Is subareolar intraoperative biopsy still necessary to predict nipple involvement?

E. BUFI1, M. PIACENTINI2, P. BELLI1,2, M. CONTI1, G. CIRIELLO2, G. FRANCESCHINI2,3, M. GIULIANI4, D. TERRIBILE2,3, I. VALENTE5, R. MANFREDI1,2

1UOC Radiologia Diagnostica ed Interventistica Generale, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
2Università Cattolica del Sacro Cuore, Rome, Italy
3UOC Chirurgia Senologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
4UOC Radiologia Frosinone-Alatri, Ospedale F. Spaziani, Frosinone, Italy
5UOC Radiologia e Neuroradiologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy

Corresponding Author: Martina Piacentini, MD; e-mail: martinapiacentinimd@gmail.com

Abstract. – OBJECTIVE: To predict the occult tumor involvement of nipple-areola complex (NAC) using preoperative MR imaging and to investigate whether the intraoperative histopathological examination of the subareolar tissue is still necessary.

PATIENTS AND METHODS: Out of 712 patients submitted to nipple-sparing mastectomy (NSM) between 2014 and 2019, we selected 188 patients who underwent preoperative breast MRI. Breast MRI and intraoperative histopathological examination of the subareolar tissue were performed to predict NAC involvement at permanent pathology. All parameters were correlated with final pathological NAC assessment by univariate and multivariate analysis.

RESULTS: Forty-three patients (22.9%) had tumor involvement of the NAC. At univariate analysis, non-mass enhancement type (p = 0.009), multifocality/multicentricity (p = 0.002), median tumor size (p < 0.001), median tumor-NAC distance measured by MRI (p < 0.001), tumor-NAC distance ≤ 10 mm (p < 0.001) and tumor-NAC distance ≤ 20 mm (p < 0.001), and lymphovascular invasion (p = 0.001) were significantly correlated with NAC involvement. At multivariate analysis, only tumor-NAC distance ≤ 10 mm retained statistical significance. The sensitivity and specificity of MRI tumor-NAC distance ≤ 10 mm were 79.1% and 97.2% and those of intraoperative pathologic assessment were 74.4% and 100%, respectively.

CONCLUSIONS: Tumor-NAC distance is the only reliable MRI characteristic that can predict NAC involvement in breast cancer patients. Although several cut-offs showed promising performances, intraoperative pathologic assessment is still mandatory.

Key Words: Breast cancer, Magnetic resonance imaging, Mastectomy, Subareolar, Intraoperative pathology, Nipple-sparing.
Patients and Methods

Study Population

The records of breast cancer patients treated at our Breast Imaging Unit of the Fondazione Policlinico Universitario A. Gemelli of Rome (Italy) were reviewed retrospectively to identify all consecutive patients with newly diagnosed breast cancer who underwent preoperative breast MRI between January 2014 and December 2019, and who were subsequently treated with mastectomy, either NSM or SSM.

Exclusion criteria were as follows: a) patients with locally advanced tumors who underwent to preoperative chemotherapy; b) patients with inflammatory breast cancer and Paget’s disease of the nipple; c) patients with evident clinical tumor involvement of the NAC and/or the skin; d) patients who underwent to previous surgery and/or radiation therapy; and e) patients with inadequate quality of the images (i.e., motion artifacts, improper positioning). All patients signed a written informed consent.

MRI Examination and Interpretation

MR examinations were acquired with 1.5 T equipment and dedicated phased-array 8-channel coil (HDx Signa Excite, GE HealthCare Milwaukee, WI), following the recommended technical requirements for breast imaging27, within 2 weeks before surgery. In particular, the dynamic study was performed by a 3D VIBRANT sequence (slice thickness 2.6 mm; acquisition matrix 416x416; temporal resolution 90 s) acquired before and five times after intravenous contrast agent administration (0.1 mmol/kg of Gadoteridol, ProHance, Bracco Imaging, Milan, Italy) at a flow rate of 2 mL/s, followed by 20 ml saline flush. Before contrasting medium injection, T1-weighted and T2-weighted time inversion recovery sequences were also acquired, as well as diffusion-weighted imaging (DWI), according to current recommendations. Subtracted images and multiplanar reconstructions (MPR) were derived from the dynamic study dataset.

Two radiologists dedicated to breast imaging (with at least 5 years of experience in breast MRI) reviewed the images for every patient and were blinded to clinical and pathological information. According to the BI-RADS MRI lexicon28, each breast lesion was classified as focus, mass, or non-mass enhancement. Lesions were also categorized as unifocal, multifocal, and/or multicentric according to lesion number and location. The minimum distance between the base of the NAC and the nearest margin of the lesion was measured by electronic calipers, using MPR images. The minimum distance between the axial and sagittal measurements was also recorded. In the case of bifocal, multifocal, and multicentric tumors, the distances were computed between the NAC and the nearest lesion4.
Is subareolar intraoperative biopsy still necessary to predict nipple involvement?

Statistical Analysis

The population was divided into two subgroups (NAC involved vs. NAC not-involved). At univariate analysis, differences in MRI findings between the two groups were analyzed using the t-test (for Gaussian continuous variables) or Mann-Whitney U Test (for Non-Gaussian continuous variables) and the Chi-squared test (for dichotomous variables) or the Fisher exact test (for dichotomous variable with less than 5 observations). Factors that showed a significant ($p < 0.05$) association with outcome in the univariate analysis were inserted into the multivariate analysis using a logistic regression model [adjusted for pre-specified confounding factors, such as age and background parenchymal enhancement (BPE)]. Sensitivity, specificity, positive predicting value (PPV), negative predicting value (NPV) and accuracy were evaluated for the three cut-offs points already used in literature (5 mm, 10 mm, 20 mm). Receiver operating characteristic (ROC) curves were calculated for the tumor-nipple distance at MRI. The optimal cut-off values were determined to maximize (99%) the NPV and using a cost-benefit analysis. These measures and the related indices, "true positive fraction," and "false positive fraction," are more meaningful than "accuracy," yet do not provide a unique description of diagnostic performance because they depend on the arbitrary selection of a decision threshold. The receiver operating characteristic (ROC). This represents the evaluation of expected “cost” of the consequences of performing a diagnostic test, subject to the true positive fraction and false-positive fraction being constrained to lie on the ROC curve. We will assume a cost of each false-negative patient worth three times the cost of each false positive. The alpha level was 0.05.

Results

Out of 712 patients who underwent NSM, 524 patients were excluded as they fell into the exclusion criteria and 188 patients were enrolled. Of 188 breast cancers, 43 (22.9%) showed NAC in-
volvement on pathologic examination (Table I). The median tumor size was 29 mm (IQR 15-50 mm); thirty-eight cancers (20.2%) were ≤ 10 mm from the nipple, 72 cancer (38.3%) were ≤ 20 mm and 116 (61.7%) were > 20 mm from the nipple. The median tumor-nipple distance was 22 mm (IQR 13-40 mm).

Seventy-two (38.9%) were invasive ductal carcinomas, 29 (15.7%) were invasive lobular carcinomas, 41 (22.2%) were ductal carcinomas in situ and 43 (23.3%) were others type of breast cancer.

At univariate analysis, non-mass enhancement type (p = 0.009), multifocal/multicentric tumors (p = 0.002), median tumor size (p < 0.001), median tumor-nipple distance (p < 0.001) and lymphovascular invasion (p = 0.001) were all significantly associated with NAC involvement at permanent pathology. The multivariate analysis revealed that only tumor-nipple distance ≤ 10 mm (p < 0.001) provided independent information over the likelihood of NAC involvement at final pathology (Table I).

Several cut-offs of the tumor-NAC distance for the prediction of NAC involvement at MRI were tested (5 mm, 10 mm, 15 mm, 20 mm); Table II shows sensitivity, specificity, PPV, NPV, accuracy, and the area under the curve (AUC) obtained from the ROC curves using these cut-offs (Figure 1).

Discussion

Overall, 22.9% (43/188) of the patients in our series had NAC involvement at the final pathology examination. These results were consistent with previously reported studies7,8, which re-

Table I. Univariate and multivariate analysis associated with involvement of NAC.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Overall</th>
<th>NAC not-involved</th>
<th>NAC involved</th>
<th>p-value</th>
<th>OR [LB-UB]</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>188</td>
<td>145 (77.1%)</td>
<td>43 (22.9%)</td>
<td>.847</td>
<td>.95 (.87-1.03)</td>
</tr>
<tr>
<td>Age</td>
<td>47.7</td>
<td>47.6</td>
<td>47.9</td>
<td>.324</td>
<td></td>
</tr>
<tr>
<td>BPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (ref.)</td>
<td>72 (38.3%)</td>
<td>58 (40.0%)</td>
<td>14 (32.6%)</td>
<td><.001</td>
<td>10.48 (5.67-16.15) *</td>
</tr>
<tr>
<td>2</td>
<td>61 (32.5%)</td>
<td>48 (33.1%)</td>
<td>13 (30.2%)</td>
<td>.53</td>
<td>(.89-3.23)</td>
</tr>
<tr>
<td>3</td>
<td>31 (16.5%)</td>
<td>24 (16.5%)</td>
<td>7 (16.3%)</td>
<td>1.26</td>
<td>(.19-8.42)</td>
</tr>
<tr>
<td>4</td>
<td>24 (12.8%)</td>
<td>15 (10.3%)</td>
<td>9 (20.9%)</td>
<td>2.75</td>
<td>(.33-22.76)</td>
</tr>
<tr>
<td>Enhancement type</td>
<td></td>
<td></td>
<td></td>
<td>.009</td>
<td></td>
</tr>
<tr>
<td>Mass (ref.)</td>
<td>80 (42.8%)</td>
<td>69 (47.9%)</td>
<td>11 (25.6%)</td>
<td>3.81</td>
<td>(.71-20.47)</td>
</tr>
<tr>
<td>Non-mass</td>
<td>107 (57.2%)</td>
<td>75 (52.1%)</td>
<td>32 (74.4%)</td>
<td>.002</td>
<td></td>
</tr>
<tr>
<td>Focality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unifocal (ref.)</td>
<td>63 (34.2%)</td>
<td>57 (40.1%)</td>
<td>6 (14.3%)</td>
<td>.55</td>
<td>(.10-2.97)</td>
</tr>
<tr>
<td>Multifocal/Multicentric</td>
<td>121 (65.8%)</td>
<td>85 (59.9%)</td>
<td>36 (85.7%)</td>
<td>.55</td>
<td>(.10-2.97)</td>
</tr>
<tr>
<td>Median tumor size mm at MR (IQR)</td>
<td>29 (15-50)</td>
<td>24 (13-45)</td>
<td>5 (28-69)</td>
<td><.001</td>
<td>.34 (.21-4.12)</td>
</tr>
<tr>
<td>Median t-NAC distance mm (IQR)</td>
<td>22 (13-40)</td>
<td>20 (20-43)</td>
<td>2 (0-8)</td>
<td><.001</td>
<td>.31 (.19-2.56)</td>
</tr>
<tr>
<td>Tumor-nipple distance ≤10 mm</td>
<td>38 (20.2%)</td>
<td>4 (2.8%)</td>
<td>34 (79.1%)</td>
<td><.001</td>
<td>10.48 (5.67-16.15) *</td>
</tr>
<tr>
<td>≤20 mm</td>
<td>72 (38.3%)</td>
<td>34 (23.5%)</td>
<td>38 (88.4%)</td>
<td><.001</td>
<td>1.92 (.36-1.13)</td>
</tr>
<tr>
<td><100% Grade±3</td>
<td>62 (37.4%)</td>
<td>46 (36.2%)</td>
<td>16 (41.0%)</td>
<td>.587</td>
<td>-</td>
</tr>
<tr>
<td>Lymphovascular Invasion</td>
<td>64 (34.8%)</td>
<td>41 (28.7%)</td>
<td>23 (56.1%)</td>
<td>.001</td>
<td>2.46 (.57-10.63)</td>
</tr>
<tr>
<td>ER+</td>
<td>158 (84.0%)</td>
<td>126 (86.9%)</td>
<td>32 (74.4%)</td>
<td>.050</td>
<td>.20 (.02-1.41)</td>
</tr>
<tr>
<td>PR+</td>
<td>147 (78.2%)</td>
<td>117 (80.7%)</td>
<td>30 (69.8%)</td>
<td>.128</td>
<td>-</td>
</tr>
<tr>
<td>Her2 +</td>
<td>61 (32.5%)</td>
<td>44 (30.3%)</td>
<td>17 (39.5%)</td>
<td>.258</td>
<td>-</td>
</tr>
<tr>
<td>Ki67 (20%)</td>
<td>100 (53.2%)</td>
<td>76 (52.4%)</td>
<td>24 (55.8%)</td>
<td>.695</td>
<td>-</td>
</tr>
<tr>
<td>Permanent pathology</td>
<td></td>
<td></td>
<td></td>
<td>.366</td>
<td>-</td>
</tr>
<tr>
<td>DCIS</td>
<td>41 (22.2%)</td>
<td>28 (19.7%)</td>
<td>13 (30.2%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>IDC</td>
<td>72 (38.9%)</td>
<td>59 (41.5%)</td>
<td>13 (30.2%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ILC</td>
<td>29 (15.7%)</td>
<td>21 (14.8%)</td>
<td>8 (17.6%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Others</td>
<td>43 (23.3%)</td>
<td>34 (23.9%)</td>
<td>9 (20.9%)</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*: p-value < 0.05; OR: odds-ratio; LB: lower-bound; UB: upper bound; BPE: background parenchymal enhancement; IQR: interquartile range; ER: estrogen receptors; PR: progesterone receptors; DCIS: ductal carcinoma in-situ; IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma; t-NAC distance: tumor-nipple areola complex distance.
Is subareolar intraoperative biopsy still necessary to predict nipple involvement?

revealed that nipple invasion ranges from 9.5% to 24.6%. In our study, several clinicopathologic factors were related to NAC involvement in the univariate analysis: median tumor size, non-mass enhancement type, multicentricity/multifocality, lymph node metastasis, and tumor-nipple distance were predictive of NAC invasion. These findings were consistent with previous reports, which showed that large tumor size (≥ 20 mm)7,14,30,31, enhancement type$^{14,32-34}$, multicentricity or multifocality13,14,35, lymphovascular invasion36,37, and tumor-nipple distance2,9,11,13,14 were associated with nipple involvement. In our analysis, only tumor-nipple distance with a 10 mm cut-off was a significant ($p < 0.001$) predictor of NAC involvement by breast cancer. Consistent with our study, tumor-nipple distance was the most notable factor in the prediction of NAC involvement in many studies4,9,13,15,17,18,36; however, no consensus has yet been reached as to the minimum tumor-to-nipple distance acceptable to allow for NAC preservation at the time of mastectomy. Recent works4,13 have suggested that tumor-to-nipple distance of less than 20 mm may be appropriate in nipple-sparing mastectomy and if the frozen biopsy specimen is found to be negative for tumor cells, D’Alonzo et al4 recommended that a tumor-to-nipple distance of 10 mm could be considered a safe cut-off for NSM candidacy based on their 2012 study of 100 mastectomy cases. Ponzone et al13 recommended a tumor to nipple distance cut-off of 5 mm in determining NSM candidacy based on their prospective study of 112 nipple-sparing mastectomies. Koh et al32 found that tumor-nipple enhancement and tumor-nipple distance on MRI could predict NAC involvement in breast cancer. When enhancement was evaluated on both early and delayed phase images with a combined tumor-nipple distance of ≤ 10 mm, the prediction of NAC involvement showed the best performance. Given different values proposed in the literature, several potential cut-off values of tumor-nipple distance were tested in our study (Table II), and we found that the AUC was the highest (0.881) when a tumor-nipple distance was ≤ 10 mm, with a sensitivity of 79.1% and specificity of 97.2%.

Even though preoperative MRI proved to be an informative tool, intraoperative subareolar tissue frozen section still stands as the reference standard to confirm the absence of tumoral cells in patients who are candidates for NSM37. In the literature, studies evaluating the accuracy of intraoperative subareolar frozen section are limited, and false-negative rates vary from 0.7%38 to 33.3%39. In our study, the intraoperative histopathological analysis showed a sensitivity and specificity of 74.4% and 100%, respectively, with NPV of 92.9% and a PPV of 100%. Moreover, the intraoperative histopathological examination of the subareolar tissue may determine a higher risk of late vascular complications of the NAC.

If subareolar sections can be shown to provide earlier detection of occult NAC involvement, facilitate reconstruction or reduce the total number of surgeries, then there is a benefit to their continued use. In contrast, if the accuracy of subareolar sections is insufficient and does not affect the management strategy, their exclusion from routine practice could be justified37. For these reasons, while some institutions favor the use of intraoperative sub-areolar analysis36,42, others routinely rely on final subareolar pathology results only43,44.

We tried to identify a cut-off value of tumor-nipple distance at preoperative MRI that could exclude with adequate accuracy the NAC involvement, with the final purpose to avoid the intraoperative sub-areolar analysis. Hence, we performed a cost-benefit analysis by setting the ratio between the weight of a false-negative and a false-positive to 3:1, and we found that the best cut-off was 9 mm (NPV 94%, PPV 89%). When we try to maximize the NPV (99%), the best cut-off is 21 mm (PPV 47%). This means that out of 100 patients who display a 21 mm or greater distance between the tumor and the nipple, only one will require secondary treatment following the final pathology examination. According to this performance, 106 patients (56.4%) could have avoided the intraoperative pathological assessment.

The present study has some limitations, including its retrospective nature, which is in part addressed by having all MRI examinations reviewed blinded to surgical and histopathological data. In addition, the present study is a single institution experience at an academic medical center. An important limitation is that MRI findings were not compared with other conventional imaging (such as mammography); unfortunately, a comparison between MX and MRI was not possible in our study since only a few patients had both exams performed.

Conclusions

Our data show that tumor-NAC distance at MRI is the most important predictive factor of NAC-involvement. We found that the 10 mm cut-
Table II. Diagnostic performance of different measurements of tumor-NAC distance by MRI.

<table>
<thead>
<tr>
<th>Predicting factor</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>PPV</th>
<th>NPV</th>
<th>Accuracy</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor-nipple distance ≤5 mm</td>
<td>53.5%</td>
<td>98.6%</td>
<td>92.0%</td>
<td>87.7%</td>
<td>88.3%</td>
<td>0.760</td>
</tr>
<tr>
<td>Tumor-nipple distance ≤10 mm</td>
<td>79.1%</td>
<td>97.2%</td>
<td>89.5%</td>
<td>94.0%</td>
<td>93.1%</td>
<td>0.881</td>
</tr>
<tr>
<td>Tumor-nipple distance ≤15 mm</td>
<td>86.1%</td>
<td>89.0%</td>
<td>69.8%</td>
<td>95.6%</td>
<td>88.3%</td>
<td>0.875</td>
</tr>
<tr>
<td>Tumor-nipple distance ≤20 mm</td>
<td>88.4%</td>
<td>76.6%</td>
<td>52.8%</td>
<td>95.7%</td>
<td>79.3%</td>
<td>0.824</td>
</tr>
</tbody>
</table>

PPV: positive predicting value; NPV: negative predicting value; AUC: area under the curve.

off is associated with the best AUC. When we considered the cost of each false-negative patient worth three times the cost of each false positive, the best cut-off value was 9 mm. When we tried to maximize the negative predictive value of this test (up to 99%), the best cut-off was 21 mm; this tumor-NAC distance seems sufficiently reliable to indicate the absence of NAC involvement, and it could allow avoiding intraoperative pathologic assessment. However, a randomized controlled trial is necessary to verify the real predictive performances of preoperative MRI examination; meanwhile, intraoperative pathologic assessment is still mandatory.

Conflict of Interest
The Authors declare that they have no conflict of interests.

References
14) Plato JRM, De Andrade RDJA, Chala LF, De Barros N, Mano MS, Melitto AS, Goncalves R, Junior
Is subareolar intraoperative biopsy still necessary to predict nipple involvement?

