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Abstract. – OBJECTIVE: Triple-negative 
breast cancer (TNBC) is a heterogeneous dis-
ease with aggressive behavior and poor prog-
nosis. Here, we used gene expression profiling 
to define new subtypes of TNBC, which may im-
prove prevention and treatment through person-
alized medicine. 

MATERIALS AND METHODS: Gene expres-
sion profiles from the public datasets GSE76250, 
GSE61724, GSE61723, and GES76275 were sub-
jected to co-expression analysis to identify dif-
ferentially expressed genes (DEGs) between TN-
BC and non-TNBC tissues. Consistency cluster-
ing was used to define TNBC subtypes, whose 
correlation with gene modules was analyzed. 
Enrichment analysis was used to identify mod-
ule genes’ biological functions and pathways. 
Single-sample gene set enrichment analysis 
was used to assess immune cell infiltration in 
the different TNBC subtypes, and the ChAMP 
package was used to examine methylation sites 
in TNBC. 

RESULTS: A total of 4,958 DEGs in TNBC 
were identified, which showed the same expres-
sion differences across all datasets as in the 
dataset GSE76250 and clustered into 9 co-ex-
pression modules. TNBC samples clustered in-
to two subtypes based on nine hub genes from 
the modules. Class I showed the most signif-
icant correlation with module 1, whose genes 
were related mainly to interleukin-1 response, 
while class II showed the most significant cor-
relation with module 6, whose genes were relat-
ed mainly to the transforming growth factor-β 
pathway. Class I was significantly enriched in 
cell cycle and DNA replication, and tumors of 
this subtype showed lower immune cell infiltra-
tion than class II tumors. Tumor infiltration by 

Th2 cells correlated positively with the expres-
sion of MCM10 and negatively with the expres-
sion of PREX2. A greater methylation of CIDEC, 
DLC1, EDNRB, EGR2 and SRPK1 correlated with 
better prognosis. 

CONCLUSIONS: Class I TNBC, for which a 
useful biomarker is MCM10, may be associated 
with a worse prognosis than class II TNBC, for 
which PREX2 may serve as a biomarker.
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Introduction

 Breast cancer is the most common malignant 
tumor and a common cause of cancer death in 
women all over the world1. In 2018, for example, 
there were approximately 2.1 million new cases 
and 627,000 deaths in the world2. Recurrence and 
metastasis are the main causes of death. 

Triple-negative breast cancer (TNBC), which 
accounts for 10-15% of all cases of breast can-
cer3, is defined as tumors that do not express 
the estrogen receptor, progesterone receptor, 
or human epidermal growth factor receptor-2 
(HER2). TNBC tumors are more aggressive, 
show a more advanced tumor grade, and are 
more likely to metastasize to lymph nodes than 
other types of breast cancer4. TNBC does not 
respond to chemotherapies targeting the endo-
crine system or HER2, and it is associated with 
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a high mortality rate5. Even after resection of 
primary TNBC tumors in the event of timely 
diagnosis, up to 30% of patients suffer relapse 
in distant organs6. 

The poor efficacy of existing therapies against 
TNBC is due in part to its molecular heterogene-
ity, prompting efforts to define TNBC subtypes 
that differ in therapy response and prognosis7,8. 
Further molecular understanding of TNBC and 
its potential subtypes may allow more effective, 
personalized treatment9,10. So far, TNBC sub-
types have been explored using gene expression 
profiling11. Studies of other cancers have also 
shown DNA methylation markers to be useful for 
personalizing treatment12,13, since DNA methyl-
ation affects gene expression and nuclear struc-
ture14. Considering methylation markers may help 
refine the classification of TNBC subtypes.

The present study applied weighted gene co-ex-
pression network analysis (WGCNA) and DNA 
methylation profiling to define TNBC subtypes. 
WGCNA can identify relationships between gene 
sets and clinical features in order to identify can-
didate biomarkers15. The results may help guide 
personalized treatment of the disease and future 
efforts to develop novel therapies. 

Materials and Methods

Data Processing
Gene expression profiles in the datasets 

GSE76250, GSE61724, GSE61723 and GSE76275 
in the Gene Expression Omnibus (GEO) data-
base were downloaded. GSE76250 contains 165 
TNBC samples and 33 paired normal breast 
tissues, GSE61724, 64 primary TNBC samples 
and 4 normal adjacent tissues, GSE61723, 48 
TNBC samples and 17 normal adjacent tis-
sues, and GSE76275, 198 TNBC samples and 
67 non-TNBC tumor samples. Data were an-
alyzed using the Robust Multi-array Average 
method in the Affy package16 in R version 3.1.1. 
Genes differentially expressed between TNBC 
and non-TNBC tissue (DEGs) were identified 
using the limma package17 in R, with a filtering 
threshold of p = 0.05. 

WGCNA
Co-expression of DEGs was analyzed using 

the WGCNA package in R as described15, using a 
correlation coefficient threshold of 0.9 and a soft 
threshold of 6. Hub genes in each module were 
identified according to the degree value.

Identification of TNBC Subtypes
The ConsensusClusterPlus package18 in R was 

used to cluster the expression of hub genes in 
TNBC samples, leading to the classification of 
198 TNBC samples from the GSE76275 dataset 
into class I or class II.

Enrichment Analysis
Module genes were analyzed for enrichment 

of Gene Ontology (GO) functions and for Kyoto 
Encyclopedia of Genes and Genomes (KEGG) 
pathways using the “enrichgo” and “enrichkegg” 
functions in the clusterProfiler package19 in R. In 
both cases, the cut-off criterion for enrichment 
was p = 0.05. 

The clusterProfiler package was also used to 
conduct gene set enrichment analysis (GSEA) be-
tween TNBC and non-TNBC tumors. The “sub-
typeGSEA” function was used to analyze the 
top pathways that were up- or down-regulated in 
TNBC relative to non-TNBC.

Immune Infiltration Score
Single-sample GSEA was used to quantify the 

extent of immune cell infiltration of TNBC sam-
ples based on 24 immune cell signatures20. The 
limma package was used to determine differences 
between class I and class II TNBC. 

DNA Methylation
The cAMP package in R was used to identi-

fy differences in methylation between the 105 
TNBC and 4 normal samples in the GSE78758 
dataset. The overall survival of patients with dif-
ferent methylation profiles was examined using 
the survival package, and forest plots were drawn 
using the forest plot package.

Statistical Analysis
All statistical analyses were performed using 

R software. The difference analysis and correla-
tion analysis were performed via Wilcoxon and 
Spearman correlation, respectively. p < 0.05 was 
considered statistically significant.

Results

A flowchart showing the various analyses in 
this study is shown in Figure 1.

DEGs in TNBC
We identified DEGs between TNBC and 

control samples in the GSE76250, GES61724, 
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GSE61723 and GE76275 datasets (Figure 2A). 
The GSE76250 dataset showed the same 3,176 
up-regulated genes and 2,359 down-regulat-
ed genes as analysis of all datasets combined 
(Figure 2B). Applying a correlation coeffi-
cient threshold of 0.9 and a soft threshold of 
6 (Figure 2C), 4,958 DEGs clustered into 9 
co-expression modules were identified (Figure 
2D). Hub genes in these modules were obtained 
(Table I).

TNBC Subtypes 
All hub genes showed an area under the receiv-

er operating characteristic curve >0.6 for distin-
guishing TNBC from non-TNBC tissue (Figure 
3A), and the TNBC samples were divided into 
classes I and II based on nine hub genes (Fig-
ure 3B). Module 1 (MEturquoise) showed the 
strongest positive correlation with class I and 
the weakest correlation with class II. Converse-
ly, module 6 (MEbrown) showed the strongest 
positive correlation with class II and the weakest 
correlation with class I (Figure 3C). MCM10 dif-
ferentiated TNBC from non-TNBC better than 
PREX2 (Figure 3D). Hub gene MCM10 in mod-
ule 1 was up-regulated in TNBC, while hub 
gene PREX2 in module 6 was down-regulated 

in TNBC (Figure 3E). MCM10 and PREX2 were 
expressed at higher levels in class I than class II 
TNBC (Figure 3F).

Biological Functions Related to 
Class I or II TNBC

Enrichment analysis showed that module genes 
were enriched mainly in cellular response to 
oxygen levels, response to interleukin-1, positive 
regulation of MAPK cascade and other biological 
processes (Figure 4A). KEGG pathways included 
mainly p53 signaling, carbon metabolism, and 
MAPK signaling (Figure 4B). GSEA identified 
the same four KEGG pathways differing between 
TNBC and non-TNBC as between classes I and 
II of TNBC (Figure 4C-D). Many module genes 
were implicated in these pathways (Figure 4E). 
In addition, pathways involving the cell cycle and 
DNA replication were up-regulated in class I TN-
BC relative to class II TNBC or in TNBC relative 
to non-TNBC (Figure 4F). 

Immune Cell Infiltration in 
Class I or II TNBC

Single-sample GSEA showed that TNBC tu-
mors contained lower numbers of most immune 
cell types than non-TNBC tumors (Figure 5A). 

Figure 1. Flowchart of analyses. DEG, differentially expressed genes; GSEA, gene set enrichment analysis; ROC, receiver 
operating characteristic; ssGSEA, single-sample GSEA; WGCNA, weighted gene co-expression network analysis.
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Figure 2. Differentially expressed genes and their co-expression network in triple-negative breast cancer. A, Genes 
differentially expressed between triple-negative breast cancer and non-triple-negative breast cancer in GSE76250, GSE61724, 
GSE61723 and GSE76275 datasets. B, Veen map of four groups of differentially expressed genes. C, Soft thresholding of the 
co-expression network. D, Cluster tree of genes in the co-expression modules.
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Class I TNBC tumors contained fewer infiltrat-
ing cells than class II tumors. K-means cluster-
ing defined a potential network of interactions 
among tumor-infiltrating immune cells (Figure 
5B). Abundances of most immune cell types cor-
related negatively with the hub gene MCM10 and 
positively with the hub gene PREX2 (Figure 5C). 
Conversely, the numbers of Th2 cells correlat-
ed positively with MCM10 and negatively with 
PREX2 in classes I and II (Figure 5D). In class I 
TNBC, the strongest correlation between immune 
cell types was between cytotoxic cells and T cells; 
in class II, the strongest correlation was between 
macrophages and neutrophils (Figure 5E).

Methylation Patterns in TNBC
Sites of DNA methylation differing between 

TNBC and control tissues clustered into four 
groups (Figure 6A-B). DMPS was hypomethylat-
ed in 94.26% of TNBC tissues relative to control 
tissues. There were 10% of methylation sites 
located on chromosome 1 (Figure 6C). Among 
all differentially methylated genes, 102 were 
module genes defined as potential methylation 
markers (Figure 6D). The following methylation 
markers significantly influenced overall survival 
of TNBC patients: CIDEC (cg07222243), DLC1 
(cg02126477), EDNRB (cg12120741), EGR2 
(cg22867608), and SRPK1 (cg12215478) (Figure 
6E). Hypermethylated CIDEC was associated 
with longer overall survival, while hypermeth-
ylated DLC1, hypermethylated EDNRB, hyper-
methylated EGR2 and hypomethylated SRPK1 
were associated with shorter overall survival.

Discussion

Our RNAseq-based comparison of publicly 
available data from TNBC and non-TNBC iden-
tified many DEGs that may be associated with 

TNBC. Using WGCNA, we clustered these DEGs 
into 9 co-expression modules, each of which may 
represent a disease pathway21. The hub genes from 
each module showed a good ability to differentiate 
TNBC from non-TNBC, and their cluster analysis 
led us to identify two classes of TNBC. 

Module 1 showed the strongest correlation 
with class I TNBC, while module 6 showed the 
strongest correlation with class II. The hub gene 
MCM10 in module 1 was up-regulated in TNBC 
relative to non-TNBC, and it was up-regulated 
in class I TNBC relative to class II. Previous 
work has shown MCM10 to be up-regulated in 
tumor tissues22, and its expression promotes 
the development of breast cancer and correlates 
positively with poor prognosis23,24. The hub gene 
PREX2 in module 6 was down-regulated in 
TNBC relative to control and down-regulated in 
class II TNBC relative to class I TNBC. Consis-
tent with our results, PREX2 may promote cell 
migration and invasion, contributing to breast 
cancer25,26; indeed, its overexpression has been 
associated with poor prognosis of breast cancer 
patients27. Our results suggest that patients with 
class I TNBC may suffer a worse prognosis than 
those with class II disease. 

We used enrichment analysis to identify mo-
lecular pathways that may contribute to TNBC, 
and our results are consistent with the literature. 
Cellular response to oxygen levels has been im-
plicated in the development of breast cancer28,29, 
and interleukin-1 may help predict the risk of 
bone metastasis in breast cancer patients30,31. 
Signaling mediated by p53 may help regulate 
progression of early breast cancer, especially 
TNBC32,33. Changes in carbon metabolism can 
lead to abnormal DNA methylation and damage 
DNA integrity, promoting the occurrence of 
cancer34. Consistent with our analysis of enrich-
ment in module 6, transforming growth factor-β 
has been shown to inhibit proliferation and 
induce apoptosis in early breast cancer, as well 
as promote tumor invasiveness in later stages 
of the disease35. Activation of MAPK signaling 
promotes the proliferation and metastasis of 
breast cancer cells36, while activation of Wnt 
signaling contributes to tumor occurrence and 
recurrence37,38. Our GSEA showed the cell cycle 
and DNA replication, which have been impli-
cated in breast cancer39-41, to be up-regulated in 
class I TNBC relative to class II. 

The immune microenvironment within TN-
BC tissues is highly heterogeneous42, and un-
derstanding this heterogeneity may be important 

Table I. Hub genes of co-expression modules. 

	 Colour	 HubGenes	 Module

Black	 SNX20	 m3
Blue	 BAG6	 m4
Brown	 PREX2	 m6
Green	 BCRP3	 m5
Magenta	 GRN	 m7
Pink	 ADAM5	 m8
Red	 ARPP21	 m9
Turquoise	 MCM10	 m1
Yellow	 ACADSB	 m2
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Figure 3. Identification of new subtypes of triple-negative breast cancer. A, Receiver operating characteristic curves of hub 
genes in triple-negative breast cancer and non-triple-negative breast cancer. AUC, area under the curve. B, Consistency clustering 
analysis was conducted based on 9 hub genes. C, Correlation between co-expression modules and phenotype. D, Receiver 
operating characteristic curves of hub genes in classes I and II. E, Expression of hub genes in triple-negative breast cancer and 
non-triple-negative breast cancer. F, Expression of hub genes in classes I and II triple-negative breast cancer. *p < 0.05.
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Figure 4. Biological functions and signaling pathways of module genes. A, Important Gene Ontology biological processes 
enriched in the module genes. B, Important Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enriched in the 
module genes. C, Gene set enrichment analysis of KEGG pathways in triple-negative breast cancer and non-triple-negative breast 
cancer. D, Gene set enrichment analysis of KEGG pathways in class I and class II triple-negative breast cancer. E, Module genes 
involved in the same four KEGG pathways between GSEA and KEGG enrichment. F, The signaling pathways in non-triple-
negative breast cancer and class I and II triple-negative breast cancer were up-regulated or down-regulated at the same time.
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Figure 5. Immune cell infiltration of triple-negative breast cancer tumors. A, Differences in immune cell infiltration of tumors 
between triple-negative breast cancer and non-triple-negative breast cancer, and between class I and class II triple-negative breast 
cancer. B, Correlations between numbers of different immune cell types in tumors. C, Correlations between module hub gene 
expression and numbers of different immune cell types in tumors. D, Correlations of numbers of infiltrating Th2 cells with expression 
of the hub genes MCM10 and PREX2. E, Correlations of numbers of different immune cell types infiltrating class I or class II tumors.
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Figure 6. Altered methylation in triple-negative breast cancer. A, Sites of methylation in triple-negative breast cancer and 
non-triple-negative breast cancer. B, Differences in methylation sites between triple-negative breast cancer and controls. 
C, Distribution of methylation sites across chromosomes (chr). D, Circular plot of methylation markers, generated using 
OmicCircos. Genes in red are hypermethylated in TNBC relative to non-TNBC; genes in blue, hypomethylated. E, Forest plot 
of methylation markers to identify ones associated with overall survival.
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for improving treatment. For example, higher 
numbers of lymphocytes in the tumor stroma 
have been associated with higher survival rates43. 
We found evidence that class I TNBC tumors 
show relatively low infiltration by immune cells. 
Expression of the hub gene MCM10 correlated 
negatively with the abundance of most types of 
tumor-infiltrating immune cells, but positively 
with Th2 cells. Conversely, expression of the hub 
gene PREX2 correlated negatively with Th2 cells. 
Shifting the balance between Th1 and Th2 pop-
ulations towards Th2 may promote the growth 
of breast cancer cells44,45. Such differences in 
immune cell infiltration may help explain the 
observed difference in overall survival between 
class I and II TNBC. 

Many cancers, including TNBC, feature hy-
permethylation of CpG islands in the promoter re-
gions of genes encoding key growth regulators46. 
Therefore, we examined methylation patterns 
in TNBC in order to identify potential mark-
ers to guide diagnosis and treatment. Consistent 
with our results, CIDEC has been shown to be 
down-regulated in breast cancer47, while EDNRB 
is up-regulated in TNBC cells48. Hypermethyla-
tion of the DLC1 promoter may help drive breast 
cancer49. EGR2 may be an oncogene of invasive 
breast cancer50, and high SRPK1 expression has 
been associated with increased breast cancer in-
vasiveness and poor prognosis51. Further work is 
needed to clarify how methylation contributes to 
TNBC and its different subtypes.

Future work should expand on our analyses 
since this study was unable to compare methyla-
tion profiles between TNBC and non-TNBC52,53, 
nor did we verify our genetic findings with cel-
lular or biochemical analyses. Clinical studies 
should also compare the prognosis of patients 
with class I or II TNBC. 

Conclusions

We screened 9 co-expression modules of TN-
BC-related genes and used the module hub genes 
to classify TNBC into classes I and II. Class I 
showed the strongest correlation with module 1, 
while class II showed the strongest correlation 
with module 6. Class I TNBC tumors appear to 
show less infiltration by immune cells than class 
II tumors. The intra-tumor abundance of most 
types of immune cells correlated negatively with 
expression of the hub gene MCM10 from module 
1 but positively with expression of the hub gene 

PREX2 from module 6. Our results suggest that 
class I TNBC may be associated with a worse 
prognosis than class II disease, which should be 
confirmed in clinical studies. However, based 
on the results of our study, the biomarkers of 
different subtypes of TNBC may have important 
guiding significance for the diagnosis and treat-
ment of TNBC in the future. Our methylation 
analyses suggest that the difference in overall 
survival may relate to differences in methylation 
of CIDEC, DLC1, EDNRB, EGR2, and SRPK1.
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