Therapeutic effects of cinnamon bark oil on sciatic nerve injury in rats

O. OZHAN1, S.F. IZCI2, M. HUZ3, M. COLAK1, Z. KUCUKAKCALI4, H. PARLAKPINAR1

1Department of Pharmacology, Faculty of Medicine, İnönü University, Malatya, Turkey
2Faculty of Pharmacy, İnönü University, Malatya, Turkey
3Department of Pathology, Faculty of Medicine, İnönü University, Malatya, Turkey
4Department of Biostatistics and Medical Informatics, Faculty of Medicine, İnönü University, Malatya, Turkey

Abstract. – OBJECTIVE: The aim of this study was to investigate the effects of cinnamon bark essential oil (CBO) on analgesia, motor activity, balance, and coordination in rats with sciatic nerve damage.

MATERIALS AND METHODS: Rats were divided into three groups as simply randomized. The right sciatic nerve (RSN) of the Sham group was explored. Only vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury (SNI) group was explored. Damage was created by unilateral clamping, and vehicle solution was applied for 28 days. The RSN of the sciatic nerve injury+cinnamon bark essential oil (SNI+CBO) group was explored. SNI was created by unilateral clamping and CBO was applied for 28 days. In the experiment study, motor activity, balance, and coordination measurements were made with rotarod and accelerod tests. A hot plate test was performed for analgesia measurements. Histopathology studies were carried out with the sciatic nerve tissues.

RESULTS: In the rotarod test, there was a statistically significant difference between the SNI group and the SNI+CBO group (p<0.05). According to the accelerod test findings, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups. In the hot plate test, there was a statistically significant difference between the SNI group with the Sham and SNI+CBO groups (p<0.05). In comparison to the Sham group and the SNI group, the SNI+CBO group was shown to have the greatest expression level of vimentin.

CONCLUSIONS: We have concluded that CBO can be used as an adjuvant treatment in cases of SNI, increased pain, nociception, impaired balance, motor activity, and coordination. Our results will be supported by further studies.

Key Words: Sciatric nerve injury, Cinnamon bark oil, Motor activity, Analgesia, Vimentin.

Introduction

The peripheral nervous system (PNS) is an active system that surrounds our body and informs the central nervous system (CNS) of every situation that occurs by providing transmission between the senses. The etiology of damage in this system can be caused by conditions such as gunshot wounds, stab wounds, and traffic accidents. When nerve damage occurs, loss of function may occur, ranging from mild paresthesia to total paralysis. The severity of the developing lesion is determined by factors such as the amount of pressure, its duration, and the area where it is applied. Although these damages do not endanger the person's life, they put the person under a tremendous social and economic burden.1,2

Peripheral nerve injuries are classified under three headings by Seddon (1942)3. These are neuroparaxia, axonotmesis, and neurotmesis. Wallerian damage is also important in all three titles. However, the most prevalent cause of sciatic nerve lesions is hip trauma, which includes intramuscular injections, penetrating trauma, contusion, hip fracture surgery, and nerve compression. Gunshot wounds, lacerations, femoral shaft fractures, contusions, penetrating trauma, and iatrogenic injuries are among the most common causes of thigh injuries4,5. In sciatic nerve lesions, there is weakness in the hamstring muscles and all muscles below the knee and loss of sensation in the tibial and peroneal nerve distribution6.

Cinnamon essential oil is derived from the Cinnamon zeylanicum Blume plant. The most important active substances in cinnamon composition are cinnamaldehyde and eugenol at a rate of 60-70%, benzaldehyde at a rate of 5-10%, tannins, and essential oil at a rate of 1-2%6.
Cinnamon oil contains \textit{trans}-cinnamaldehyde, which has anti-inflammatory and antioxidant effects\cite{7}. In addition, cinnamon bark oil (CBO) can have an anti-inflammatory effect by inhibiting cyclooxygenase activity and prostaglandin formation\cite{8}. Singh et al\cite{9} reported the antioxidant activity of essential oils prepared from cinnamon bark and leaves in their study in 2007. In the study by Chericoni et al\cite{10} in 2005, CBO and the eugenol compound isolated from it were proven to have a strong antioxidant effect.

Today, many studies\cite{11,12,13} are carried out on the treatment of peripheral nerve injury. The study aims to present the effectiveness of CBO in analgesia, motor activity balance, and coordination in sciatic nerve damage. To that end, CBO, with a proven antioxidant and anti-inflammatory effect, which is thought to affect the oxidative stress and inflammatory process in the physiopathology of this damage, was administered to rats \textit{via} orogastric gavage in order to alleviate damage to the sciatic nerve.

\textbf{Materials and Methods}

\textbf{Cinnamon Bark Oil}

CBO contains less than 3\% cineole, 1-6\% linalol, 1-4\% \textit{β}-caryophyllene, less than 0.5\% safrole, 55-75\% \textit{trans}-cinnamic aldehyde, as specified in the European Pharmacopoeia\cite{6}. Also, it contains less than 7.5\% eugenol, less than 0.5\% coumarin, 0.1-1\% \textit{trans}-2-methoxy cinnamaldehyde, and less than 1\% benzyl-benzoate. CBO is a commercial product from \textit{Cinnamomum zeylanicum} Blume with Chemical Abstracts Service (CAS) number 8015-91-6 (Sigma-Aldrich, St. Louis, MI, USA). According to the manufacturer’s procedure, the \textit{C. zeylanicum} plant was transported in polyethylene bags and dried continuously at room temperature. CBO was obtained by the hydrodistillation method. The plant material was ground into small pieces and placed in a bottle (2 L) with double distilled water (1.5 L). The mixture was boiled for 4 hours. The extract was concentrated in the cooling vapor to collect the essential oil. The extracted oil was dried with anhydrous sodium sulfate. CBO was kept at 4°C until use.

The studies of Yüce et al\cite{14,15} were taken as a reference in determining the daily dose of 100 mg/kg CBO.

\textbf{Experimental Groups}

This study included 26 Sprague-Dawley female rats, 13 weeks old, weighing 206-280 grams. Rats were obtained from İnönü University Experimental Animals Center. The subjects were housed in cages (50x35x20 cm) with free access to water and food in an environment where the ambient temperature was 21±2°C, the humidity was 60±5\% for 28 days, with a period of 12 hours during the day and 12 hours at night. All procedures were completed within the scope of the approval (2020/18-1) obtained from the Ethics Committee of İnönü University. The rats were simply randomized to 3 groups, 8 in the Sham group and 9 in each of the other two groups. Corn oil was used as the vehicle solution.

1. Right sciatic nerves (RSN) of rats in the Sham group were explored, and the incision was closed with 3.0 silk sutures. Only 0.5 mL of vehicle solution was administered to each rat by orogastric gavage for 28 days.

2. RSN of rats in the sciatic nerve injury (SNI) group were explored, and the injury was created by clamping them for 1 minute with an edentulous atraumatic clamp. The vehicle solution was then administered to each rat by orogastric gavage in a volume of 0.5 mL for 28 days.

3. RSN of rats in the sciatic nerve injury+cinnamon bark oil (SNI+CBO) group were explored, and the injury was created by clamping for 1 minute with an edentulous atraumatic clamp. Then, 100 mg/kg CBO, prepared freshly in corn oil daily, was administered to each rat by orogastric gavage in 0.5 mL volume for 28 days.

\textbf{Inducing Sciatic Nerve Injury}

The method of Korkmaz et al\cite{16} was preferred in the selection of the experimental SNI model. Ketamine (75 mg/kg, Ketasol 10% Richter Pharma, Wels, Austria) and xylazine (8 mg/kg, Xylazinbio Bioveta, PLC, Ivanovicie, Czech Republic) were administered intraperitoneally (i.p.) for anesthesia before SNI. The nerve-located skin area was shaved, and after disinfecting with 10\% povidone-iodine (Betadine, Avrio Health, LP, New York, NY, USA), muscle tissues were dissected up to the sciatic nerve with an incision of approximately 4 cm. After unilateral clamping of the sciatic nerve for 1 minute, the incision was closed with 3.0 silk sutures. At the end of the 28 days, the hot plate test measured pain and nociception in animals. Rotarod and accelerod tests measured motor activity, balance, and coordination functions. Histopathological analysis was also performed with the sciatic nerve samples taken.
Rotarod/Accelerod Tests
Rotarod/Accelerod tests were performed on rats to measure motor activity, balance, and coordination. Rats were taught by repeatedly putting them on a revolving rod at the slowest speed (5 rpm) until they moved onto the rod on their own. After the rod stopped moving, the rats stayed there until the researcher removed them. Rotamex 4/8 system (Columbus Instruments International Corporation, Columbus, OH, USA) was used for both tests. In the rotarod test, the running time of the rats on the rotating shaft at constant speeds of 5, 10, 15, 20, 25, 30, and 40 rpm (maximum 5 minutes) was determined. In the accelerated test, running on the accelerated spindle from 0 rpm to 79 rpm in 4 minutes and 10 minutes was determined17.

Hot Plate Test
On the 28th day, the rat’s sense of pain and nociception were tested with the hot plate analgesimetry test. The floor temperature of the hot plate device (Columbus Instruments International Corporation, Columbus, OH, USA) was set to 50±0.5°C, and the rats’ residence time on the ground was tested (cut off: 60 seconds)18.

Histochemistry and Immunohistochemical Analysis
To evaluate histochemistry and immunohistochemical parameters, sciatic nerves were removed from rats euthanized under overdose anesthesia (225 mg/kg ketamine and 24 mg/kg xylazine, i.p.) while maintaining their integrity. Sciatic nerves extracted from rats were taken into 10% neutral buffered formalin. Tissue samples were fixed at room temperature for 24 hours. At the end of the fixation period, the tissues were washed under running tap water for 6 hours. Afterward, the samples were photographed, sized, and dissected, and the tissue was followed up. After the tissue follow-up, samples (Thermo-Excellor ES, Cheshire, UK) were brought to the paraffin embedding station (histocenter), where they underwent the xylene, alcohol, and paraffin wax series for a total of 14 hours, respectively (Maxotech MX632, Istanbul, Turkey). They were embedded in paraffin by giving appropriate positions in order to take longitudinal and transverse sections at the embedding station. Sections of 4 µm thickness were taken from paraffin-embedded sciatic nerve samples with a rotary microtome (Leica RM 2255, Nussloch, Germany) for immunohistochemistry (IHC) and conventional staining. Tissue sections were taken for neurofilament (NfP) and vimentin (Vmt), and IHC parameters were stained in a fully automatic staining device (Dako Omnis, Agilent, Santa Clara, CA, USA) in accordance with the guidelines. Hematoxylin and eosin (H&E) stain on tissue sections, was automatically stained with standard time and reagents with a fully automatic staining shut-off device (Leica ST 5020, Wetzlar, Germany). Special histochemistry stains luxol fast blue (LFB), masson trichrome (MsT), and phosphotungstic acid-hematoxylin (PTAH) were studied manually19.

Determined IHC parameters; NfP (Rabbit Polyclonal, 1/500, GeneTex International Corporation, Hsinchu, T’ai-wn, Taiwan) and Vmt (Rabbit Polyclonal, 1/500, GeneTex International Corporation, Hsinchu, T’ai-wn, Taiwan) were stained on a fully automated stainer (Dako Omnis, Agilent, Santa Clara, CA, USA) using the protocols and times specified in the kit manual were applied for the imaging kit reagents (Dako EnVision FLEX System, Agilent, Santa Clara, CA, USA) used in tissue IHC for both parameters. Tissues were held at high pH for 30 minutes for antigen retrieval and incubated in primary antibody for 20 minutes. In negative control, staining, phosphate buffer saline (PBS) was used instead of the primary antibody. For the positive control, rat brain tissue was co-stained on the same slide as the test tissues. Both protein expressions were shown in brown depending on the diaminobenzidine (DAB) chromogen selection. The preparations were examined and photographed with a light microscope (Olympus Bx-50, Olympus Europa SE & Co., Hamburg, Germany).

Statistical Analysis
Descriptive statistics of the data were summarized as median (minimum-maximum). While the Kruskal-Wallis test was used for independent group analysis in statistical analyses, the Wilcoxon or Friedman test was used where appropriate, depending on the number of variables for dependent group analysis. p-value <0.05 was considered statistically significant. IBM SPSS Statistics 26.0 program (IBM Corp., Armonk, NY, USA) was used in the analysis.

Results
Rat Body Weights
When the body weights of the rats at the beginning and end of the experiment were compared, the Sham group had a statistically significant difference (p<0.05) (Table I).
Rotarod/Accelerod Tests

The 5, 10, 15, 20, 25, 30, and 40 rpm test results of the rats in the rotarod test are presented in Table II. According to the analysis results, no significant difference was found at 5, 10, 15, and 40 rpm. A statistically significant difference was found between the SNI group and the SNI+CBO group at 20 rpm and 25 rpm ($p<0.05$). A statistically significant difference was found between the SNI group and Sham and SNI+CBO groups at 30 rpm ($p<0.05$).

In the accelerod test of the rats, the running times on the shaft accelerated from 0 rpm to 79 rpm in 4 minutes and 10 minutes are presented in Table III. According to the analysis results, a statistically significant difference was found between the SNI group with the Sham and SNI+CBO groups at the 4 minutes ($p<0.05$).

Hot Plate Test

In the hot plate test, there was a statistically significant difference between the SNI group and the Sham and SNI+CBO groups ($p<0.05$). The results are presented in Table IV.

<table>
<thead>
<tr>
<th>Table I.</th>
<th>Body weights of rats at the beginning and end of the experiment.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>The beginning of</strong></td>
<td><strong>The end of</strong></td>
</tr>
<tr>
<td><strong>the experiment (gram)</strong></td>
<td><strong>the experiment (gram)</strong></td>
</tr>
<tr>
<td>Groups</td>
<td>Median (min-max)</td>
</tr>
<tr>
<td>Sham</td>
<td>225.5 (209-250)</td>
</tr>
<tr>
<td>SNI</td>
<td>242 (223-266)</td>
</tr>
<tr>
<td>SNI+CBO</td>
<td>233 (206-280)</td>
</tr>
</tbody>
</table>


<table>
<thead>
<tr>
<th>Table II.</th>
<th>Rotarod test results.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parameters</strong></td>
<td><strong>Groups</strong></td>
</tr>
<tr>
<td></td>
<td>Sham</td>
</tr>
<tr>
<td>5 rpm (sec)</td>
<td>300 (300-300)</td>
</tr>
<tr>
<td>10 rpm (sec)</td>
<td>300 (76-300)</td>
</tr>
<tr>
<td>15 rpm (sec)</td>
<td>175.5 (71-300)</td>
</tr>
<tr>
<td>20 rpm (sec)</td>
<td>147.5 (35-300)</td>
</tr>
<tr>
<td>25 rpm (sec)</td>
<td>71 (32-300)</td>
</tr>
<tr>
<td>30 rpm (sec)</td>
<td>46 (20-300)</td>
</tr>
<tr>
<td>40 rpm (sec)</td>
<td>25.5 (14-169)</td>
</tr>
</tbody>
</table>

*: It is statistically different compared to the SNI group. **: The variables are summarized as median (min-max).

<table>
<thead>
<tr>
<th>Table III.</th>
<th>Accelerod test results.</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Parameters</strong></td>
<td><strong>Groups</strong></td>
</tr>
<tr>
<td></td>
<td>Sham</td>
</tr>
<tr>
<td>4 minutes 0-79 rpm (sec)</td>
<td>109 (61-140)</td>
</tr>
<tr>
<td>10 minutes 0-79 rpm (sec)</td>
<td>200 (145-334)</td>
</tr>
</tbody>
</table>

*: It is statistically different compared to the SNI group. **: The variables are summarized as ‘median (min-max)’.
Therapeutic effects of cinnamon bark oil on sciatic nerve injury in rats

Sham group

It was found that all sciatic nerve, transverse and longitudinal sections in the Sham group had the appearance of normal histology, and each tissue section had similar characteristics. In H&E stained preparations, the appearance of nerve bundles packed by the perineurium surrounded by the epineurium was normal in the transverse sections of the nerve fibers. In longitudinal sections, nerve fibers were seen parallel to each other, uninterrupted, and in packages with Schwann cell (SWC) nuclei decoupled between them [Figure 1 (1A)]. The myelin sheath surrounding the axonal appendages with LFB and PTAH dyes continued normally and uninterrupted [Figure 1 (1B-1D)]. Thin endoneurial collagen surrounding the myelin sheath could easily be observed in tissue sections stained with MsT dye [Figure 1 (1C)]. When the same structures were stained with PTAH dye, they were observed to have similar properties with MsT [Figure 1 (1C-1D)]. In preparations stained by the IHC method, NfP showed intense expression with a dark brown staining pattern in Sham group sciatic nerve samples [Figures 2 (1A-1B)]. It was seen that Vmt was expressed in weak-moderate intensity with the determined grading criterion [Figure 2 (1C-1D)].

SNI group

When the longitudinal sections of the samples belonging to the SNI group were examined, edema and diffuse vacuole were observed between the parallel course of nerve fibers and marked hypertrophy in SWC. As signs of Walerian degeneration, myelin sheath deterioration, specialized macrophages, and mast cells were observed intensively [Figure 1 (2A-2C)]. When LFB-stained preparations were evaluated, a remarkable increase in mast cell count and the presence of specialized macrophages were observed, with degenerated nerve bundles and disruption of the myelin sheath clearly visible in most of the samples [Figure 1 (2B)]. MsT-stained preparations reflected the general appearance of the SNI group's sciatic nerve tissue sections. It was observed that mostly degenerated, non-continuous nerve bundles and specialized macrophages were located near myelin degeneration. A remarkable increase in mast cells and axoplasmic vacuole was noted in Figure 1 (2C). Axonal degeneration, increase in connective tissue, and degenerate SWC nuclei were noted from SNI tissue sections with PTAH dye [Figure 1 (2D)]. When IHC parameters in SNI samples were examined, it was observed that axoplasmic vacuole was dominant, and NfP was expressed at a very low level when compared to the Sham group in tissue sections with degenerative morphology and therefore showed a mild staining pattern [Figure 2 (2A-2B)]. It was observed that the expression level of Vmt was higher on a cellular basis compared to Sham group [Figure 2 (2C-2D)].

SNI+CBO group

When the sections belonging to the SNI+CBO group were examined, the first thing that attracted attention was the proliferation of SWCs and that this regeneration image was the dominant image for the samples of the SNI+CBO group [Figure 1 (3A)]. It was determined that the axoplasmic vacuole was at a moderate level, degenerated cell remnants were partially eliminated, SWCs were organized to form Bungner bands, and this organization rarely took a cylindrical appearance to form an endoneurial tube in some areas [Figure 1 (3A)\(^{20,21}\)]. It was noted that debris was eliminated after axonal degeneration in lateral flow dipstick (LFD) staining, and SWC again showed proliferation and reorganization [Figure 1 (3B)]. With MsT staining, it was observed that the reactive SWC was organized to surround the myelin, as well as a significant increase in endoneurial collagen [Figure 1 (3C)]. In the sciatic nerve tissue sections where PTAH dye was applied, it was found that the degenerate SWC nuclei, which were seen extensively in the SNI group, were not included in the SNI+CBO group, and vacuole formation was significantly reduced. It was noted that the

<table>
<thead>
<tr>
<th>Parameters**</th>
<th>Sham</th>
<th>SNI</th>
<th>SNI+CBO</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot plate test (sec)</td>
<td>19.73 (11.90-23.57)</td>
<td>12.60 (8.70-15.8)</td>
<td>19.87 (13.03-21.03)</td>
<td>0.034</td>
</tr>
</tbody>
</table>

*: It is statistically different compared to the SNI group. **: The variables are summarized as median (min-max).

Table IV. Hot plate test results.
myelin sheath progressed decently between the regenerated SWC bands. Due to the IHC parameters, the SNI+CBO group compared to the other two groups; although NfP was at a lower level compared to the Sham group, it was found that it was expressed at a significantly higher level in the SNI group and a moderate intensity brown staining pattern was formed. The expression level of Vmt was found to be at the highest level in the SNI+CBO group compared to the Sham and SNI groups. When the groups were compared in terms of myelin sheath degeneration, there was a statistically significant difference between the SNI group and the SNI+CBO group ($p<0.05$). There was a statistically significant difference between the Sham group and the SNI group for the edema in the perineurium ($p<0.05$). The Sham group and the SNI and SNI+CBO groups showed significant differences when the groups were compared for the edema in the perineurium ($p<0.05$).
Therapeutic effects of cinnamon bark oil on sciatic nerve injury in rats

There was a statistically significant difference in the edema in the perineurium when the groups were compared ($p<0.05$). There was a statistically significant difference between the Sham group and the SNI and SNI+CBO groups when the groups were examined in terms of axonal degeneration ($p<0.05$). There was a statistically significant difference between the SNI group and the SNI+CBO group when the groups were evaluated for axonal degeneration ($p<0.05$). The Sham group and the SNI and SNI+CBO groups showed a statistically significant difference when the groups were compared in terms of the axoplasmic vacuole ($p<0.05$). There was a statistically significant difference between the SNI group and the SNI+CBO group when the groups were compared in terms of the axoplasmic vacuole ($p<0.05$). There was a statistically significant difference between the Sham group and the SNI and SNI+CBO groups ($p<0.05$). There was a statistically significant difference between the SNI group and the SNI+CBO group when the groups were compared in terms of Vmt ($p<0.05$) (Table V).

**Discussion**

The current study aimed to investigate the effect of CBO with proven antioxidant and anti-inflammatory effects on sciatic nerve damage in rats.

Peripheral nerves can be damaged by thermal, chemical, and mechanical causes. Conditions such as traffic accidents, stab wounds, and gunshot wounds can cause nerve damage. However, the most common cause of damage is trauma. Peripheral nerve damage occurs in 2.8% of trauma patients, many of which result in long-term loss of function. In addition to trauma-related conditions, intramuscular injections in the gluteal region, penetrating trauma, contusion, hip fracture surgery, and nerve compression can occur. Gunshot wounds, lacerations, and femoral shaft
fractures, contusions, penetrating trauma, and iatrogenic injuries are the most prevalent causes that can induce sciatic nerve injury in the thigh region4,5. According to the study by Foster et al23 in 2018, sciatic nerve injuries constitute 16.6% of peripheral nerve injuries.

Injury to the peripheral nerves may leave functional or morphological flaws. Nevertheless, after spontaneous regeneration in the distal nerve section, a restoration to function could be seen. Surgery is seldom favored over pharmaceutical therapy. According to experimental research, many pharmacological treatments have successfully treated nerve damage11,13,16.

The preventive and regenerative effects of neuroactive steroids have been shown in experimental models of degeneration after physical damage to peripheral nerves. Indeed, following nerve transection, neuroactive hormones boost the expression of the P0 gene. For instance, therapy with progesterone or dihydroprogesterone dramatically raises the low messenger levels of P0 in the rat sciatic nerve’s distal section near the incision24. The same steroids also reverse the changes brought on by crush-induced degeneration. For instance, nerve-crushed mice treated with progesterone or dihydroprogesterone showed enhanced nociception, increased myelin protein expression, and restored function of the Na+−K+ ATPase pump25. Iwaoka et al26 reported that cinnamaldehyde in cinnamon selectively stimulates progesterone secretion in human adrenal cells.

Beji et al27, in an experimental diabetic rat model, found that cinnamon compounds exert an antioxidant effect by increasing the levels of enzymes such as glutathione peroxidase, catalase, and superoxide dismutase. Studies28,29 have reported that cinnamon’s phenolic and flavonoid compounds have potent antioxidant effects. According to their research, Gulcin et al29 stated that the active compounds in cinnamon could provide a hydrogen atom to free radicals that have an unpaired electron in their outer orbit, making them stable and consequently reducing the oxidative stress in the cell and protecting it from apoptosis.

According to Li et al30, cinnamaldehyde, the major compound in CBO, has been shown to be antiproliferative with pro-apoptotic effects. Cinnamaldehyde is protective against cancer due to oxidative stress by inducing apoptosis through different mechanisms. Cinnamaldehyde increases caspase-9 and caspase-3 enzyme activity by increasing cytochrome C release from mitochondria. In addition, while it increases the expression of pro-apoptotic factors such as the B-cell lymphoma 2 (Bcl-2) associated X (Bax) gene, Bcl-2 stimulates apoptosis in the cell by decreasing the expression of apoptotic inhibitors. Long et al31, as another mechanism, cinnamaldehyde activates nuclear factor erythroid 2-related factor (Nrf2) protein, which is the primary regulator of the cellular antioxidant defense system. They showed that by blocking this effect of ubiquitin, Nrf2 gene expression increased the half-life of the Nrf2 protein. This activation leads to the release of antioxidant enzymes and protects the cell from oxidative stress. Ranasinghe et al32 and Elgendy et al33 reported that eugenol and CBO showed potent antioxidant activity in inhibiting peroxynitrite-induced lipid peroxidation.

There are studies34 showing that balance, motor activity, and coordination decrease in rats

<table>
<thead>
<tr>
<th>Parameters**</th>
<th>Sham</th>
<th>SNI</th>
<th>SNI+CBO</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myelin sheath degeneration</td>
<td>0* (0)</td>
<td>3* (2-3)</td>
<td>1 (0-2)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>Macrophage</td>
<td>0* (0)</td>
<td>2* (2-3)</td>
<td>1 (0-1)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>Mast cell</td>
<td>0* (0)</td>
<td>1 (0-2)</td>
<td>1 (0-1)</td>
<td>0.003</td>
</tr>
<tr>
<td>Edema in the perineurium</td>
<td>0* (0)</td>
<td>1.5* (2-3)</td>
<td>1 (0-1)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>Axonal degeneration</td>
<td>0* (0)</td>
<td>2* (2-3)</td>
<td>1 (0-1)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>Axoplasmic vacuole</td>
<td>0* (0)</td>
<td>2* (2-3)</td>
<td>1 (0-1)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>Neurofilament</td>
<td>3* (3-3)</td>
<td>1 (1-2)</td>
<td>2 (1-3)</td>
<td>&lt; 0.001</td>
</tr>
<tr>
<td>Vimentin</td>
<td>1.5* (3-3)</td>
<td>2* (2-3)</td>
<td>3 (2-3)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

*: Variables are summarized as median (min-max). **: *: It is statistically different compared to the SNI group. #: It is statistically different compared to the SNI+CBO group.
due to sciatic nerve damage. Therefore, the rotarod and accelerod tests were used in the present investigation to evaluate various motor impairment characteristics. Motor activity, balance, and coordination functions of the rats were evaluated in the rotarod and accelerod tests. In the rotarod test, significant differences were observed between the group in which CBO was applied at 20, 25, and 30 rpm and the group in which only vehicle solution was applied. Significant differences were observed between CBO+SNI and SNI groups in the accelerod test. The significant results of the rotarod-accelerod tests showed that SNI rats performed their motor coordination tasks for a shorter period than the Sham and SNI+CBO groups.

The hot plate test is the most used experimental technique for determining nociception in rats. Drugs that cause antinociception on the hot plate test and those used to treat pain clinically have a strong correlation. In our study, we evaluated pain and nociception in the rats using the hot plate test. According to the current hot plate test findings, CBO had more antinociceptive effects than the Sham and SNI groups. In the study of Vissers et al., a rat’s sciatic nerve was applied with four loose ligatures, resulting in chronic constriction injury (CCI), which causes a pronounced hypersensitivity to both non-noxious stimulation and chemical irritants. However, a formalin injection in the hind paw of a rat with CCI-induced mononeuropathy led to a reduction in ipsilateral flinching and licking or biting behavior in both stages of the formalin testing. Comparatively to sham and unoperated animals, this changed behavior was accompanied by lower adrenocorticotropic hormone and corticosterone plasma levels. Only in the second phase of the formalin test, formalin injection in the contralateral nonligated hind paw of CCI rats similarly decreased the licking or biting behavior compared to sham-operated and non-operated control animals. CCI decreases the sensitivity to pain and the hypothalamic-pituitary-adrenal axis activation to ipsilateral and contralateral formalin injection. Acute pain reactions are marked by elevated glucocorticoids, but chronic pain is not. This finding suggests that the hypothalamic-pituitary-adrenal axis has undergone particular alterations that prevent the persistent nature of chronic pain from raising baseline glucocorticoid levels. According to the study published by Hidayat et al. in 2022, in the serum of rats given cinnamon extract, there was a reduction in the corticotropin-releasing hormone, adrenocorticotropin hormone, and corticosterone levels.

Peripheral nerves are frequently susceptible to physical harm (such as cutting, crushing, or trapping with nerve compression), which may result in a type of peripheral degeneration that can be categorized based on the severity of the nerve injury. A condition called Wallerian degeneration happens when a nerve is crushed or severed. As a result, the portion of the axon distal to the damage degenerates, with myelin disintegration and involvement of macrophages and Schwann cells. According to the histology literature, it was observed that the section samples taken from all sciatic nerve samples in the Sham group had a normal histological appearance, and each tissue section had similar characteristics. Edema between nerve fibers, diffuse vacuole, marked hypertrophy in Schwann cells, and mast cells, observed in the SNI group, clearly indicate nerve damage. The absence of nuclei of degenerated Schwann cells observed in the SNI+CBO group, a marked decrease in vacuole formation, and a regular progression of the myelin sheath along the nerve were observed. According to the observed results, CBO has a positive effect on the histological process of sciatic nerve injuries.

In a study published by Qabaha et al. in 2017, they showed that cinnamon inhibits the release of proinflammatory cytokines and that cinnamic acid in it significantly reduces interleukin-6 and Tumor necrosis factor-α (TNF-α) levels. Schink et al. determined that trans-cinnamaldehyde and p-cymene compounds in cinnamon have strong anti-inflammatory effects and show these effects by synergistically reducing interleukin-8 secretion. They also reported that cinnamon and its main component, cinnamaldehyde, exert an anti-inflammatory effect by decreasing the release of pro-inflammatory factors such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, protein kinase B, mitogen-activated protein kinase (MAPK) and nitric oxide (NO) synthesis via the nuclear factor kappa-B (NF-κB) pathway.

In comparison to CNS axons, PNS axons show a remarkable capacity for regeneration following damage. Nevertheless, injury-induced nerve gaps prevent the regeneration of PNS axons. Long-distance regeneration is also impossible because the environment required for the development of
PNS axons is not maintained over time. As a result, studying psychoneuroimmunology could aid in PNS regeneration and CNS injury recovery. Successful axon regeneration requires a strong regenerative response from the wounded neuron and the coordinated activities of non-neuronal cells that produce extracellular matrix components, cytokines, and growth factors that promote axon regrowth. Axonal disintegration in the distal nerve stump triggers the inflammatory response by permeabilizing the blood-nerve barrier and activating surrounding SWC and local macrophages through receptors sensitive to tissue injury. In response to damage, denervated SWCs multiply, phagocytose debris, shed myelin, and release cytokines that attract blood-borne monocytes and macrophages. During days post-psychoneuroimmunology, macrophages take up the majority of phagocytosis before leaving the nerve through the bloodstream after remyelination. The PNS’s effectiveness contrasts sharply with the CNS’s, where the response of adjacent cells is linked to inhibitory scar development, quiescence, and degeneration/apoptosis. By producing toxic proinflammatory mediators for a more extended period of time, macrophages invading the brain worsen cell death and damage rather than effectively eliminating debris before ending the inflammatory response as in other tissues. The cinnamon fraction’s polyphenolic composition was examined using chromatography and mass spectrometry, and the results showed that phenolic acids, flavonoids, and procyanidins were made up of the cinnamon fraction. Gaudet et al demonstrated that the cinnamon fraction dose-dependently inhibited interleukin-6, interleukin-8, and TNF-α production using a macrophage model primed with lipopolysaccharides. The capacity of the fraction to stop lipopolysaccharide-induced NF-κB activation may be the cause of this suppression of cytokine release, according to the evidence presented. It was revealed that mast cells and macrophages increased in the SNI group and decreased in the SNI+CBO group.

In this study, longitudinal slices of samples from the SNI group are examined, edema and diffuse vacuoles are seen between parallel nerve fiber courses, and SWC exhibit pronounced hypertrophy. Specialized macrophages and mast cells as indicators of Wallerian degeneration and myelin sheath degradation were closely scrutinized. When the sections from the SNI+CBO group were inspected, the first thing that stood out was the proliferation of SWC, and this regeneration picture dominated the samples from the SNI+CBO group. It was found that SWCs were organized into Bungner bands, the axoplasmic vacuole was at a moderate level, degenerated cell remnants were largely removed, and this organization seldom assumed a cylindrical shape to create an endoneurial tube in specific locations. After axonal degeneration, LFD labeling revealed that debris had been removed, and SWC once again displayed proliferation and rearrangement. Using MsT dye, endoneurial collagen increased significantly; however, it was discovered that it was arranged to surround the reactive SWC and myelin.

The findings of the Jahromi et al research suggested that cinnamaldehyde might hasten the healing of the sciatic nerve after crush damage. Cinnamaldehyde had more favorable effects on myelin content, muscle mass ratio, and sciatic functional index recovery. The study showed that cinnamaldehyde favorably impacted peripheral nerve regeneration. Cinnamaldehyde therapy might thus be considered a viable therapeutic approach for peripheral nerve regeneration and functional rehabilitation. Our results showed that the degree of edema in the perineurium, axonal degeneration, and axoplasmic vacuole increased in the SNI group and decreased in the SNI+CBO group. In tissue sections with degenerative morphology, it was shown that axoplasmic vacuole was prominent, and NfP was expressed at a very low level as compared to the Sham group. NfP expression was observed to be considerably greater in the SNI+CBO group compared to the other two groups, even if it was present at a lower level than in the Sham group, resulting in the formation of a moderately intense brown staining pattern.

To analyze the myelin and NfP content in a model of sciatic nerve crush injury, Fowler et al were able to determine the amounts of myelin and neurons by staining for myelin protein zero and NfP. This histological examination showed different degrees of myelin and NfP damage that were severity dependant. The findings also showed unique damage evolution patterns for myelin and neurons. Their research exposes the early patterns of damage progression and the status of two important nerve components, myelin, and neurons, immediately after injury. In our study, longitudinal and transverse slices of NfP-positive sciatic nerve samples from the Sham group had an intense expression pattern with dark brown staining. Tissue slices with
dense NfP axoplasmic vacuoles exhibit poor staining patterns. Reduced protein expression in the SNI group NfP compared to the Sham group, although greater.

A significant type III intermediate filament protein called Vmt is involved in several fundamental cellular processes, including cell migration, proliferation, and division. Vmt is a cytoplasmic protein but is also present at the cell surface and extracellular matrix. Vmt may have a variety of physiological effects in various disorders and traumas of the nervous system, according to earlier research. For instance, developing reactive astrocytes is the primary focus of investigations on Vmt in spinal cord injury and stroke. Compared to the Sham group and the SNI group, the SNI+CBO group was shown to have the most significant expression level of Vmt.

Conclusions

Our study findings revealed the beneficial effects of CBO in rats with sciatic nerve damage. Further research must be done on this essential oil’s use in treating nerve injury.


