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Abstract. – OBJECTIVE: This study aimed to 
define a method of classifying patients with mild 
cognitive impairment caused by Alzheimer’s dis-
ease by the retrieval of functional near-infrared 
spectroscopy (fNIRS) signal characteristics ob-
tained during olfactory stimulation and the vali-
dation of deep learning findings. 

PATIENTS AND METHODS: Participants were 
recruited for the study from March 02 and August 
30, 2021. A total of 78 participants met the criteria 
for categorization. The Mini-Mental State Examina-
tion and the Seoul Neuropsychological Scale were 
used to distinguish between patients with mild Alz-
heimer’s disease-related cognitive impairment and 
healthy controls. fNIRS data received during olfac-
tory stimulation were used to create 1,680 time-se-
ries sample values. A total of 150 indices with a 
p-value ≤ 0.1 were used as deep learning features to 
construct the result values for 120 models account-
ing for all conceivable combinations of data ratios.

RESULTS: For this trial, 78 participants were re-
cruited for the original intervention trial. The aver-
age accuracy of the 120 deep-learning models for 
classifying patients with Alzheimer’s-related mild 
cognitive impairment ranged from 0.78 to 0.90. 
Sensitivity ranged from 0.88 to 0.96 for the 120 
models, while specificity ranged from 0.86 to 0.94. 
The F1 scores ranged from 0.74 to 0.88. At 0.78 to 
0.90, the precision and recall were equivalent.

CONCLUSIONS: This trial using a deep-learn-
ing model found that the representative val-
ue extracted from the time series data of each 
channel could distinguish between healthy peo-
ple and patients with mild cognitive impairment 
caused by Alzheimer’s disease.

Key Words:
fNIRS, Alzheimer’s disease, Dementia, Deep learning.

Introduction

The most prevalent cause of dementia is Alz-
heimer’s disease1, the early stages of which are 
characterized by mild cognitive impairment as 
beta-amyloid and tau proteins are deposited2. 
Without appropriate interventional treatment, 
mild cognitive impairment (MCI) progresses to 
Alzheimer’s disease3. As there is little effective 
management and treatment for Alzheimer’s dis-
ease, it is crucial to detect it in the early stages of 
dementia or mild cognitive impairment and treat 
it in a palliative way4. It is difficult to distinguish 
patients with mild cognitive impairment caused 
by Alzheimer’s disease from healthy individuals 
without a detailed examination5. Various stud-
ies6,7 have been conducted to identify biomark-
ers suitable for discovering Alzheimer’s disease 
at the mild cognitive impairment stage. Among 
them, studies7,8 on the olfactory nerve have shown 
promising results. Additionally, the olfactory 
nerve function decreases in the early stages of 
Alzheimer’s disease. Detection of this decrease 
in function is more sensitive than the functional 
decline of any other sensory organ9. Therefore, 
many studies10,11 have attempted to detect Alzhei-
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mer’s disease early by quantifying olfactory func-
tion using functional MRI and questionnaires.

In the past, we have identified the stages of 
Alzheimer’s disease using the left-right oxygen 
consumption difference estimated from time 
series data on olfactory-stimulated functional 
near-infrared spectroscopy (fNIRS)7,8. Although 
we have investigated whether olfactory-stimu-
lated oxygenation differences detected by fNIRS 
were related to cognitive impairment, previous 
trials7,8 used only one feature from fNIRS through 
conventional statistical techniques. Thus, using 
deep learning and 1,680 representative features of 
time series data from fNIRS, including complex-
ity, asymmetry, and new similarity of fNIRS sig-
nals obtained by two of six channels, we aimed to 
differentiate between patients with mild cognitive 
impairment caused by Alzheimer’s disease and 
healthy individuals through comprehensive post-
hoc analysis of a diagnostic interventional trial.

Patients and Methods

Participants
Between March 02 and August 30, 2021, 97 

participants were recruited for the original trial 
from which our data were derived7,8. First, pa-
tients with Alzheimer’s dementia, severe head 
injuries, systemic malignancies, cerebral hemor-
rhages, or strokes were excluded from the trial. 
Second, those with olfactory problems, such as 
olfactory nerve tumors and physical blockage of 
the nose, were excluded. Third, those with psychi-
atric illnesses, such as major depressive disorder 
and substance abuse, were also excluded. Final-
ly, 19 patients were excluded who were unable to 
cooperate throughout the fNIRS exam and ques-
tionnaire. Of the total recruited participant group, 
a final sample size of 78 was included in the study 
(females, n = 41; males, n = 37).

The protocol for the patient study was approved 
by the Gwangju Institute of Science and Technol-
ogy Clinical Review Board (20210115-HR-58-01-
02). The clinical trial was registered with the Ko-
rea Clinical Research Information Service (CRIS 
number: KCT0006197). We adhered to the tenets 
of the Declaration of Helsinki, and informed 
consent was obtained from each subject or legal 
guardian at the time of recruitment.

Alzheimer’s Disease Classification Criteria
The participants in this study underwent cog-

nitive function tests using the Mini-Mental State 

Examination (MMSE) and the Seoul Neuropsy-
chological Screening Battery (SNSB) to deter-
mine the Alzheimer’s disease stage. Additionally, 
MRI (MPRAGE; TR, 2,300 ms; TE, 2.143 ms; TI, 
900 ms; FA, 9°; FoV, 256 × 256; matrix, 320 × 
320; slice thickness, 0.8 mm) using a 3.0 T mag-
netic resonance (MR) scanner (MAGNETOM 
Skyra; Siemens Healthineers, Erlangen, Germa-
ny) and amyloid PET-CT (Discovery STE PET-
CT scanner; GE Medical Systems, Chicago, IL, 
USA) were used to verify the progression of Alz-
heimer’s disease7,8,12. Based on test data and the 
2011 recommendations of the National Institute 
on Aging Alzheimer’s Association (NIA-AA)13, 
patients with mild cognitive impairment caused 
due to Alzheimer’s disease were discriminated 
against healthy individuals. Using the SNSB cog-
nitive domain exam, criteria for mild cognitive 
impairment were established for patients who met 
the Jak/Bondi comprehensive criteria14.

In this study, patients with Alzheimer’s disease 
with mild cognitive impairment were defined as 
those with amyloid accumulation verified by an 
amyloid PET-CT and a standardized distribution 
index z-value of ≤ -1.0 in two or more cognitive 
domains15.

Study Protocol
Participants who completed the cognitive 

function test and imaging examination were pro-
vided with a smell stick-scented pen to perform 
the olfactory test in the clinic. The olfactory test 
was performed with the fNIRS probe connected 
to the forehead. The order of inspection was as 
follows: (1) no fragrance, (2) three varieties of 
fragrances (Downy, mint, leather), and (3) no fra-
grance. In the olfactory test, the individual was 
given no additional instructions other than to 
sniff the pen16,17.

Features for Deep Learning Models
Several signal processing stages were performed 

to select the features to be used in deep learning. 
The light from the LED passes through the cerebral 
cortex and uses a filter that removes noise caused by 
motion from the signal entering the light receiver. 
This passes through a band-pass filter (0.01-2.5 Hz) 
and uses the modified Beer-Lambert law formula to 
signal red blood cell oxygen concentration18. This 
was then changed to a Gaussian filter, a Task-relat-
ed component analysis (TRCA) algorithm, and a 
corrected fNIRS signal with skin signals removed 
was obtained. TRCA is an algorithm that attempts 
to reduce the dimensionality of the hyperplane used 
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in the principal components by using the task time 
section19. Thus, the features used for deep learning 
were the left average, right average, total aver-
age left and right differences for each channel 
(1-6), corrected fNIRS, and oxy-hemoglobin 
and deoxy-hemoglobin. Finally, the TRCA can 
be obtained using four items: local, global, oxy-
genation, and volume. We used 168 sub-data and 
1,680 features (10-time series data characteris-
tics [Hjorth, kurtosis, skewness, entropy, curve 
length, area under the curve (AUC), autocorrela-
tion, and time to peak]). There were 10 traits alto-
gether, providing each person with 1,680 features. 
This was leveraged for deep learning (Figure 1). 
We selected features with p ≤ 0.1 in the t-test20-22.

Proposed Deep Learning Models
Figure 2 depicts the structure of the model 

for identifying patients with Alzheimer’s-related 
mild cognitive impairment in the normal group. 
While retaining the normal-to-mild cognitive im-

pairment patient ratio, 10 groups of 79 patients 
were selected randomly, and the number of all 
cases in which the training set and test set could 
be separated by 7:3 was applied. Thus, 120 train-
ing sets and 120 test sets were constructed. In this 
dataset, a six-layer multi-perceptron was used 
to develop a deep learning classification model, 
and hyperparameter tuning was performed using 
Optuna (version 3.0.5; Preferred Networks, Inc., 
Tokyo, Japan). All processing steps were execut-
ed on a machine with an Intel Core i7-12700F 
4.9 GHz processor (Intel Inc., Santa Clara, CA, 
USA), 512 GB of RAM, and NVIDIA GEForce 
RTX 3080 Ti. (NVIDIA Inc, Santa Clara, CA, 
USA), Python (version 3.7.13; Python Software 
Foundation, Wilmington, DE, USA), with Tensor-
Flow-gpu (version 2.6.0; Google, Mountain View, 
CA, USA), Keras (version 2.9.0; Google, Moun-
tain View, CA, USA), NumPy (version 1.19.5), 
Pandas (version 1.3.5), Matplotlib (version 3.5.1), 
and sci-kit-learn models (version 1.0.2).

Figure 1. Schematic diagram of feature extraction algorithm for time series data. The difference between patients with nor-
mal group and those with mild cognitive impairment was determined for these 1,680 fetuses, and only 150 traits with a p-value 
≤ 0.1 were chosen.

Figure 2. Summary of the structure of deep learning models and the characteristics to be included in model inputs.
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Statistical Analysis
The epidemiological data of the patients were 

presented as mean and standard deviation (SD). All 
statistical analyses were performed using SPSS (ver-
sion 25.0; IBM Corp, Armonk, NY, USA) and R soft-
ware (version 3.1.1; R Foundation, Vienna, Austria). 
One-dimensional representative values of the time 
series data were compared between the normal and 
mild cognitive impairment groups using a t-test, and 
only representative values with a two-sided p-value 
lower than 0.1 were used for machine learning. 

Results

A total of 78 senior citizens aged 60 years or 
older met the eligibility criteria for this study. The 
baseline characteristics of the remaining patients are 
summarized in Table I. Among 1,680 features in 52 
healthy patients and 26 patients with mild cognitive 
impairment, 150 features showed p ≤ 0.1 in the t-test 
of the patients with and without mild cognitive im-
pairment. The accuracy of 120 deep-learning mod-
els using 150 features extracted from time series 
data was 0.78-0.90. The sensitivity and specificity 
of the 120 models were in the range of 0.88-0.96 and 
0.86-0.94, respectively. The F1 score range was 0.74-
0.88. Recall and precision were also in the range of 
0.78-0.90. The AUC calculated from the receiver 
operating characteristic curve is shown in Figure 3.

Discussion

Through post-hoc analysis of the diagnos-
tic intervention trial, we identified a novel deep 
learning model with high sensitivity (0.88-0.96), 

specificity (0.86-0.94), and accuracy (0.78-0.90) 
for classifying individuals with mild cognitive 
disorder caused by Alzheimer’s disease using 
comprehensive features (n = 1,680) from fNIRS 
time series data. Specifically, the following 
fNIRS time series data were selected: Hjorth, 
kurtosis, skewness, entropy, curve length, AUC, 
autocorrelation, and time to peak.

Various approaches employing sensory nerves 
originating directly from the brain have been de-
veloped for the early detection of Alzheimer’s dis-
ease-related mild cognitive impairment23. Numerous 
attempts have been made to categorize individuals 
with Alzheimer’s-related mild cognitive impairment 
or dementia using machine learning or deep learning, 
in addition to simple statistical analysis of biosignals 
that excite sensory organs23. Among the senses, the 
sense of smell has been shown to be closely associat-
ed with Alzheimer’s disease24. fNIRS was utilized to 
evaluate olfactory stimulation, and statistically asso-
ciated indications were used to investigate the com-
parison between healthy individuals and those with 
mild cognitive impairment25.

Using various methods, the proposed model 
method generated representative values for the char-
acteristics displayed in each area of the time series 
data. This strategy can compensate for changes in 
data length resulting from differences in subject co-
operation in other research utilizing time series data, 
as well as for instances in which the protocol was 
not followed at the precise time point. 

This study has many limitations. First, com-
pared to previous research, this was a compara-
tively large sample, yet the sample size was small. 
Underfitting was identified in 120 models and the 
performance of the model would likely improve 
as the sample size increased. 

Table I. Factors independently associated with in-hospital mortality by means of multivariate analysis.

Variables CN MCI

Number (%) 52 (67) 26 (33)
Age, years, median (SD) 73.7 ± 6.2 73.4 ± 6.4
Sex, female (%) 28 (50.9) 13 (50.0)
Mini-Mental State Examination, median (range) 27.8 ± 1.3 25.8 ± 2.1
Cognitive measures (composite z score), mean (SD)
  SNSB attention -0.07 (0.92) -0.52 (0.79)
  SNSB language and related function 0.51 (0.65) 0.02 (1.22)
  SNSB visuospatial function 1.01 (0.68) 0.17 (1.69)
  SNSB memory 0.73 (1.08) -0.64 (1.46)
  SNSB frontal/executive function 0.55 (0.80) -0.47 (1.06)

CN, cognitively normal; MCI, mild cognitive impairment; SD, standard deviation; SNSB, Seoul Neuropsychological Screening 
Battery.
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Limitations
While our model was able to distinguish patients 

with mild cognitive impairment from healthy individ-
uals it is not capable of forecasting if this is caused 
by vascular dementia or dementia with Lewy bodies.

This, however, presents a small problem as you 
may need to state specifically whether it can detect 
MCI caused by Alzheimer’s disease only or if it can 
detect MCI caused by other forms of dementia27. De-
pending on the circumstances, this can be circum-
vented with a sufficient paperweight in advance26. 
Nevertheless, despite these limitations, our findings 
may assist general practitioners and non-neurologists 
in evaluating patients with mild cognitive impairment 
in a rapidly expanding older population28-31. 

Conclusions

Through post-hoc analysis of diagnostic inter-
vention trials, we found a novel deep learning model 
with high sensitivity, specificity, and accuracy for 
classifying individuals with Alzheimer’s disease-re-
lated mild cognitive impairment using comprehen-
sive features from fNIRS time-series data. In par-
ticular, the following fNIRS time series data were 
selected: Hjorth, kurtosis, skewness, entropy, curve 
length, AUC, autocorrelation, and time to peak. 
This novel algorithm may assist in distinguishing 
between patients with or without mild cognitive 
impairment due to Alzheimer’s disease and may 
improve the general public health system, medical 
cost-effectiveness, and understanding of the patho-
physiology of Alzheimer’s dementia.
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