
Abstract. – OBJECTIVE: The irisin, recently
identified novel molecule, has been shown to be
secreted from fibronectin type III domain con-
taining 5 (FNDC5) of skeletal muscle by an un-
known protease. It has been proposed that this
molecule plays an important role in converting
the white adipose tissue to brown adipose tis-
sue and regulating the energy expenditure.
Apart from this, its expression and role in vari-
ous other conditions such as inflammation, hip-
pocampal neurogenesis, aging and other meta-
bolic conditions have been reported. However,
due to conflicting results, several issues have
been raised regarding its expression, cleavage,
circulating levels, detection, excretion, designa-
tion, etc.

MATERIALS AND METHODS: Complete litera-
ture survey was performed using PubMed data-
base search to gather available information re-
garding FNDC5/irisin. 

RESULTS AND CONCLUSIONS: The present
review discussed on the discovery of irisin, its
possible role in physiological and pathological
conditions and controversies. It also discussed
the current challenges and future perspectives.

Key Words:
Energy expenditure, FNDC5, Insulin resistance,

Irisin, Obesity.

Introduction

Obesity, one of the life style diseases, is a
chronic condition in which excess fat is accumu-
lated in the body, which can lead to increased ad-
verse effects on health such as cardiovascular
diseases1, insulin resistance2, hypertension and
increased risk of cancer. The prevalence of obe-
sity is increasing continuously and becomes a
major public health challenge worldwide. Physi-
cal exercise benefits a variety of organ systems
in mammals including insulin sensitivity and
obesity. However, exercise-induced beneficial
effects are well known and particularly on reduc-
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ing body weight is remains elusive. Many studies
have highlighted the role of exercise in various
organ systems like liver, brain, adipose tissue
and heart. The exercise affects the skeletal mus-
cle directly among all other organs3. The skeletal
muscle is a metabolically active tissue that has
been identified as a secretary organ since it pro-
duces and releases cytokines and other peptides
similar to hormones in function3,4. These secre-
tions might be involved in the beneficial effects
of exercise. In an earlier study, the authors sug-
gested the name ‘myokines’ for the secretions of
skeletal muscle which work as endocrine, au-
tocrine or paracrine mechanisms5. The identifica-
tion of the several hundred components in the
‘secretome’ of skeletal muscle provides the basis
for understanding how the muscle communicates
with other organs3. The myokines of skeletal
muscle secretome include IL-15, IL-6, IL-8,
leukemia inhibitory factor, irisin, fibroblast
growth factor 21, brain-derived neurotrophic fac-
tor and secreted protein acidic and rich in cys-
teine, etc.6,7. This review focuses on one of the
myokines of secretome – Irisin – its discovery,
structure, expression, proposed functions and its
role as exercise-induced myokine in various ani-
mal experiments and in humans, challenges for
future advances in irisin biology.

Discovery of Irisin
Irisin was recently identified as muscle-de-

rived factor that is released from the muscle im-
mediately after exercise. It is secreted from fi-
bronectin type III domain containing 5 (FNDC5)
after the cleavage of its extracellular portion8.
FNDC5 is one of the target proteins of PPARγ
coactivator-1 α (PGC1α) identified by quantita-
tive PCR8. FNDC5 is composed of a signal pep-
tide, a fibronectin III domain and a hydrophobic
C-terminal domain. Initially Bostrom et al8 re-
ported that the expression of PGC1α in muscle
stimulates the increased expression of FNDC5.
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Figure 1. Schematic representation of proposed mechanism of release of irisin and its action. Exercise-induced release of
PPARγ coactivator-1 α (PGC1α) from skeletal muscle increases the expression of fibronectin type III domain containing 5
(FNDC5). Cleavage of FNDC5 by an unknown protease releases the irisin. White adipose cells are converted to brite/beige
adipose tissue by irisin. Irisin upregulates the expression uncoupling protein 1 (UCP1) in outer membrane of mitochondria
which leads to increased thermogenesis by oxidation of fatty acids. 
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Expression of Irisin
Initially, circulating irisin levels were mea-

sured in mouse and human by Western blot8 and
ELISA17. Later, many reports were documented
that irisin expression was found in skeletal mus-
cle, cardiac muscle and Purkinje cells of rat and
mouse brain by immunoreactivity9,18. In another
study, increased expression of FNDC5 mRNA in
skeletal muscle upon exercise was found in
obese rats than the lean/healthy rats10. A recent
study has reported the presence of irisin in hepa-
tocytes by flow cytometry and cell imaging tech-
nique19, and in saliva by ELISA20. The constitu-
tive expression of irisin in variety of tissues indi-
cates its crucial role in normal physiology and
further studies are required to confirm other
functions of irisin.

White and Brown Adipose Tissue
White adipose tissue (WAT) and brown adi-

pose tissue (BAT) differ extensively in their
function and lineage21. WAT stores the triglyc-
erides where as BAT is specialized in energy
expenditure and heat production22. It was be-
lieved that the active BAT helps to maintain
the normal body temperature in newborns and

When the primary subcutaneous white
adipocytes were treated with commercial
FNDC5 (20 nM) protein, it promoted uncoupling
protein 1 (UCP1) mRNA (7-500 fold) expres-
sion. After immunoblotting with the antibody
specific to endogenous FNDC5, a slightly larger
FNDC5 protein (32 kDa) was detected in the me-
dia compare to its cellular counterpart (20kDa).
Thus, Bostrom et al8 suggested that full length
FNDC5 must be cleaved at C-terminal by un-
known protease, further modified (glycosylated)
and secreted. This soluble 112 amino acid pep-
tide was named as ‘Irisin’ after Iris, the Greek
messenger goddess8. Following this study, many
reports were documented in the literature on the
expression of FNDC5 mRNA upon exercise in
rodent models9,10 and in humans11,12. Many stud-
ies have reported the presence of the irisin pro-
tein in plasma11,13,14. Later, it has been proved
that irisin is not only a myokine but also an
adipokine15. In another study, irisin has been
identified in adipose tissue besides the skeletal
muscle in humans16. Bostrom et al8 strongly sug-
gested that the major action of FNDC5/irisin is
the activation of browning of adipose tissue and
activation of thermogenic genes (Figure 1).
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infants but not in the adults23. To facilitate the
maintaining of the normal body temperature in
cold conditions, BAT oxidize fatty acids and
produces heat by mitochondrial UCP124. Unlike
the former opinion, Nedergaard et al25 reported
that substantial fractions of active BAT was
identified and proposed that it has some meta-
bolic significance in the normal human physi-
ology. Later it was found that the presence of
active BAT in healthy human adults too26. Re-
cent studies27 suggested that identification of
BAT in healthy adults have opened up new op-
portunities for the development of novel thera-
peutics for metabolic diseases like obesity and
type 2 diabetes. Moreover, it is also known that
WAT contains cells that can express high lev-
els of UCP1 and acquire brown fat-like multi-
locular appearance in response to cyclic
AMP28. However, this third type of, other than
WAT and BAT, fat cells are known as brite or
beige (brown in white) fat cells29 which is later
supported by the discovery of irisin8. Further-
more, these brown-like cells present in WAT
are from different lineage than the BAT27. The
induction of beige cells in WAT, subsequently
browning of WAT were confirmed by using
myostatin knockout mice30.  Zhang et al31

demonstrated that the browning of WAT was
probably mediated by irisin-induced phospho-
rylation of the p38 mitogen-activated protein
kinase (p38 MAPK) and extracellular signal-re-
lated kinase (ERK) signaling pathways. It is
thought that the stimulation of BAT activity
might be an option to treat the metabolic dis-
eases such as obesity or insulin resistance32. 

In vitro and in vivo Studies on the Effect
of Irisin in adipose Tissue/Obesity

After publishing the promising mechanism for
induction of beige adipocytes, many studies
have been reported on the effects of irisin in
both in vivo and in vitro. Serum irisin levels
were showed to increase after exercise in young
rats than the old rats18. In another study33, full
length FNDC5 protein was detected in skeletal
muscle of bulls irrespective of their muscularity
but no circulatory FNDC5 protein or irisin were
observed. Pigs are suitable research animals,
which facilitate precisely regulated calorie in-
take, intensity and duration of exercise, size-
comparable to humans than the rodents. Fain et
al34 have used castrated male pigs of the Rapacz
familial hypercholesterolemic strain and normal
pigs to identify the effect of exercise on expres-

sion of FNDC5 mRNA or protein. Finally, they
concluded that there was no effect of exercise
training on FNDC5 mRNA expression or protein
in pigs. When Bostrom et al identified irisin as
an exercise induced myokine in rodents, it
gained the interest of many researchers as a po-
tential target to treat obesity and related dis-
eases. Stengel et al35 studied in a group consists
of wide spectrum of body weight in 40 patients
against various parameters with/without exercise
of anorexia nervosa and concluded that higher
levels of irisin was detected in plasma of obese
subjects. Contrary to this, another study36 did not
confirm the exercise related irisin regulation.
Moreover, Raschke et al37 also observed that re-
combinant irisin could not differentiate the pre-
adipocytes, isolated from humans, into brite
adipocytes. Timmons et al38 reported that only in
a minority of subjects the increased expression
of FNDC5 mRNA in muscle was observed and
elevated plasma irisin was observed only in
highly active elderly people. Similar to this,
Norheim et al39 showed that the plasma irisin
concentration was a little high in pre-diabetics
than the control group subjects. In addition, it al-
so concluded that there was no effect of long-
term training on plasma irisin concentration.
However, the results of the studies on effect of
irisin on the human subjects are not consistent.
Moreover, Ivanov et al40 identified FNDC5 as
one of the non-AUG-initiated products in hu-
mans from the previously published literature,
whereas normal ATG was present in all other
animal species37. In this study, it is found that
the expression of full length protein of human
FNDC5 construct with ATA start codon in
HEK293 cells was only 1% compared to ATG
start codon. For further details of studies on hu-
man subjects in various disease conditions asso-
ciated with irisin is reviewed elsewhere41. Due to
these inconsistent results, more studies are need-
ed to re-evaluate the role of irisin in energy ex-
penditure on human subjects.

Role of Irisin in Physiological and
Pathological Conditions

Inflammatory Diseases
Type 2 diabetes mellitus (T2DM) is consid-

ered not only as hyperglycemic but also as a in-
flammatory disease42. Though there were some
reports on inflammatory markers of predicting
T2DM, they were ancient or specific to some
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ethnic groups only. In the process of searching
the new inflammatory markers for T2DM, Zhang
et al. reported the irisin levels as 12.05 ± 2.12
pg/mL in patients with MVD, 26.11 ± 4.09
pg/mL in patients without MVD and 40.25 ±
2.73 pg/mL in healthy controls. Thus, this study
concluded that irisin as one of the markers for
macrovascular disease in T2DM43. 

Cardiovascular Disease in T2DM
Physical inactivation is a well-known risk fac-

tor for cardiovascular complications in T2DM44.
The association of reduced expression of PGC1α
in T2DM and sedentary life style is documented
earlier45 and another study showed that physical
exercise induced the expression of PGC1 α and
its downstream molecule FNDC5. Over expres-
sion of irisin was shown to increase energy ex-
penditure and alleviate insulin resistance in dia-
betic animal model8. Insulin resistance is often
associated with endothelial dysfunction46. Xiang
et al47 have studied the relationship between
irisin levels and endothelial dysfunction in newly
diagnosed T2DM without angiopathy. This study
reported lower circulating irisin levels in newly
diagnosed T2DM patients without clinical an-
giopathy (13.25 ng/ml) than the controls (25.98
ng/ml). Therefore, circulating irisin levels could
be used as one of the markers for detecting early
stage of angiopathy in T2DM.

Renal Diseases 
Ebert et al48 have shown that the myokine

‘irisin’ is not eliminated by the kidneys. In con-
trast to irisin, most of the adipokines such as lep-
tin, adiponectin, retinol-binding protein-4, fi-
broblast growth factor 21 show renal clearance
which are significantly elevated in renal diseases.
The non-elimination of irisin by kidneys makes
irisin as a potential pharmacological target. Fur-
ther they have concluded that the irisin levels
were decreased with the advanced stage of the
chronic kidney disease. Thus, the levels of irisin
could be used as a marker to assess the kidney
function.

Metabolism
Many studies reported increased irisin levels

in obese subjects. However, significantly de-
creased irisin levels were observed after gastric
banding surgery in obese patients suggesting the
protective feedback mechanism to overcome
metabolic disturbances11. As suggested by Cru-
jeiras et al49, irisin could be used as a biomarker

for poor or altered metabolic status in obese pa-
tients. Recently50, recombinant irisin role has
been explored on skeletal anabolic actions and
showed that it increases cortical bone mass.

Hippocampal Neurogenesis
Production and survival of newly formed neu-

rons in the hippocampus region is necessary to
respond to external environment in humans and
other vertebrates. Physical exercise, anti-depres-
sants and stress regulate the hippocampal neuro-
genesis51. It is known that physical exercise in-
creases the generation of neurons. However,
about half of the neurons generated undergo pro-
grammed cell death within one- two weeks. In-
terestingly, it is reported52 that the generated hip-
pocampal neurons can be rescued from pro-
grammed cell death by increasing skill training
(mental training) in combination with physical
training. It has recently been demonstrated11 that
human brain express irisin and it has also been
shown that knock-down of the precursor of irisin,
FNDC5, decreases neural differentiation of
mouse embryonic stem cells. Moon et al53 have
first demonstrated that irisin increases the cell
proliferation and STAT3 signaling at pharmaco-
logical concentrations (50-100 nM) in mouse
H19-7 cells in vitro. Activation of STAT3 is re-
quired for development of sensory neurons.
However further studies are needed to confirm
the physiological effects of irisin on hippocampal
neurogenesis. Further irisin can be explored as a
target in neurological diseases or in development
of cognitive skills.

Telomere Length and Ageing
Telomerase is an enzyme that stabilizes the

length of telomeric ends. Human telomerase re-
verse transcriptase (hTRT) is the catalytic sub-
unit of the telomerase that regulates the telom-
erase activity54. p38 MAP Kinase has been
shown to regulate the expression of hTRT55.
Irisin has been shown to activate the signaling
pathway involved in MAP Kinase where it is
involved in the prevention of T2DM by stimu-
lating the expression of WAT browning specif-
ic genes31. Exercise is associated with the in-
creased telomere length in PBMCs but the role
of irisin has not been established in ageing
process56. It suggests that plasma irisin could
predict telomere length in healthy individuals
and irisin may exert potential anti-ageing ef-
fects deserves further investigation.
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Problems in Detection of Irisin
Till date, commercially available antibodies

have been used for the quantification of circula-
tory irisin in all the reported studies. Bostrom et
al8 demonstrated that the presence of irisin in the
culture medium by Western blots with wild type
FNDC5 antibodies. In the same study, they de-
termined the size of the secreted peptide (irisin)
using mass spectroscopy (MS) as 112 amino
acids. Bostrom et al8 have used a polyclonal anti-
body, which was developed against the trans-
membrane protein to detect irisin so the results
need to be reevaluated with proper antibodies. In
an earlier study antibodies from two sources
(Abcam and Phoenix Pharmaceuticals) have
been compared and found to show similar size
band in Western blots, though the antibodies
were raised against different epitopes (no se-
quence was common in developing both the anti-
bodies)15 suggesting that both epitopes were de-
rived from the same protein. However, in another
study somewhat more related antibodies have
been used which were developed against C-ter-
minal part of irisin (42-112)9. Hence, specific an-
tibodies to detect irisin need to be developed and
then presence of irisin can be efficiently studied
by different methods such as 2D and MALDI-
TOF. Bostrom et al8 collected the secreted
FNDC5/irisin from the culture medium and de-
termined the sequence using MS. However, they
did not quantify the amount of secreted protein to
the protein present on the cell surface. It is highly
essential to know the fraction in view of a muta-
tion in the start codon (presence of a non-canoni-
cal start codon-AUA)57. Bostrom et al8 have used
the truncated FNDC5 protein to show the brown-
ing of cells in culture. In the truncated peptide
the partner strands for ‘strand C’ and ‘strand F’
of irisin were missed. Thus, it may not be possi-
ble for the truncated peptide to fold properly to
possess biological activity. Refer Erickson et al57

for further details. 

Structure 
It is proposed that a type I membrane protein

(irisin), encoded by FNDC5, was released into
culture medium58. To know the structure and
function of the newly discovered irisin, Schu-
macher et al. have performed biochemical and
X-ray crystallography studies on irisin. It re-
veals that irisin also folds similar to fibronectin
III (FNIII) domain containing proteins. Howev-
er, in contrast to FNIII that prevents dimeriza-

tion, irisin forms a continuous inter-subunit β-
sheet dimer59. The unexpected and interesting
finding is irisin forms a tight dimer of continu-
ous antiparallel eight-stranded β-sheet. The for-
mation of continuous β-sheet interactions con-
tribute ten inter-subunit hydrogen bonds in the
dimer which leads to its thermostability60. Apart
from the inter-subunit hydrogen bonds, interac-
tions between the side chains of subunits also
further enhance the stability such as ‘salt bridge
formation’ between Arg-75 of one subunit and
Glu-79 of the other subunit as well as formation
of ‘tryptophan zipper like interaction’ between
Trp-90 of one subunit and Trp-90 of another
subunit. The Ala-88 residue plays a crucial role
in the tryptophan zipper formation. The bio-
chemical data from the experiments also
demonstrates clearly that glycosylated and non-
glycosylated forms are dimers. Structural and
mutagenesis data also support the dimer form of
irisin59. They have suggested the region 55-58,
loop 106-108 and N-terminus of irisin are the
possible candidates for interaction with the pu-
tative, unidentified receptor. The structure of
irisin proposes that it binds to its putative recep-
tor as preformed dimer59.

Gaps to Fill

Elimination of Irisin
The adipokines such as leptin, adiponectin,

retinol-binding protein-4, adipocyte fatty acid-
binding protein, fibroblast growth factor 21,
chemerin and zinc-α2-glycoprotein show renal
clearance. Hence, these are significantly elevated
in end-stage renal diseases in circulation. How-
ever, in contrast, the adipo-myokine ‘irisin’ was
not eliminated by kidneys. It requires further
studies to know the mechanism by which irisin is
eliminated in normal physiological conditions. It
is hypothesized that as sarcopenia is one of the
frequent findings in chronic kidney disease
(CKD), sarcopenia itself directly contributes to
lower levels of irisin in CKD48,61. Ebert et al48

have estimated the irisin before and after the he-
modialysis and reported that the irisin is at least
in part, by 23%, is dialyzable.

Identification of Irisin Receptor
Bostrom et al8 suggested the existence of a cell

surface receptor whereas; Schumacher et al59

have shown that irisin forms dimers which may
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be important for ligand-receptor interaction.
Schumacher et al59 have suggested the region 55-
58, loop 106-108 and N-terminus of irisin are the
possible candidates for interaction with the puta-
tive, unidentified receptor. 

Proper Designation of Irisin and FNDC5
According to Bostrom et al8, the theoretical

molecular weight of irisin is 12.6 kDa. However,
many other studies also have shown the irisin as
22 kDa using an antibody raised against trans-
membrane region8, which is probably the full
length FNDC5 (23.7 kDa as per Q8NAU1)8. In
another study15, wherein, antibodies raised
against the region of 149-178 amino acids and
42-142 amino acids of irisin have been used and
observed a 25 kDa band in the conditioned media
from rat skeletal muscle cells indicating the full
length FNDC5 again, not the irisin fragment. Lee
et al62 have used MS to identify the presence of
irisin in human serum samples and revealed gly-
cosylated and deglycosylated forms of
FNDC5/irisin at 32 kDa and 24 kDa respectively.
Unfortunately, all the above studies have desig-
nated that the ~22-24 kDa fragment as irisin, but
not as fragment of FNDC5 or full length
FNDC5. However, all the studies revealed that
the band found in experiments is around 22-24
kDa, if that is irisin, not FNDC5, then the cleav-
age site should be determined perfectly. Howev-
er, in an earlier study, different molecular
weights of irisin have been reported with site di-
rected mutation (16 kDa), irisin dimer (23.5 kDa)
and glycosylated irisin (36 kDa) by size exclu-
sion chromatography. It is contrary to the size re-
ported by Western blotting, indicating that fur-
ther studies are highly needed to confirm the ex-
act structure and cleavage site of the FNDC5 by
unknown protease.

Conclusions and Future Perspectives
Irisin has gained a marked insight in the field of

medical biology and its potential therapeutic im-
portance in metabolic diseases. Even though it
gained lot of importance in life science research, it
needs to be explored further. Especially, further
studies need to be focused on identification of its
receptors and finding the actual mechanism of
browning of WAT. Even though some conclusions
have been derived from rodent models, the pres-
ence of circulating irisin in large animals (pig, cat-
tle) and humans is still elusive; therefore, addition-
al studies are highly crucial to confirm its presence.
Besides its role in metabolic regulation, it is also

found to be involved in maintaining normal physi-
ological conditions (neural development, cognitive
skill improvement etc). It is important to explore
the role of irisin in other pathological/physiological
conditions. All reported studies have shown that
the irisin as 22-24 kDa protein, however, the pro-
posed theoretical molecular weight is 12.6 kDa8.
Till date no reports are available to show that irisin
as a 12.6 kDa protein released from FNDC5,
hence, it is not clear whether the identified irisin by
Western blot is a fragment of FNDC5 or full-
length FNDC5. Proper designation for this mole-
cule is highly needed to avoid the confusion by
identifying the actual cleavage site for the release
of irisin from FNDC5. If its role is confirmed in
metabolic regulation, then it can be exploited as
functional food, drug and a drug target for treating
various conditions. Most of the adipokines/
myokines show renal elimination, whereas, the
elimination process of irisin is not known48, there-
fore the mechanisms of elimination is need to be
studied before it can be used as a therapeutic
agent/target. Knock out models and over expres-
sion of irisin studies have to be established to con-
firm its role in various conditions.
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