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Abstract. - OBJECTIVE: Obstructive Sleep
Apnea (OSA) represents an emerging public
health concern with great impact on cardiovas-
cular state. Oxidative stress (OS), inflammation
and altered Nitric Oxide (NO) production are
recognized as prominent mechanisms of ma-
ny acute and chronic diseases and even of the
normal aging process. They are investigated
as major pathophysiological processes in OSA
through the analysis and comparison of signifi-
cative and validated biomarkers.

MATERIALS AND METHODS: The review is
developed using as key terms “sleep apnea”,
“oxidative stress”, “inflammation”, and “endo-
thelial dysfunction”. Included studies must have
followed the American Academy of Sleep Medi-
cine guidelines according to the diagnosis and
classification of OSA. Lipid, protein and DNA ox-
idation products, PCR, IL-6, IL-8, TNF-a, NO and
nitrosative stress compounds, and endothelial
functioning tests have been detected for their
contribution in OSA along the last 3 decades.

RESULTS: Nocturnal intermittent hypoxia has
emerged to be significantly associated to oxida-
tive/nitrosative stress, increase in pro-inflam-
matory markers, imbalance in NO production,
and endothelium impairment. Body Mass Index
(BMI) contribution needs further clarifications.
Continuous Positive Airway Pressure (CPAP)
therapy has demonstrated beneficial effects on
vascular function and pro-inflammatory milieu
in OSA.

CONCLUSIONS: Oxidative stress and Inflam-
mation significantly correlate with OSA; simi-
larly, vascular functioning is impaired in accor-
dance to unregulated levels of NO and derived
compounds. Continuous Positive Airway Pres-
sure markedly improves oxidative stress, in-
flammation and endothelial dysfunction in OSA.
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Sleep apnea, Oxidative stress, Inflammation, Endo-
thelial dysfunction.

Introduction

Obstructive Sleep Apnea (OSA) is a common
Sleep Breathing Disorders (SBD) recognized as a
major public health concern. Approximately, 1 of
every 5 adults suffer from at least mild OSA and
1 of every 15 from moderate up to severe OSA'.
Men are 2 to 3 times more prone to develop OSA'S
and the risk tends to increase after the middle age*
6. OSA consists in repetitive episodes of upper air-
ways’ collapse, especially at the level of oropharynx.
It causes the complete or partial and intermittent
airflow obstruction during sleep associated to re-
spiratory efforts. Obstructions result from variable
combinations of anatomic factors which predispose
to airways’ collapse during inspiration and neuro-
muscular compensations unable to maintain the
patency’. The subsequent alveolar hypoventilation
induces sleep fragmentation via repeated Central
Nervous System (CNS) activations, called arousals,
responsible for brief awakenings®. Airways’ col-
lapse and intermittent hypoxia contribute to devel-
op alterations in metabolism and immune system’.
Some studies'®!! support an increased infarction of
pro-inflammatory molecules and cells in upper air-
ways’ tissues. An imbalance in oxidative processes
may also emerge; beside mechanical trauma, cy-
cling hypoxia-reoxygenation events are referred as
possible causative factors'>. Such phenomena aug-
ment both the expression of adhesion molecules and
the release of free radical species and inflammatory
cytokines. Systemic inflammation and endotheli-
al damage are unavoidable consequences’. OSA is
therefore recognized as an independent risk factor
for several cardiovascular diseases (CVDs), includ-
ing hypertension and coronary artery disease*'*. A
10-unit average increase in the Apnea-Hypopnea
Index (AHI) relates to a 17% greater risk in such
conditions®. Furthermore, it is also associated with
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obesity, metabolic syndrome (MetS), dyslipidemia
and insulin-resistance'*'®. Inflammation and oxida-
tive stress represent primary pathogenic factors for
all these diseases, whether their causal or propagat-
ing role remains unresolved'**.

Materials and Methods

The current review examines the presence of ox-
idative stress, inflammation and imbalance in Nitric
Oxide (NO) production in patients suffering from
OSA. For this purpose, a search in PubMed has
been performed using as key terms “sleep apnea”,
“oxidative stress”, “inflammation” and “endothelial
dysfunction”. Only full-length original publications
dealing with human subjects affected from OSA
since 1990 have been taken into consideration. Re-
views, meta-analysis and case reports/series have
been excluded. Lipid, protein and DNA oxidative
products, C-Reactive Protein (CRP), Interleukin-6
(IL-6), Interleukin-8 (IL-8), Tumor Necrosis Fac-
tor-a. (TNF-a), NO and nitrosative stress compounds
have been selected as representative biomarkers
(Table I). Endothelial dysfunction has been further
investigated via the study of Arterial Flow-Medi-
ated Dilation (FMD), Endothelial Progenitor Cells
(EPCs) and Morning Reactive Hyperemia (MRH)
tests. Other inclusion criteria refer to: a) diagnosis of
OSA performed via an overnight full polysomnog-
raphy (PSG) [including: electroencephalography,
electrooculography, electromyography, electrocar-
diography, upper airways ventilatory flow, chest and
abdomen movements, O2 saturation (SaO2)]; b) ap-
nea defined as a complete cessation of airflow for at
least 10 seconds; c¢) hypopnea defined as a substan-
tial reduction in airflow (> 50%) for at least 10 sec-
onds or a moderate reduction in airflow for at least
10 seconds associated with electroencephalographic
arousals or oxygen desaturation (= 4%); d) the av-
erage number of apnea plus hypopnea events/h of
sleep defines the AHI: 0-4.9 no OSA, 5-14.9 mild
OSA, 15-29.9 moderate OSA, and > 30 severe OSA;
¢) Continuous Positive Airway Pressure (CPAP) ad-
ministered when AHI > 15 events/h. A total of 33
studies met the inclusion criteria.

Results
Oxidative Stress
Free radicals are defined as atoms or mole-

cules with at least one uncoupled electron in the
outer orbit, thus prone to chemical reactions®.

6940

For over 60 years their role in human pathology
has been recognized?*. Although considered
initially merely toxic by-products of the oxida-
tive metabolism, they have been progressive-
ly described as important mediators of several
pathophysiological processes. Reactive radicals
are released by leukocytes as defensive mech-
anism against microorganisms*, promote isch-
emia-reperfusion injurie® and take part in nu-
merous signal pathways?®. However, as normally
produced during aerobic respiration, protective
endogenous mechanisms arose in order to main-
tain them under rigorous control. Oxidative
stress consists therefore in the excessive accu-
mulation of free radicals due to an imbalance
between antioxidant defenses and oxidants’ pro-
ductive system. Predominant Reactive Oxygen
Species (ROS) are Superoxide (O;), Hydrogen
Peroxide (H,0,), Hydroxyl Radical (OH") and
Lipid Peroxides. Additionally, Reactive Nitrogen
Species (RNS) can cooperate or overlap ROS,
such as Peroxynitrite (OONO~) which formed
during the reaction between O, and NO. Exces-
sive ROS and RNS damage important cellular
components, such as lipids, proteins, carbohy-
drates and even nucleic acids, altering their over-
all functioning. Thus, they participate in the onset
and progression of numerous diseases?’, OSA in-
cluded?®. However, ROS have an extremely short
half-life by virtue of their high reactivity. Com-
pounds formed from the reaction between ROS
and organic biomolecules show more stability and
thus allow more objective measurements of oxi-
dative stress in tissues or fluids®.

Lipid Peroxidation

Lipid peroxidation (LPO) is one of the most
well-known forms of oxidative damage. It af-
fects lipidic membranes, lipoproteins and other
molecules that contain lipids. Malondialdehyde
(MDA) is the prototypical LPO end-product and
derives from the peroxidative decomposition of
unsaturated fatty acids. MDA reacts with pro-
teins, mainly with Lys residues, and alters their
physiological properties forming MDA-modi-
fied protein adducts which act as autoantibod-
ies?”. ThioBarbituric Acid Reactive Substances
(TBARSY) is the oldest and widest assay used to
measure MDA%. The relevance of MDA is fur-
ther underlined because of its contribution in
Diabetes Mellitus (DM)*° and atherosclerosis®.
Higher levels of MDA have been also observed in
asthma* and neurological diseases*. MDA role
in OSA still remains controversial.
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Table I. Relationship of different biomarkers studied in OSA patients and relative trend with the disease severity (AHI) and after

CPAP treatment.
Biomarker  Authors/ nOSA OSA AHI Controls/OSA After
reference biomarker value CPAP
TBARS Jurado-Gamez et al** 23 46 n.a. 1* *
Oyama et al* n.a. 32 +* n.a. 1*
Hopps et al* n.a 48 +* n.a. n.a.
Kang et al*’ 7 44 - > n.a.
Svatikova et al*® 35 41 n.a. — n.a.
IsoPs Carpagnano et a' 12 18 +* T* 1*
Passali et al* 20 20 n.a. T* 1*
Minoguchi et al*! 30 40 +* v 1#
Karamanli et al*? n.a. 35 n.a n.a. 1#
PCs Jurado-Gamez et al** 23 46 n.a. > L#
Hopps et al* n.a. 48 +* n.a. n.a.
Passali et al* 20 20 n.a 1* n.a
8-OHdG) Jurado-Gamez et al** 23 46 n.a. 1* *
Teramoto et al® 160 160 +i# 1* n.a
Comet assay ~ Kang et al’’ 7 44 n.a. — n.a.
CRP Minoguchi et al*! 30 40 +* 1* |#
Karamanli et al* n.a. 35 n.a n.a. —
Taheri et al* 623 284 - > n.a.
Chami et al* 542 358 - 1* n.a.
Chung et al’! 22 68 - > n.a.
Peled et al*? 9 89 - 1* n.a.
Korktmaz et al® 40 107 - © n.a.
Guilleminault et al>* 54 146 - > n.a.
Shamsuzzaman et al> 20 22 +i 1* n.a.
Panoutsopoulos et al*® 18 20 +* 1* 1*
Yiiksel et al®’ 15 51 4k 1 n.a.
Andaku et al® 10 25 +i T#° n.a.
IL-6 Oyama et al® n.a 32 n.a n.a *
Karamanli et al* n.a. 35 n.a. n.a. 1°°
Chami et al® 542 358 +* 1* n.a.
Vgontzas et al® 10 12 n.a 1# n.a.
Vgontzas et al* 28 16 n.a. 14 -
Zhang et al® 30 75 +* 1* n.a.
IL-8 Oyama et al* n.a. 32 n.a. n.a. 1*
Zhang et al® 30 75 +* 1* n.a.
TNF-o/r1/r2  Oyama et al® n.a 32 +i# n.a 1#
Karamanli et al* n.a. 35 n.a n.a. 1°°
Chami et al® 542 358 - > n.a.
Vgontzas et al® 10 12 n.a 1* n.a.
Vgontzas et al* 28 16 n.a 1* —
NO-Tyrs Karamanli et al*? n.a. 35 n.a. n.a. 1#
Jelic et al¥! 15 30 + 1* 1*
NO Oyama et al® n.a. 32 +* n.a. 1*
Yiiksel et al®’ 15 51 - L# n.a.
Ip et al® 40 30 +* 1# 1*
eNO Zhang et al® 30 75 +# T* n.a.
Olopade et al® 8 20 n.a 14 n.a.
JalilMirmohammadi et al* 7 47 n.a. 1#0°° n.a.
Duong-Quy et al*’ 30 52 +# T* n.a.
eNOS Jelic et al®! 15 30 +* 1* 1*
iNOS Jelic et al®! 15 30 - 1# 1*
ADMA Oyama et al® n.a. 32 +* n.a 1*
* = p-value<0.01; #*= p-value<0.05; + = Presence of correlation; - = Absence of correlation; 1 = Increased; |: Decreased; «> =

Unvaried; ° = In presence of Excessive Daytime Sleepiness; °° = In EBC and not in plasma; °°° = In obese patients.
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Significative statistical differences (p=0.001)
have emerged between healthy individuals, 1.6
uM (1.5-1.8), and OSA patients, 2.6 uM (1.9-
3.7)**. The same study has also demonstrated
improvements after 3 months of CPAP therapy,
worn at least 4 hours/night, [p=0.001, MDA 1.9
uM (1.6-2.2)]. Similar results have been obtained
by other authors®. Positive correlations have been
found between TBARS and Apnea-Hypopnea
Index (AHI) (p<0.01)*>%¢ and Oxygen Desatura-
tion Index (ODI) (p<0.0001), while negative with
Mean Oxygen Saturation (mSO,) (p<0.0003)*.
On the contrary, other trials have not found out
any relevant difference related to OSA severity
(p>0.05)*".

Isoprostanes (IsoPs) are compounds generat-
ed by a nonenzymatic and free radicals-catalyzed
peroxidation of esterified arachidonic acid. Wide-
spread in human tissues, they act as vasoconstric-
tors in lungs and kidneys and regulate platelets’
functions. They are also useful markers of inflam-
mation, ischemia-reperfusion injury, atheroscle-
rosis and DM%. IsoPs appear meaningful in OSA.
8-Isoprostane (8-IsoP) has demonstrated to be
significantly higher in OSA patients than healthy
subjects in both plasma and Exhaled Breath Con-
densate (EBC) (p<0.0001, both)*. Such evidence
has been further confirmed*’. Overnight urinary
excretion of 8-IsoP has shown positive correla-
tions with OSA severity (p=0.0004), independent-
ly to the Body Mass Index (BMI) (p<0.0001 and
p<0.001 in relation to lean and obese subjects
without OSA, respectively) *. CPAP has proven
to be able to restore 8-IsoP (p<0.03)*'. A signif-
icant lowering of 8-IsoP has been detected after
CPAP treatment in both serum (p=0.019)* and
EBC?¥. Conversely, plasma levels remained com-
parable between affected patients and controls in
another trial (p=0.74)*.

Protein Oxidation

The carbonyls compounds measurement rep-
resents the most used technique to study protein
oxidation. Protein Carbonyls (PCs) are Advanced
Oxidation Protein Products (AOPPs) and they
originate via the oxidation of several amino acids.
They are chemically stable and tend to accumulate
in tissues during normal aging, age-related dis-
eases, chronic inflammation and ischemia-reper-
fusion injury?’. PCs impact on OSA remains
debatable. No significant differences have been
found in plasma between non OSA and OSA pa-
tients, respectively 0.09 nmol/mg (0.04-0.12) and
0.07 nmol/mg (0.05-0.15) (p=0.498)**. Such ev-
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idence has been contradicted by other authors*
(p<0.0001) who have further attributed to PCs
100% specificity and 100% sensitivity as oxida-
tive stress biomarkers in OSA. Negative correla-
tions have been observed with mSO2 (p<0.001)
while positive with AHI (p<0.0001) and ODI
(p<0.0001)*¢. Neck and waist circumferences
have been also appeared to influence PCs levels
(p<0.0001 and p<0.02, respectively)**. Howev-
er, a notable decrease has been reported after 3
months in patients with severe OSA treated with
CPAP (p=0.021)*.

DNA Oxidation

Numerous techniques have been developed
to measure the oxidatively modified nucleic ac-
1ds. However, such methods need further vali-
dations. Additionally, limitations exist regarding
which tissues provide accurate samples”. 8-hy-
droxy-2-deoxyguanosine (§-OHdG) may be con-
sidered a reliable index of oxidative DNA dam-
age”. Recently, higher plasma levels of 8-OHdG
have been reported in patients affected from
OSA, 107 ng/ml (104-111), in contrast to normal
individuals, 103 ng/ml (88-105) (»=0.001)**. Such
evidence has been further corroborated. Urinary
excretion of 8-OHAG has appeared significantly
greater in middle-aged and elderly OSA patients
compared to age and BMI-matched controls®.
Positive relationships have been also found with
AHI and ODI*. CPAP has revealed effective in
lowering 8-OHdG plasma levels after 3 months
(p=0.001), from 107 ng/ml (105-114) to 102 ng/
ml (101-106)**. Another useful technique to study
DNA damage is Alkaline Single-Cell Gel Elec-
trophoresis, or Comet Assay*, albeit, when used,
no correlations have emerged among OSA and
DNA oxidative damage®’.

Inflammatory Markers

Sleeping and breathing modifications in OSA
may predispose to increased local and systemic
inflammation with a great impact on related co-
morbidities outcomes.

CRP is an acute-phase protein. It is highly stable
and does not undergo diurnal variations®. Therefore,
it represents an important measure of inflamma-
tion**. CRP has also emerged to be strongly predic-
tive of cardiovascular risk*#%, CRP may be consid-
ered a suggestive marker of the association between
sleep architecture modifications in SBD and related
comorbidities. The Wisconsin Sleep Cohort Study
(WSCS) performed a large population-based study
demonstrating that higher CRP serum levels in OSA
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patients were dependent to BMI (p<0.0001) rath-
er than AHI severity (p=0.32, 5<AHI<I5; p=0.76,
AHI>15)®. Similar results have been reported by
other authors after introducing BMI-based adjusted
models**. BMI has been moreover found signifi-
cantly associated to higher CRP levels if considered
both OSA and control patients together (p<0.01)
and OSA patients alone (p<0.01)*. On the contrary,
although one study** has reported no correlations,
other trials*>¢ have shown independent associations
between CRP and OSA severity. CRP has appeared
significantly greater in moderate to severe OSA,
considering both lean and obese control subjects
(p<0.01, both)*. CRP has been also found posi-
tively correlated with OSA independently to CVDs
(1.0+0.7 mg/dl, control; 6.0£3.6 mg/dl, OSA without
CVDs; 6.2+3.9 mg/dl, OSA with CVDs; p<0.001)"7,
while Excessive Daytime Sleepiness (EDS) has
emerged to influence it (p<0.05)*®. In addition, the
appropriate use of CPAP seems to ameliorate sig-
nificantly CRP levels (p<0.01)%, albeit there are no
univocal results*.

Intermittent hypoxemia and sleep deprivation
are associated with increased levels of 1L-6%.
IL-6 is a pro-inflammatory cytokine greatly in-
volved in the genesis and progression of CVDs®62,
Findings of the association between IL-6 and OSA
(p=0.02) have been shown in a large population
study based on a demographic multivariable and
BMI adjusted model*. Patients with an AHI>30
events/ hours have revealed mean IL-6 circulating
levels 0.69 pg/ml greater than healthy subjects™.
A similar difference has been reported between
smokers/non-smokers and in the development of
myocardial infarction®. However, Vgontzas et
al® evidenced a significant relationship between
IL-6 and BMI (p<0.001). IL-6 values have been
found higher in patients with OSA, intermediate
in obese controls and lower in non-obese controls
(linear trend p<0.05)%*. Visceral fat has emerged
to be a strong predictor of increased IL-6 in
OSA (p<0.01)**, albeit EDS (p<0.044) and mSO,
(p=0.001) contributions should not be neglect-
ed®. Additionally, among non-smokers individu-
als, IL-6 has recently appeared notably greater in
nasal lavage samples of OSA patients than con-
trols (p<0.001), likewise IL-8 (p<0.001)%. After 3
months, CPAP markedly improves plasma levels
of both IL-6 (p<0.01) and IL-8 (p<0.01)*. Oppo-
sitely, Karamanli et al** have demonstrated a sig-
nificant decreased of IL-6 only in EBC (p<0.001)
but not in serum (p=0.074).

TNF-a represents one of the major regulators
of inflammation. TNF-a contributes to vasodilata-

tion, edema formation, leukocytes’ adhesion and
coagulation. It is also significantly implicated into
oxidative stress®. TNF-a has been positively relat-
ed to OSA (p<0.01) and to EDS (p<0.001), but not
to BMI®. Furthermore, obese OSA patients have
shown an increased expression of TNF Receptor
1 (TNF-rl) if compared to both obese and lean
controls (1641.4£78.1 pg/ml, 1489.5+88.8 pg/ml
and 1307.3£57.2 pg/ml, respectively; linear trend
p<0.01)**. Thus, OSA, but not fat, has appeared
to be associated with TNF-rl levels (p<0.05)%. A
similar trend regards TNF-a itself, albeit without
statistical significance (1.7+0.3pg/ml, 1.5+0.2 pg/
ml and 1.4+0.2 pg/ml; linear trend p=0.09)**. On
the contrary, Chami et al® proved the absence of
correlations between OSA and TNF-a. CPAP sig-
nificantly decreases TNF-a in EBC (p<0.001) after
3 months* whereas controversial results have ap-
peared for serum levels®>#264,

Nitric Oxid-Related Compounds

NO is an endogenous signaling molecule gen-
erated from L-Arginine by Nitric Oxide Synthas-
es (NOSs). Several NOS-independent pathways
exist, too®. 3 different isoforms of NOS have
been mainly described: Neuronal NOS (nNOS
or NOS-1)%, Inducible NOS (iNOS or NOS-2)70
and Endothelial NOS (eNOS or NOS3)""*. nNOS
and eNOS are constitutively expressed (cNOS).
They produce small amounts of NO on a mo-
ment-to-moment principle’ and regulate neuro-
nal impulses and the vascular smooth muscula-
ture tone. iNOS, by contrast, belongs to innate
immunity. It is synthetized ex novo under pro-in-
flammatory stimuli and is associated to a great-
er and prolonged NO production””. The altered
production of NO has been implicated in several
pathological conditions, such as cancer, DM, neu-
rologic, immune and vascular diseases®’. NO is
a gas characterized by a very short half-life be-
cause it is rapidly converted into nitrites (NO2")
and nitrates (NO3"). Although several scavenging
mechanisms exist, NO can form very unstable
and highly reactive species, such as NO~ (Nitro-
sonium), NO~ (Nitroxyl anion) or ONOO~. NO2~
are themselves major oxidation products capable
of inducing proteins’ nitration®”. NO dysregula-
tions may affect OSA long-term complications.

Nitrated proteins can be considered reliable
markers of nitrosative stress because of the associ-
ation with numerous pathological cellular models,
including ischemia-reperfusion injury’®. Little is
known about Nitrotyrosins’ (NO-Tyrs) impact on
OSA. However, studies”* suggest a key role in
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CVDs, important comorbidities of SBD. NO-Tyrs
have demonstrated to be 5- up to 7-fold higher, ac-
cording to the severity, in patients affected from
OSA than healthy individuals (»p=0.001)%. Such
evidence is further validated through improve-
ments reported in both blood (»p=0.032) and EBC
(p=0.037) levels after CPAP*.

NO itself regulates the airways’ patency via
both muscular and nervous pathways. As most
stable endogenous metabolites of NO, NO2~ and
NO3~ assess indirectly NO production in lab-
oratory measurements®?, NO2~ and NO3~ have
been found 2-fold higher in healthy individuals
measuring the AHI (p=0.001) and the time with
Sa02<90% (p=0.004)%, Similar results have been
recently confirmed (28.1424.1 M in OSA patients
and 43.4432.1 uM in controls; p<0.05)*". On the
contrary, iNOS has resulted to be highly expressed
in OSA (p=0.04)"". CPAP seems to markedly in-
crease serum NO2~ and NO3 %, After one night,
patients diagnosed with moderate to severe OSA
have shown comparable levels to that of control
subjects®*. CPAP has moreover demonstrated to
notably restore eNOS and iNOS expression in
circulating EPCs, marker of endothelial repair ca-
pacity (p<0.001, for both)*". CPAP decreases also
blood levels of Asymmetrical Dimethylarginine
(ADMA), an endogenous NOS inhibitor (p<0.01)*.

Exhaled forms of NO have been suggested as
noninvasive biomarkers of airways’ inflammation
by virtue of NO influence in vasodilation and che-
motaxis*. Various authors have investigated the
relationship between Exhaled Nitric Oxide (eNO)
and OSA. Increased oral and nasal eNO has been
reported after sleep, if compared with pre sleep
levels, in patients affected from moderate to severe
OSA (p<0.05)¥. However, a significant difference
in oral eNO has been reported even in non OSA
individuals (p<0.05)%. After sleep nasal eNO has
appeared higher in both OSA (p<0.001) and con-
trol (p=0.034) patients whereas the difference has
remained significantly between the 2 groups before
(p<0.001) and after sleep (p=0.001)%. In addition,
eNO has been revealed greater only in obese pa-
tients after sleep (p<0.05), suggesting the role of
BMI as confounder in airways inflammation®.
Exhaled Fraction of NO (FENO), Maximal Bron-
chial Production Rate of NO (J’awNO) and Alve-
olar Concentration of NO (CANO) are additional
parameters to measure eNO. The correlation with
AHI has been demonstrated for FENO (p=0.007),
CANO p=0.03) and J'awNO (p<0.0001)*". All
these 3 parameters have shown significant differ-
ences between patients and controls®’.
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Endothelial Dysfunction

Chronic intermittent hypoxia-reoxygenation
affects the vascular micromilieu via morpholog-
ical and functional modifications. Sympathet-
ic over-activation, insulin-resistance, oxidative
stress, inflammation and alteration in NO-based
vascular vasodilation are the predominating forc-
es responsible for the subsequent endothelium
impairment®. Injuries of the endothelial wall are
well-established major pathogenic mechanisms of
CVDs. Thus, they may explain the increased car-
diovascular morbidity and mortality in OSA®!
(Figure 1). FMD represents a validated noninva-
sive method to quantify endothelial dysfunction
and endothelial NO-mediated reactivity®>®. It con-
sists in measuring the brachial artery diameter af-
ter having induced reactive hyperemia®®. Patients
affected from OSA have shown significantly low-
er FMD percentages when compared to non OSA
individuals®-***. BMI seems not to influence the
response’¢, Chung et al®' support important dif-
ferences only in severe OSA (p<0.05). The WSCS
conversely has demonstrated a reduction of 0.55%
in FMD for each 2-fold increase in AHI only in
individuals suffering from MetS (p=0.015)*. No
correlations have emerged in no-MetS patients
(p=0.42)°. However, MetS has been positively as-
sociated with both SBD (p<0.001) and lower FMD
(4.3% median in MetS; 5.5% median in no-MetS;
p=0.028)%¢. CPAP has demonstrated to be effective
in ameliorating FMD?*897  especially in propor-
tion to hours of use (p<0.001)””. CPAP has further
shown to significantly increase MRH. Significa-
tive results have emerged via a laser doppler anal-
ysis (p<0.001)** and measuring the Forearm Blood
Flow (FBF) response to induced venous occlusion
(p<0.01)*. Lastly, as markers of endothelial repair,
reduced EPCs levels have been associated with
vascular impairment and increased cardiovascular
risk”®®. EPCs have appeared lower in OSA patients
than controls (p<0.001)8-*, Daily use of CPAP has
markedly improved their blood levels (p=0.03)*,
equaling those of controls (p=0.15)%.

Conclusions

In summary, OSA greatly affects the quality
of life of those who suffer from, per se and via
the numerous comorbidities associated. Increased
morbidity and mortality are well-documented in
OSA patients, whereas the pathogenesis is not yet
fully understood, likewise the linkage with car-
diovascular and metabolic diseases. Oxidative
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Oxidative stress [nflammation

Clronic intermittent hiypoxia’ reoxygenation

NO impairment +

Increased cardiovascular morbidity and mortality
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Figure 1. Schematic representation of the pathogenic processes responsible for the endothelial morphological and functional

impairment in OSA.

stress, pro-inflammatory state and NO-dependent
endothelial dysregulation have been undoubtedly
recognized as main promoter for the onset and the
progression of such affections. They have been
suggested to play a key role even in breathing dis-
orders. In the current review, OSA has emerged
as a potential independent milieu responsible for
the augmented production of free radicals and in-
flammatory cytokines. Additionally, it seems to
cause vascular dysfunction. However, the con-
tribution of body weight remains debatable. Fur-
thermore, CPAP has demonstrated to significant-
ly ameliorate biomarkers values and endothelial
responsiveness to induced hyperemia.
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