A radiomics method based on MR FS-T2WI sequence for diagnosing of autosomal dominant polycystic kidney disease progression

L. CONG¹, Q.-Q. HUA², Z.-Q. HUANG², Q.-L. MA³, X.-M. WANG², C.-C. HUANG³, J.-X. XU³, T. MA²

¹Department of Interventional Ultrasound, Shandong Medical Imaging Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
²Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
³Department of Radiology, Tai'an City Central Hospital, Taian, China

Lin Cong and Qianqian Hua contributed equally to this work

Abstract. — OBJECTIVE: We aimed to construct/validate a radiomics method based on MR FS-T2WI sequence for the evaluation of kidney function in patients with autosomal dominant polycystic kidney disease (ADPKD).

PATIENTS AND METHODS: The clinical data and MRI images of 114 patients with ADPKD were retrospectively analyzed. With a glomerular filtration rate of 60 mL/min per 1.73 m² as the cutoff value, patients were divided into two groups, where there were 59 patients with GFR ≥60 mL/min per 1.73 m² (including CKD1 and CKD2 phase) and 55 patients with GFR <60 mL/min per 1.73 m² (including CKD3 phase and higher). All patients underwent the 3.0T MR scan of the kidney. Then, the kidney were delineated layer by layer based on the FS-T2WI sequence to obtain the volume of interest (VOI) for radiomics features extraction. The optimal radiomics features were selected by least absolute shrinkage and selection operator (LASSO). Three kinds of data modality including the pure clinical data, the pure image data and the clinical-image fused data were utilized to establish three types of models (clinical, image and with their combination) separately by five machine learning classifiers: k-nearest-neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forests (RF) and multi-layer perception (MLP). Receiver operating characteristic (ROC) curve, areas under the curve (AUC), sensitivity, specificity and precision were employed to evaluate the model’s effectiveness to diagnosis the glomerular filtration rate of patients with ADPKD based on different models. Besides, Delong test was applied to compare ROCs between models.

RESULTS: 960 radiomics features were extracted from each VOIs, and clinical information included the gender and age of each patient. After feature selection, 23 and 21 features based on pure image data and clinical-image fused data were independently used to construct models for the kidney function evaluation. The clinical-image fused model (AUC=0.89) has better performance than the pure image model (p=0.046) and pure clinical model (p<0.001). Clinical-image fused model based on LR classifier showed the best diagnostic efficiency, with AUC=0.89, sensitivity=0.8867 and specificity=0.7959.

CONCLUSIONS: The MR FS-T2WI radiomics analysis based on clinical-image fused model is instrumental in evaluating and predicting the kidney function of patients with polycystic kidney disease.

Key Words: Autosomal dominant polycystic kidney disease, Magnetic resonance imaging, Radiomics, Kidney function.

Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal cystic disease, the prime manifestations of which are vesicles in varied dimensions diffusing and distributing both kidneys, often involving tissue and organs, such as the liver, spleen and...
cerebral arteries. The formation and dimension enlargement of progressive renal cysts will destroy the structure and function of kidneys, and eventually result in end-stage renal disease. End-stage renal disease is recognized as one of the four major disease leading to renal failure, from which there are 12.5 million people are suffering around the world. Precise clinical evaluation on renal function plays a critical part in prognosis for patients with polycystic kidney disease. Serum creatinine level (Scr) and estimated glomerular filtration rate (eGFR) are two popular indices in clinical monitoring of ADPKD renal function. Estimated GFR, however, does not change until the later phase of diseases due to compensatory glomerular hyperfiltration, thus constraining its exercise in advanced diseases. In recent years height-adjusted total kidney volume (htTKV) is considered to be another biological indicator available for identifying the progression of polycystic kidney disease. However, its universal applicability remains controversial in terms of the diagnostic potency for middle and advanced patients and the efficacy of drugs. MRI holds a significant superiority in polycystic kidney disease diagnosis. Its routine sequences are so clear as to present the location, morphology, internal ingredients and density of cysts, and the condition of residual renal parenchyma. Also, MRI provides multi-functional imaging sequences and quantitative techniques, such as diffusion weighted imaging (DWI), intra-voxel incoherent motion (IVIM) and blood oxygen level dependent (BOLD), to closely observe the changes in renal structure. As the advancement of precision medicine, the use of high throughput to extract quantitative information from medical images comes to the foreground. MRI image-based radiomics analysis shows a better performance in quantizing image information. It cannot only uncover potential image information naked eyes cannot discern but also reflect pathological changes. Routine MRI radiomics analysis are gradually being applied to diagnosis and treatment for major visceral diseases of abdominal and pelvic cavities, including liver tumor and rectal cancer. In contrast, its practice in polycystic kidney disease is barely reported. This study, by extracting the omics features of FS-T2WI sequence images from patients with polycystic kidney disease and multivariate analysis, aims to establish a machine learning model useful for diagnosis and prediction of the polycystic kidney disease progression.

Patients and Methods

Patients

This study was approved by the Ethics Committee of Shandong Provincial Hospital Affiliated to Shandong University. Signed written informed consents were obtained from all participants before the study. 114 patients with polycystic kidney disease, who received outpatient diagnosis and hospitalization diagnosis and treatment in our hospital from January 2017 to June 2019, were given retrospective analysis. Of these patients, 54 were males and 60 were females, aged between 24 and 75 years old, with an average of 49.11±9.85 years old. Chronic kidney disease (CKD), according to the US clinical practice guidelines for chronic kidney disease and dialysis (NKF-K/DQOI), were divided into 5 stages. With a glomerular filtration rate of 60 mL/min per 1.73 m² as the division boundary, these patients were divided into two groups. One group contained 59 patients with a GFR ≥ 60 mL/min per 1.73 m² (including CKD1 and CKD2 stages), and the other grouped 55 patients having a GFR < 60 mL/min per 1.73 m² (including CKD3 and more advanced stages). The inclusion criteria were as follows: (1) all patients should be equipped MRI examination including FS-T2WI sequence before treatment; (2) there were no artifacts that may impact image texture analysis; (3) and glomerular filtration rate examination should be performed before treatment and no longer than 72 h from MRI examination. Meanwhile, the exclusion criteria referred to patients (1) with MRI contraindications and (2) with a blurred boundary between renal lesion and surrounding structures.

Examination Methods

All patients were given routine renal MRI plain scanning. The scanning adopted Siemens 3.0T MRI scanner to perform with supine position and head-first position, and 8-channel abdominal phased array coil (Magnetom Verio, Siemens, Erlangen, Germany) to receive signals and covered the whole kidneys. Before the scanning, fasting time was required and kept for 6-8 h. The transversal axial image T2WI employed breath-triggered fat suppression FSE sequence. Scanning parameters included TR 2000-6000 ms, TE 80-104 ms, echo train length 8-16, matrix 320-224, thickness 6 mm, inter-layer space 0.6 mm, and field of vision 36 cm × 36 cm – 40 cm × 40 cm.
Image Annotations
All the patient FS-T2WI images were exported in "*.DICOM" from picture archiving and communication system (PACS) and uploaded to the Dr. Wise Multimodal Research Platform (https://research.deepwise.com) (Beijing Deepwise & League of PHD Technology Co., Ltd, Beijing, China) for radiomics analysis, including image annotation and feature extraction.

The radiomics analysis process was shown in Figure 1.

Two medical practitioners with 10-year practical experience of imaging diagnosis were invited to operate the software and interpret images. For the region where the two doctors stood with different views, exchange discussion was so necessary as to reach an agreement. Four image outline approaches were involved as shown below:
1. Instead of a specific division on each cyst, all the renal lesions were viewed as a whole and outlined.
2. Except for the newly emerged layer and the about-to-disappear layer of a focus, all the contour layers of a kidney were given ROI outlining to acquire renal volume of interest (VOI).
3. Semi-automatic outlining was applied. The outlining software equipped in the radiomics platform could automatically identify the rough contour of a lesion. Where the outlining effect was not satisfactory, manual adjustment was available.
4. If necessary, the interactive viewer mounted in the outline software may be opened to localize in combination with sagittal and coronal images.

Characteristic Extraction
Original MR images should be pre-processed by a high-throughput or low-throughput wavelet filter and Laplace-Gaussian filter with different λ parameters for 8 wavelet-preprocessed images and 5 images pre-processed by Laplace-Gaussian filter. From the original MR images and the preprocessed images were extracted radiomics features, including the first order features of pixel value of the images, the morphological features of the lesions, and the texture features.

![Figure 1. The flow chart of radiomics process.](image-url)
describing the morphology of a tumor, as well as the texture features of gray level cooccurrence matrix (GLCM), gray level run length matrix (GLRLM), gray level size zone matrix (GLSZM) and gray level dependence matrix (GLDM) used to describe the internal and external texture of a tumor. From each lesion 960 radiomics features were extracted in total for Z-score standardization (i.e. the value was subtracted from the mean and then divided by the standard deviation). LASSO (Least Absolute Shrinkage and Selection Operator) algorithm was applied at last for feature dimension reduction and feature selection. The method apply a shrinking (regularization) process where it penalizes the coefficients of the regression variables shrinking some of them to zero. During features selection process the variables that still have a non-zero coefficient after the shrinking process are selected to be part of the model. The goal of this process is to minimize the prediction error.

Model Construction

The study, in view of different types of data modality, three types of models (clinical, image and with their combination) were respectively constructed by five machine learning classifiers to diagnose and determine the progression of polycystic kidney disease. The five machine learning classifiers were included: k-nearest-neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forests (RF), multi-layer perception (MLP). Each model was built by 5-fold cross validation strategy, evaluated with receiver operating characteristics (ROC) curve, areas under the curve (AUC), sensitivity, specificity and precision. The ROCs of every two models were compared using Delong test.

Statistical Analysis

The machine learning classifiers were structured by Scikit-learn software package (Version 0.20.3); ROC curves were drawn with Matplotlib (Version 3.1.0). Delong test was performed by software MedCalc (Version 19.0.2). *p*<0.05 was considered to be statistically significant.

Results

Radiomics Features Analysis

This study attached the focus on the original images and extracted through wavelet transform 960 imaging features that included 198 first-order features, 14 shape features and 748 texture features. The clinical information of each patient includes gender and age. The clinical-image fused data required the 960 original radiomics features and 2 clinical information for further analysis. Feature selection and reduction were completed by LASSO. From pure imaging data, key relevant features were selected and acquired by 5-fold cross validation. As shown in the Diagram of LASSO Mean Square Error Path (Figure 2), the dotted lines in different colors together represent that each group of cross validation samples corresponds a specific \(-\log(\alpha)\) and comes to a distinct square error. The black solid line denotes the mean of ten groups of square errors. An optimal alpha refers to the one where the mean square error reaches to the lowest. The optimal alpha obtained here was 0.02206 while the \(-\log(\alpha)\) was 1.65647. In the Diagram of Coefficient Solution Path (Figure 3)
The longitudinal axis stands for the coefficient of each feature in the LASSO model. These coefficients change with the values of alpha. Thanks to the correspondence, it is feasible to discover the coefficient of a characteristic in view of the optimal alpha. Given that features with a non-zero coefficient were selected, 23 features of clinical significance were eventually selected, included 6 features extracted through the original images, 11 features processed by wavelet transform, and 6 features treated with Laplace transform; 10 first-order features, 3 morphological features and 10 texture features (Figure 4).

From the clinical-image fused data were acquired with an optimal alpha of 0.02365 and a –log (alpha) of 1.62617. The diagrams of LASSO square error path and coefficient solution path are shown as Figure 5 and Figure 6. After dimension reduction, from the 960 original features 21 ones with clinical significance were selected, including 5 extracted by original images, 9 through wavelet transform and 6 through Laplace transform; or 8 first-order features, 2 morphological features and 10 texture features, together with the age information of each patient (Figure 7).

Machine Learning Model Evaluation

Three types of models (clinical, image and with their combination) were built by five classifiers including LR, SVM, RF, KNN, as well as MLP. Results of predictive performance (AUC, sensitivity, specificity, and accuracy) is summarized in Table I.

Figure 8 illustrates the diagnostic potency of LR model on the function of kidneys infected by polycystic kidney disease under different data modality. To compare and determine whether machine learning models can differ from each other, the ROC curve of each model were given DeLong test (Table II). Take LR classifier as an example, the differences between three models under different data were compared. The clini-
The clinical-image fused model (AUC=0.89) showed an improved performance over the pure image model ($p=0.046$) and pure clinical model ($p<0.001$). Regard the other 4 machine learning models, the clinical-image model demonstrated a more satisfactory effect than pure image model, but without a statistically significant difference ($p>0.05$), whereas showed a significantly superior effect than pure clinical model ($p<0.05$).

To study the diagnostic potency of the model built with clinical-image fused data, the diagnostic efficacy of different classifiers on the renal function infected by polycystic kidney disease were compared. Their ROC curves are shown in Figure 9. DeLong test indicated the presence of a statistical difference between LR model and RF model ($p=0.0087$), and an absence of obvious difference between the other 4 models (SVM, RF, KNN and MLP).

The study investigated the potency of different classifiers to diagnose the renal function infected by polycystic kidney disease under image model. Their ROC curves are shown in Figure 10. Through DeLong test, the MLP model was found to have the maximum AUC of 0.85, indicating that it held the best diagnostic potency. Between the RF model and the MLP model a significant statistical difference ($p=0.0226$) was noted, so was between the RF model and the KNN model ($p=0.0328$), while no remarkable difference was found between other models.

The image data clinical fusion model, built by LR to evaluate renal function, presenting an AUC of 0.89, sensitivity of 0.8667 and specificity of 0.7959, considered to possess the best diagnostic potency. Among image models, the MLP model reached the optimal diagnostic potency with a performance of 0.85 in AUC, 0.8222 in sensitivity and 0.7347 in specificity.

Figure 6. Diagram of clinical-image fused data coefficient solution path.

Figure 7. 21 radiomics features Screened by Clinical-image Fused Data Dimension Reduction and their Corresponding Characteristic Coefficients.
In recent years, with the development of artificial intelligence, radiomics technology has become a research focus in the field of medical imaging. Using mathematical and statistical methods, radiomics analysis analyzes the gray distribution features of pixels in images, extracts from the images the radiomics features (including first-order features, shape features and texture features) not recognizable for human eyes, and at last, in a quantitative way, described these radiomics features acquired. This technique, thanks to its prevention from the effect of subjective factors and professional levels of medical practitioners, could be working as a remedy for the defects lying in routine examinations and imaging. It has been applied to diagnoses of multiple viscera organs and various diseases, but remains rare in the studies on polycystic kidney disease. Height-adjusted TKV though globally recognized as a reliable indicator to reflect the renal function infected by polycystic kidney disease, and the indicator itself can only reflect the size of kidneys, indicate the overall progression of diseases, but not provide more information related to renal tissue and structure in MRI or CT images. Resorting to the difference in T2

Table I. Performances of clinical, image, combined clinical and image models.

<table>
<thead>
<tr>
<th>Classifier</th>
<th>AUC</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>0.67 ± 0.09</td>
<td>0.8222</td>
<td>0.4694</td>
<td>0.6383</td>
</tr>
<tr>
<td>SVM</td>
<td>0.62 ± 0.10</td>
<td>0.6889</td>
<td>0.5306</td>
<td>0.6064</td>
</tr>
<tr>
<td>RF</td>
<td>0.67 ± 0.10</td>
<td>0.8444</td>
<td>0.4490</td>
<td>0.6383</td>
</tr>
<tr>
<td>KNN</td>
<td>0.60 ± 0.10</td>
<td>0.9556</td>
<td>0.2653</td>
<td>0.5957</td>
</tr>
<tr>
<td>MLP</td>
<td>0.57 ± 0.10</td>
<td>0.5556</td>
<td>0.7551</td>
<td>0.6596</td>
</tr>
<tr>
<td>Image model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>0.83 ± 0.07</td>
<td>0.7111</td>
<td>0.8163</td>
<td>0.7660</td>
</tr>
<tr>
<td>SVM</td>
<td>0.84 ± 0.07</td>
<td>0.8222</td>
<td>0.7959</td>
<td>0.8085</td>
</tr>
<tr>
<td>RF</td>
<td>0.74 ± 0.08</td>
<td>0.8889</td>
<td>0.5102</td>
<td>0.6915</td>
</tr>
<tr>
<td>KNN</td>
<td>0.83 ± 0.07</td>
<td>0.7111</td>
<td>0.7959</td>
<td>0.7553</td>
</tr>
<tr>
<td>MLP</td>
<td>0.85 ± 0.07</td>
<td>0.8222</td>
<td>0.7347</td>
<td>0.7765</td>
</tr>
<tr>
<td>Fused model</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR</td>
<td>0.89 ± 0.06</td>
<td>0.8667</td>
<td>0.7959</td>
<td>0.8298</td>
</tr>
<tr>
<td>SVM</td>
<td>0.87 ± 0.06</td>
<td>0.8888</td>
<td>0.7959</td>
<td>0.8404</td>
</tr>
<tr>
<td>RF</td>
<td>0.80 ± 0.08</td>
<td>0.9111</td>
<td>0.5714</td>
<td>0.7340</td>
</tr>
<tr>
<td>KNN</td>
<td>0.84 ± 0.07</td>
<td>0.6667</td>
<td>0.8776</td>
<td>0.7767</td>
</tr>
<tr>
<td>MLP</td>
<td>0.86 ± 0.06</td>
<td>0.8222</td>
<td>0.8571</td>
<td>0.8404</td>
</tr>
</tbody>
</table>

Table II. Data modalities and statistical differences between machine learning models.

<table>
<thead>
<tr>
<th>Clinical + image data vs. image data</th>
<th>Clinical + image data vs. clinical data</th>
<th>Image data vs. clinical data</th>
</tr>
</thead>
<tbody>
<tr>
<td>LR</td>
<td>0.0466</td>
<td>0.0002</td>
</tr>
<tr>
<td>SVM</td>
<td>0.4013</td>
<td>0.0002</td>
</tr>
<tr>
<td>RF</td>
<td>0.3028</td>
<td>0.0492</td>
</tr>
<tr>
<td>KNN</td>
<td>0.7259</td>
<td>0.0004</td>
</tr>
<tr>
<td>MLP</td>
<td>0.7616</td>
<td>< 0.0001</td>
</tr>
</tbody>
</table>

Figure 8. ROC Curves of LR Model of Different Data Modalities (clin-image: model of imaging features and clinical information; image: model of imaging features alone; clin: model of clinical information alone).
between tissue, MRI FS-T2W1 sequence can not only clearly displays the morphology of lesions but also embody the pathological features of diseased tissue. This sequence well performs in distinguishing liquid-filled cysts (high signal intensity) from renal parenchyma (low signal intensity). It thus holds an evident superiority in diagnosing diseases which are characterized and manifested by progressive polycystic disease, for example, autosomal dominant polycystic kidney disease (ADPKD)24. Furthermore, the addition of inter-tissue contrast ratio enables images to contain more radiomics features with meaningful in the differentia diagnosis25. As early as 2016, the ERA-EDTA WGIKD/ERBP statement has recommended MRI examination to clinical practice for diagnosis of ADPKD patients’ fast advancement phases26. By the aid of radiomics analyzing techniques, we are now able to collect from MRI images a great many quantitative indicators, such as grayscale distribution, inter-voxel spatial relationships and texture heterogeneity. Meanwhile, these indicators are enabled to reflect in a more accurate way the heterogeneity and micro information inside diseased parts27. The study is designed to explore and discuss whether radiomics techniques can take the credit of being a new means to reflect the progression of polycystic kidney disease; to analyze the potency of diagnosing disease progression of three modalities (pure image data based modality, pure clinical data based modality and clinical-image fused data based modality) and of five machine learning models (k-nearest-neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forests (RF), multi-layer perception (MLP).

960 radiomics features were extracted from original images and acquired through wavelet transform and Laplace transform. However, on account of the possible presence of irrelevance and redundancy in these features, LASSO was then adopted to reduce their dimension and screen them. LASSO has, so far, been mainly applied to linear models. Its essence is to add a penalty function on the basis of residual sum of squares. In this penalty function, a tune parameter alpha was employed to weigh the balance between the effects of analogous fitting and penalty items, with an aim to avoid model over fitting while to minimize classification errors. The tune parameter alpha was chosen through five-fold cross validation. In view of its value were obtained valuable, incorporable parameters and their relevant regression coefficients. These parameters included in models were thereby left better repeatability, which had the collected radiomics features more stable.

It is a common ending for ADPKD patients to have a CKD characterized by weakened renal function. The study results indicated a significantly better potency of clinical-image fused data-based model than that of both models based on pure clinical data and pure image data in differentiating the function of polycystic kidney disease infected kidneys, differentiating the renal function with an eGFR ≥ 60 mL/min per 1.73 m\(^2\) (including CKD1 and CKD2 phases) from the other with an Egfr < 60 mL/min per 1.73 m\(^2\) (including CKD3 and advanced phases). By LASSO dimension reduction on clinical-image fused data, from the 960 original features, 21

![Figure 9. Performances of different classifiers for clinical-image fused data.](image9)

![Figure 10. Performances of different classifiers for image data.](image10)
clinically meaningful features were screened out, covering 8 first-order features, 2 morphological features and 10 texture features, as well as the age information of patients. Radiomics analysis ascribes its superiority to its capability of integrating morphological features of kidneys, such as the dimension, number and spatial distribution of cysts, the growth of an individual cyst, as well as the asymmetry of cyst distribution, and of extracting strongly related characteristic parameters to reflect the morphological changes and tissue composition status of kidneys, while not demanding separate division and classification on these cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of texture, thus being viewed as the measurement of tissue homogeneity. The more complex the lesions, the lower the total energy. The overall lesion of a diseased kidney was outlined. Its internal cysts were distributed mainly in three patterns: multiple macro-cysts, partial cysts and dense microcysts. Each distribution pattern produced oppression on its near-lying cysts. Of the study results, the flatness and pachycytosis embodied the curvature changes in renal contour and the regularity of its overall shape. Total energy and 90th percentile took the biggest weight among the first-order features. They reflected the smoothness of grayscale distribution and the roughness of textur...
determines the non-linear mapping from an input to an output by parameterizing a set of network weights. In this study, LR and MLP were involved in machine learning with different data. Both attained the best diagnostic performance separately under clinical-image fused data-based and pure image data-based modalities.

The novelty of this study is that radiomics technology is validated as a new effective method to reflect the autosomal dominant polycystic kidney disease progression. Radiomics technology extracts differences in signals that we cannot sense visually from FS-T2WI images, not only makes full use of but also increases the information given by the conventional MRI images, and provides quantifiable parameters of renal tissue structure. It can be viewed as an effective supplement to traditional biological markers and clinical information. In this study, we mainly explored the feasibility and diagnostic efficacy of radiomics technology in the application of ADPKD, all patients were divided into only two groups. Based on the results of this study, we believe that it is possible with this method to control renal function in different times. Then, the focus of the following work will be to classify the patients according to the CKD staging criteria, and to further study the diagnostic and predictive ability of radiomics technology for evaluation renal functions at different times and at different stages of ADPKD. Renal function in all patients was followed up every 6 months. In the following research, the ability of radiomics technology to predict subsequent progression to CKD stage 3 and significant reduction in GFR will be also mainly assessed.

Despite the above-mentioned superiorities, the study still holds some limitations. The study is a retrospective research. Its sample scale is small; thus, there may be biases. Further analyses are required to conduct by prospective studies with a large sample. Because, ROI is semi-automatic outlining, it may harbor measurement errors and selective biases. ROI was completed by 2 doctors. For the region to which the 2 medical practitioners hold different views, they merely engaged in joint discussion to reach an agreement but failed to adopt a statistical method to objectively evaluate the ROI the other doctor outlined. The analyses performed were only combined with FS-T2WI images. They should’ve been combined with FS-T1WI, DWI and IVIM sequences in later section to implement comparative analysis. Future studies are supposed to include more clinical parameters.

Conclusions

To sum up, radiomics analysis of the FS-T2WI sequence in routine MR images can be performed to determine the decrease extent of glomerular filtration rate in ADPKD patients, able to differentiate patients with GFR ≥ 60 mL/min per 1.73 m² (including CKD1 and CKD2 phases) from patients with GFR < 60 mL/min per 1.73 m² (CKD3 and advanced phases). Among the models constructed with image data and patient clinical information, LR model showed the best diagnostic potency. Thanks to these advantages, radiomics techniques are expected to be a strong supplement to eGFR and hTfK, two extant diagnostic indicators for ADPKD. The coupling application of image data features-clinical variables-machine learning model (LR) presented a better performance in patient classification and individual prognosis, compared with traditional diagnosing approaches. Radiomics analysis harbors a prominent future in this era of precision medicine. It is hopeful to introduce a new dimension for ADPKD treatment. However, on its way to clinical application there are plenty of challenges, which require research with a large scale of disease cases.

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

