-
tor, rolipram), have been shown61 to reverse the 
phenotypical alterations observed in Nf1-mutant 
CNS neurons to wild-type levels in vitro, while 
attenuating RGC apoptosis and inhibiting OPG 
growth in vivo60.

Moreover, lovastatin, a negative RAS regulator 
active on both the mTOR-converging signaling 
pathways and RAS-cAMP-mediated RGC sur-
vival62, has been used in 12-week-old NF1-OPG 
mice with the aim of instituting treatment before 
30% RGC loss occurred. While the effect on tu-
mor proliferation and volume was limited in time, 
a long-lasting preservation of RGC numbers and 
retinal nerve fiber layer (RNFL) thickness was 
observed, suggesting that there is a therapeutical-
ly relevant interval during which the adoption of 
neuroprotective strategies prevents further dam-
age to the visual pathway44.

Toward Stroma-Directed Molecular 
Therapies

Microglia
As tumor formation and tumor-associated vi-

sion loss require a permissive NF1+/- cellular 
microenvironment, a fascinating line of research 
is looking at microglia to design stromal-di-
rected molecular therapies. Microglia-inhibiting 
strategies have not yet reached clinical trials, 
but preclinical studies conducted over the last 
15 years have provided exciting clues regard-
ing their great potential84,86,111-114. Many com-
plementary approaches have been employed in 
these proof-of-principle studies. One of the first 
successful attempts leveraged a Jun N-terminal 
kinase (JNK) inhibitor, SP600125, to block the 
corresponding pathway that has been found111 
to be hyperactive in Nf1-mutant microglia, but 
not in Nf1-deficient astrocytes: JNK blockade 
of Nf1-mutant microglia ameliorated its in-
creased proliferation and motility phenotypes 
in vitro and reduced OPG proliferation in vivo. 
Consistently, ganciclovir-mediated ablation of 
brain microglia in integrin CD11b-TK transgen-
ic mice114 and genetic reduction of optic nerve 
microglia in FMC mice by means of impaired 
Cx3cr1 (chemokine receptor driving microglia 
migration) expression113 reduced tumor prolifer-
ation and delayed tumor formation, respectively, 
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while treatment with Ccl5 neutralizing anti-
bodies even improved NF1-associated retinal 
dysfunction in vivo84.

Microglia is thought86 to be responsible for the 
sexually dimorphic visual loss observed in mu-
rine models, as suggested by the fact that female 
NF1-OPG mice have 3-fold more microglia than 
their male counterparts and that minocycline 
inhibition of these cells decreases RGC apopto-
sis in vivo. Moreover, pharmacologic inhibition 
of microglial ERb function by means of selec-
tive estrogen receptor antagonist PHTPP reduced 
both proliferating Ki-67+ cells and RGC apop-
totic TUNEL+ cells in female NF1-OPG mice86. 
While this finding86 establishes the ERb-driven 
activation of microglia as a key determinant in 
NF1-OPG sexually dimorphic visual loss in mice, 
further investigation is needed to explain the 
corresponding gender predilection in pediatric 
patients.

Neurons
The importance of NF1-mutant RGCs in the 

formation and progression of OPGs has great po-
tential for clinical translation. Over the last years, 
the ADAM10-NLGN3 axis and the neuron-im-
mune-cancer cell axis have emerged as attractive 
therapeutic targets. Recently, researchers87 have 
demonstrated that treatment of Nf1+/- mice with 
GI254023X (a specific and brain-penetrant inhib-
itor of ADAM10) reduces NLGN3 shedding in 
the optic nerve.  In addition, it phenocopies the 
effects of NLGN3 loss or dark-rearing in Nf1-
OPGs. Indeed,  optic nerve volumes and prolifer-
ation in Nf1OPG mice treated with GI254023X are 
indistinguishable from those found in wild-type 
mice66. Furthermore, the efficacy of lamotrig-
ine in blocking Nf1-OPG progression in vivo 
establishes the HCN channel – and the down-
stream midkine-Ccl4-Ccl5 pathway – as a targ-
etable regulator of neuronal activity-dependent 
tumor growth for the treatment of childhood 
NF1-OPGs65.

Angiogenesis Inhibitors
The evidence115 of VEGF-VEGFR signaling 

hyperactivity in pediatric LGGs and the en-
couraging results yielded in HGG adult patients 
treated with bevacizumab116-118, an anti-VEGF 
monoclonal antibody, were the rationale for the 
administration of bevacizumab and irinotecan in 
10 children with multiply-recurrent LGGs (3 with 
NF1) lacking other treatment options. All three 
patients with NF1 exhibited an objective response 

assessed by MRI (2 partial responses and 1 minor 
response), and 2 of them showed some sort of 
clinical improvement (including increased vision 
in 1 patient)119.

In a recent case series120, 4 pediatric patients 
with OPG (2 with NF1) already treated with che-
motherapy or radiotherapy received treatment with 
bevacizumab (alone or combined with irinotecan) 
for progressive visual acuity or visual field loss. All 
4 patients showed a radiologic response (decreased 
in size and enhancement by MRI) and experienced 
marked visual improvement, with near-complete 
visual field restoration in 1 of the 2 NF1 patients. 
These impressive results on OPG-mediated visu-
al loss may be ascribed to a combined effect on 
tumor expansion and tumor-associated inflamma-
tory edema. However, caution is required prior to 
administering bevacizumab, since transient leuko-
encephalopathy, proteinuria, and hypertension are 
reported adverse events119,120.

Nerve Growth Factor (NGF)
Since the leading cause of morbidity in chil-

dren with OPGs is progressive and largely irre-
versible visual loss, future efforts should shift 
towards neuroprotection and neuroregeneration 
of the retina and the optic pathway. 

Nerve growth factor (NGF) is a neurotrophin 
that acts on peripheral and central neurons, as well 
as on non-neuronal cells71,121,122. The therapeutic 
potential of NGF has been proposed for a number 
of non-ocular neurological conditions, including 
Alzheimer’s disease123 and sensitive neuropathy 
associated with diabetes124, and HIV infection125. 
More recently, it has been proposed126,127 to use 
NGF topically. The rationale for the use of topical 
NGF in OPGs comes from studies126,127 showing 
that, when applied to the conjunctiva, this mole-
cule reaches the retina, the optic pathway, and the 
cerebral cortex, demonstrating biological activity 
in these regions. 

In 2011, Falsini et al128 evaluated the effects of 
topical NGF in 5 children with advanced optic 
nerve atrophy due to LGGs and showed that, 
compared to the untreated controls, there was a 
progressive increase in visual evoked potential 
(VEP) amplitude (primary end-point) peaking at 
90 days post-treatment and declining at 180 days, 
though still remaining above the baseline level. 
These promising results led to a randomized, 
double-blind, phase II clinical trial129 in 18 OPG 
patients with stable disease and severe visual loss. 
Patients were evaluated by testing visual acuity, 
visual field, VEPs, optic coherence tomography 
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(OCT), electroretinographic photopic negative 
response (PhNR), negative-going wave following 
the b-wave of the cone electroretinogram driven 
by RGCs, and MRI before and after treatment at 
15, 30, 90, and 180 days. Treatment with NGF led 
to statistically significant improvements in PhNR 
amplitude at 180 days, PhNR latency at 15 days, 
and VEP amplitude at 30 days, and 3 NGF-treat-
ed patients experienced a significant visual field 
enlargement129.

In both these exploratory studies128,129 no effect 
was reported on tumor growth. Moreover, treat-
ment was well tolerated in all patients, with no 
ocular adverse events, other than a short-lasting 
mild periocular burning in a few of them.

Conclusions

Since NF1-OPGs are not amenable to complete 
resection, their treatment is based on non-sur-
gical strategies. The risk of developing second-
ary malignancies, radio-induced vasculitis, and 
neurocognitive and neuroendocrine impairments 
greatly limits the role of radiotherapy in NF1 
pediatric oncologic patients, whereas chemother-
apy has a better risk-benefit profile in this set-
ting. Traditional chemotherapy, however, does 
not significantly ameliorate visual function, and 
its effectiveness on halting tumor growth cannot 
be considered a satisfactory result in the manage-
ment of these patients. 

Newer lines of research should therefore be 
pursued with the goal of stabilizing or improving 
the vision, rather than the tumor volume, of these 
patients. Future clinical trials in pediatric patients 
with low-grade gliomas should plan recruitment 
stratification and statistical analysis by NF1 sta-
tus. In addition, these clinical studies should 
include vision function endpoints as a distinct 
outcome measure of efficacy.

The growing understanding of the unique cel-
lular and molecular characteristics of NF1-OPG, 
coupled with the recent publication of promising 
clinical studies, raise cautious hopes that further 
progress will be made to break down the barriers 
that still stand in the way of precision medicine 
and that targeted therapies will indeed become 
a first-line treatment option for NF1-OPG in the 
near future.
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