Effects of miR-155 on hypertensive rats via regulating vascular mesangial hyperplasia

D. XU, R. LIAO, X.-X. WANG, Z. CHENG

Department of Cardiology, The First Branch, The First Affiliated Hospital of University, Chongqing, China

Abstract. – OBJECTIVE: Vascular smooth muscle cell (VSMC) excessive proliferation is related to hypertension. The cell cycle inhibitory factor (p27) can arrest cell cycle, while its down-regulation is associated with hypertension. It is found that microRNA-155 (miR-155) plays a regulatory role in VSMC proliferation, while its relationship with hypertension is still unclear. Bioinformatics analysis reveals the targeted relationship between miR-155 and the 3'-UTR of p27 mRNA. This study aims to the role of miR-155 in regulating p27 sion, VSMC proliferation and apoptosis, the pathogenesis of hypertension.

MATERIALS AND METHODS: Dual lud ase reporter gene assay confirmed the retionship between miR-155 ar MiR-15 and Ki p27, a-smooth muscle active ic aor 67 expressions in the the edia of rat hypertension model e detect VSMCs livid were cultured in vitro groups, including i-mi pIRES2-blank, pIR -p27, an miR-155 + pIRES2-p27 grou Cell cycle valuated v. Cell prolit by using flow n was g. Hypertension rats detected with were randomly divided antagomir-155 and antagomiz ntrol. Cauda systolic and diastolic r sures were meas

RES S: MiR-155 targeted suppressed p27 55 and Ki-67 expressions sigion. Mi exp ed, while p27 and α-SMA levels nif enh tunica with c ia from hypertension reduc rats con rol. Down-regulation of dlation of p27significantly 55 an d cell p ation and arrested cell cycle hase. Ant gomir-155 injection markedly sed systolic and diastolic pressures, eledec -SMA expressions in media, and nickness of tunica media.

ONCLUSIONS: MiR-155 promoted VSMC ation by targeting p27. MiR-155 enhancement as related to hypertension. MiR-155 played a therapeutic effect on hypertension.

Key Words.
miR-155, p27, VSMs ertension, Proliferation,

troduction

ertension a kind of chronic cardiovaracterized as systemic arterial elevation. Numerous factors may d to hypertension, such as heredity, psychentolietary habit, age, and drugs¹⁻³. Vascular muscle cell (VSMC) is the main component of tunica media that plays an important role in maintaining the integrity of vascular wall structure and function, regulating angiotasis, and sustaining blood pressure fluctuation within normal physiological range⁴. VSMC excessive proliferation under pathological condition may migrate to subintima, thus playing a role in narrowing the blood vessel lumen, thickening the vascular wall, and elevating peripheral vascular resistance and blood pressure⁵.

P27 is a type of cyclin dependent kinase inhibitor (CDKI) that plays a key role in regulating cell cycle, especially in G1 phase⁶. P27 blocks cell enter S phase from G1 phase by inhibiting the activation of G1 kinase complex, such as cyclin E-CDK2 and cyclin D-CDK4, to arrest cell cycle and inhibit cell proliferation^{7,8}. Scholars⁹⁻¹¹ revealed that p27 down-regulation was associated with aberrant proliferation of VSMC and participated in the pathogenesis of hypertension and pulmonary arterial hypertension. MicroRNA(miR) is a kind of small non-coding single strand RNA at the length of 21-24 nt in eukaryotes. It plays a critical role in VASM proliferation and apoptosis, endothelial cell function, and cardiovascular development by complete or incomplete complementary binding with the 3'-UTR of mRNA to degrade mRNA or inhibit translation^{12,13}. Evidence revealed that the expression and function of miRNA are associated with hypertension¹³. It was showed that down-regulation of miR-155 plays a regulatory role in VSMC proliferation^{14,15}. However, its relationship with hypertension remains unclear. Bioinformatics analysis reveals the targeted relationship between miR-155 and the 3'-UTR of p27 mRNA. We explore the role of miR-155 in regulating p27 expression, VSMC proliferation and apoptosis, and the pathogenesis of hypertension.

Materials and Methods

Main Reagents and Materials

Dulbecco's modified eagle medium (DMEM) medium was purchased from Gibco (Grand Island, NY, USA). Fetal bovine serum (FBS) and penicillin-streptomycin were purchased from Mediatech-Cellgro (Miami, FL, USA). Type II collagenase was derived from Sigma-Aldrich (St. Louis, MO, USA). RNeasy MiNi Kit was purchased from Qiagen (Hilden, Germany). Tra Ace quantitative PCR (qPCR), reve scription (RT) Kit and SYBR were pu from Toyobo Life Science (Tokyo, Osaka, J DharmaFECT transfection reagent was prese by Dharmacon RNA Technologies (Lafaye CO, USA). MicrOFF[™] antago icrOFF antagomir-control, miR-155 nic, a niR-155. miR-NC, and EdU flow metry d ction kit were derived from Ribob ang Mouse anti p27 prim from Abcam Biot (Cambri (A, USA). nd Ki-67 pm Mouse anti α -S antibodies were purg GeneTex In (Irvine, CA, USA). Me se antin primary antibody, horseradis eroxidase (h. beled secondary antibody GRE-luc luciferas orter plasmid, cycle detection kit were obtained from and c Bey (Shanghai, China). Luciferase n kit was required from Prome-VI, US Annexin V/propidium activ WI, US ga (Ma detection kit was bought (Hangzhou, China). pIRES2 lulti Sc. pression pasmid was got from Tuoyan ove Big logy Co., Ltd., (Shanghai, China).

dominal Aorta Constrictive Type stension Model Establishment

Sprague-Dawley (SD) rat (6-8 weeks old, 20 ± 20 g), derived from Medical Animal Expe-

riment Center of Chongqing Medical University (Chongqing, China) was anesthetized by barbital intraperitoneal injection. An made to expose the abdominal cay The abdo minal aorta was isolated above t ılateral aorta ascendens. The abdominal aorta rated by suture together with a syringe needle. dle was then removed and the abdo sed al cavity pedited. The after the blood flow war vithout bdominal the b' a pressure nal cavity was expose ligation in sham gr a pressure was measured by caretid a oation o ne 6th ized by anes week after oper n. The aperitoneal h n incision pentobarbital right carowas made ght neck to ex the distal part of RCA was tid artery ligated and the uros. ic catheter was put into the PG ascending a After 20 min, systolic sure (SBP) and stolic blood pressure 3P) were measured by multichannel physiologic order. The m arterial pressure (MAP) was ılated (MAF DBP + 1/3 (SBP-DBP)). This vas appro by the Ethics Committee of The d Hospital of Chongging Medical University (Chongqing, China).

nsion Rats Grouping

The hypertension rats were randomly divided into micrOFF[™] antagomir-155 group and micrOFF[™] antagomir-control group. The rats received caudal vein injection at 20 mg/kg once per three days for five times. Caudal artery SBP and DBP were measured before and at the 7th day after last injection. The pressure was measured for three times to calculate the mean value.

Rat Thoracic Aorta VSMC Isolation and Cultivation

The rat was anesthetized by pentobarbital tail vein injection. The thoracic aorta was extracted under aseptic condition. After removing the fat and connective tissues around the blood vessel, the tunica media was conserved to extract RNA and protein or VSMC cultivation. The media was digested in type II collagenase at 37°C for 2 h, and further digested in 0.05% trypsin for 10 min. After infiltration, the cell was re-suspended in Dulbecco's Modified Eagle Medium (DMEM) medium containing 20% fetal bovine serum (FBS) and 1% penicillin-streptomycin. The cells were cultured at 37°C and 5% CO₂ and passaged at 1:4. The cells in the 6-7th generation were used for experiment.

Luciferase Reporter Gene Assay

The full-length fragment of p27 3'-UTR was connected to pGRE luciferase reporter vector to form pGRE-P27-wt. The mutation of p27 3'-UTR was used to construct pGRE-P27-mut. Dharma-FECT was applied to co-transfect 1 μ g pGRE-P27-wt or pGRE-P27-mut with 50 nm/l miR-155 mimic to HEK293T cells. Dual luciferase activity was tested after 48 h.

Cell Transfection and Grouping

MiR-NC, anti-miR-155, pIRES2-blank, or pIRES2-P27 was transfected to VSMC from hypertension rats *in vitro* using the DharmaFECT. VSMCs were divided into five groups, including anti-miR-NC, anti-miR-155, pIRES2-blank, pIRES2-p27, and anti-miR-155 + pIRES2-p27 groups. The cells were collected after 48 h for the following experiment.

qRT-PCR

Total RNA was extracted by using Rneasy MiNi Kit and reverse transcribed to complementary DNA (cDNA) using ReverTra Ace qPCR RT Kit. The RT reaction system contained 1 µ RNA, 2 μl 5×RT buffer, 0.5 μl oligo dT+ primer Mix, 0.5 µl RT Enzyme Mix, 0.5 µl ase inhibitor, and ddH₂O. The reverse transcr condition was 37°C for 15 min and 98°C for 5 The PCR reaction system contained 5 ul 2×SY Green Mixture, 1.0 µl primer forward 5'-GGAGGTTAATGCTA TGT TAG-3' GA GC reverse: 5'-GTGCAGGG ', actin, TT forward: 5'-CTCTTC reverse: 5'-TCATCG and ddH, $0.5 \,\mu m/l$, $1.0 \,\mu l \,cD$ PCR reac-95°C pre-den tion was compos n for 5 min, followed es of 95°C de turation 30 s, and 72°C elonfor 15 s, 60°C mealing gation for s. Real-time as performed on ABI Vii to test the relativ ression.

We rn Blo

was extented by 500 μ l RIPA. g prote were separated by 10% A total polyacrylamide gel elecm doc GE) for 3 h and transferred esis (Si brane. Next, the membrane was blocked to r milk at room temperature for 60 min n primary antibody at 4°C for 12 h 7, Ki-67, α -SMA, and β -actin at 1:200, 1:300, and 1:800, respectively). The membrane abated in secondary antibody (1:10000) for 60 min after washed by phosphate-buffered

saline and Tween-20 (PBST) for three times. At last, the protein expression was detected handled chemiluminescence (ECL) nescence.

Flow Cytometry

The cells were digested by try, and fixed by 70% ethanol. After that the cells we fined by PI with RNase A at 2002 avoid of light min. At last, DNA count was measured on cytometry.

EdU Staining

VSMC cel vere added w olution at ic phase. An 5 μM in la cubated for gested by trypsin and col-48 h, the As v lected. After fixed formaldehyde, the cells tralized in gly Next, the cells were were in 0.5% Triton 200 and re-suspended phosphate-buffered saline (PBS). At last, the ls were stain y 500 µl Apollo at room temture for 10 n and tested on Gallios flow cy-(Beckm Krefeld, Germany).

Measurement of Aorta Media Thickness

The thoracic aorta was prepared as paraffin The thickness of aorta media was meaing Image Pro Plus 6.0 software (Media Cybernetics, Inc., Bethesda, MD, USA). Five sections were selected in each rat and three fields of view were randomly selected on each section.

Statistical Analysis

All data analyses were performed on SPSS 18.0 software (SPSS Inc., Chicago, IL, USA). The measurement data were depicted as mean \pm standard deviation (SD). Student's *t*-test was utilized for the statistical analysis between two groups. Tukey's post-hoc test was used to validate the ANOVA for comparing measurement data among groups. p<0.05 was considered as statistical significance.

Results

MiR-155 Targeted Regulated p27 Expression

Bioinformatics analysis showed the complementary binding site between miR-155 and the 3'-UTR of p27 mRNA (Figure 1A). Dual luciferase assay revealed that miR-155 mimic and anti-miR-155 significantly declined and enhanced relative luciferase activity in HEK293 cells (Fig-

Table I. Tunica media thickness and MAP comparison.

	Thoracic aorta tunic media (µm)	MAP (mmHg)		
Sham group	90.4±5.1	112.3±127		
Hypertension group	108.2±6.6*	199.4±16		

^{*}*p*<0.05, compared with Sham group.

Table II. The thickness of tunica media, SBP, and DBP comparison.

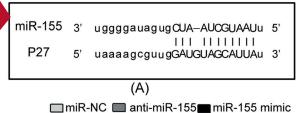
	Tunica medi	a thickness (µm	n) SBP	(mmHg)	7	(mmHg)
Treatment	Pre-injection	Post-injection	Pre-injection	Post-inje	n Pre-in	Por Jection
Antagomir-control Antagomir-155	109.3±14.7 107.2±13.3	111.4±16.9 96.2±8.8*	186.1±16.5 188.5±17.1	18	103.7±8.1 104.2±8.4	101.3±9.1 91.2±7.6*

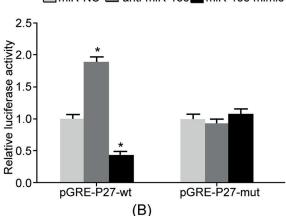
^{*}p<0.05, compared with Sham group.

ure 1B), indicating the regulatory relationship between miR-155 and p27 mRNA.

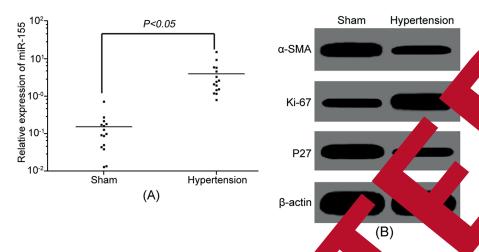
MiR-155 Up-Regulated, Tunica Media Thickened, While α -SMA and p27 Declined In Hypertension Rat

The thickness of tunica media and MA mificantly increased in hypertension rat, sugg successful establishment of animal model (I). qRT-PCR exhibited that miR-155 express markedly increased in the lia froi hypertension rat compared oup (Fiı shan gure 2A). Western blot de strated α-SMA and p27 protein significacling 67 level significantly sion rat compared 2B). It was control () indicated that V proliferation ntly increased and tra from different red type to dedifferent ed type ch may be related to miR-15 election and p27 ion.


Dog Regulation of miR-155 Inhibited VSIV. Visually ation, rested Cell Cycle, and Research 1 Bloom ressure


sion creased α-s. MA level (Figure 3A), arrested cell (Figure 3C), and restrained cell prolife3D) in VSMC from hypertension MicrOFF™ antagomir-155 injection significance p27 and α-SMA expressions, who duced Ki-67 level in tunica media (Figure 3B). The thickness of tunica media, SBP, and DBP

nificantly red and in hypertension rat injected nicrOFF[™] and pmir-155 (Table II).


Discussion

an important cancer suppressor gene regulate cell cycle and inhibit cell division. Its gene locates in chromosome 12p13

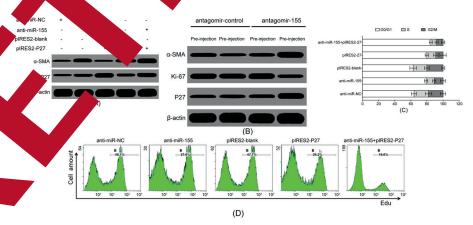

Figure 1. MiR-155 targeted regulated p27 expression. *(A)* The binding site between miR-155 the 3'-UTR of p27 mRNA. *(B)* Dual luciferase assay. *p<0.05, compared with miR-NC.

Figure 2. MiR-155 up-regulated, tunica media thickened, while α-SMA are 1/dec 2 hypertension rat. (A) qRT-PCR detection of miR-155 expression. (B) Western blot detection of protein expression in tuni.

with two exons and two introns, which encodes the protein with molecular weight at 27 kd containing 198 amino acid16. P27 belongs to CDKI that plays an inhibitory effect on CDK from two aspects, suppressing the activat Cyclin-CDK complex by restraining t binding to Cyclin. On the other hand, i its influence via directly inhibiting the activity of CDK¹⁷. P27 arrested cell cycle G1 phase to S phase to block cell mitosis mail through restraining the activ 31 phas kinase complex, such as cyclin D-CDK4⁷. In add K2 and an b i, it was and that p27 plays a critical role ucir tosis^{18,19}. Several inv igati

vn-regulatio p27 was associated with 4C aberrant oliferation and participated athogene of hypertension and pulmortension. MiR-155 was repor-VSMC proliferation^{14,15}, while its lationship with hypertension was still unclear. atics analysis reveals the targeted rebetween miR-155 and the 3'-UTR of \$27 mRNA. We explore the role of miR-155 in regulating p27 expression, VSMC proliferation and apoptosis, and the pathogenesis of hypertension. Dual luciferase assay revealed that miR-155 mimic and anti-miR-155 significantly declined and enhanced relative luciferase activity in HEK293 cells, indicating the regulatory

3. Down-regulation of miR-155 inhibited VSMC proliferation, arrested cell cycle, and reduced blood pressure in hyperation rat. (A) Western blot detection of protein expression in VSMC. (B) Western blot detection of protein expression in tunical media. (C) Flow cytometry detection of cell cycle. (D) EdU staining detection of cell proliferation.

relationship between miR-155 and p27 mRNA. We established rat hypertension model by ligating abdominal aorta. The thickness of tunica media and MAP significantly increased in hypertension rat, suggesting successful establishment of animal model. MiR-155 and Ki-67 expressions significantly enhanced, while p27 level reduced in the tunica media from hypertension rats compared with control showing that VSMC proliferation increased in tunica media from hypertension rat. Up-regulation of miR-155 mediated p27 reduction may play a role in promoting VSMC proliferation in tunica media from hypertension rat. α -SMA is the major protein to perform contraction in VSMC, thus could be treated as the biomarker to reflect VSMC contractile phenotype (differentiated type). In this study, α-SMA significantly declined in the tunica media from hypertension rat, revealing the transformation from differentiated type to dedifferentiated type, which was in accordance with the enhancement of VSMC proliferation. Liu et al²⁰ reported that miR-155 significantly increased in pulmonary blood vessel from pulmonary arterial hypertension model. Co et al²¹ found that miR-155 was involve regulation of blood pressure in hyper ion patients. Yang et al²² revealed that mi up-regulation is associated with vascular flammation, intimal hyperplasia and vascu wall remodeling by inhibiting lian ste rile 20-like kinase 2 (MS on and exp. enhancing the interaction f-1 and etween. mitogen-activated extra ted kinase (MEK). ng c miR-155 level wa her in the gnificant d vessel from plaque tissue in rosclecontrol, rotic patients with health on of miR-155 was suggesting the up-reith vascular associated remodeling. Zhu et al²³ overed that mik elevation was the pathological remodeling in atherorelate rat an oronary artery lesion patients. scle R-155 yover-expressed in tu-In th m hype nsion rat and related to nica me phe sformation and vascular hich was similar with Liu model Ceolotto al²¹ and Yang et al²². Hao et et a al^{2} ted that p27 reduction in pulmonary muscle cells was related to the ancement of cell proliferation and played a facilitating the pathogenesis of pulmoerial hypertension. Liu et al²⁵ presented that p27 level significantly declined in VSMC

from restenosis hyperplastic intima tissue after angiopoiesis, suggesting that down-reof p27 was associated with VSMC and blood vessel thickening. In the study, p2 the thickeexpression significantly reduce ned tunica media of hypertens revealing that p27 was associated with cen eration, vascular thickening, and hich pertens ao et al²⁴ and was in accordance with 155 and or pIRES al²⁵ findings. Anti-m over-expression pla signi intly enhanced cle, and p27 expression, arrest strained cell prolifa from pertenon in inhibitor sion rat. Ant mir is the n It suppreswith speci ical modifical niRNA through competises the ction tive binding with miRNA to block its entary pairly ith target mRNA. It exhibited related high stability and entary pairit ibitory effect both in vivo and in vitro. As a RNA inhibit videly applied in animal moovercome the obstacle of cell antagomir c ane and ue to enrich in target cell²⁶. n omir-155 injection markedly Mic increased and α -SMA expressions. The ickness of tunica media, SBP, and DBP sireduced in hypertension rat injected FF[™] antagomir-155. It suggested that down-regulation of miR-155 up-regulated p27 expression, suppressed VSMC proliferation and phenotype transformation, alleviated vascular wall thickening, and reduced blood pressure. Zhang et al¹⁵ revealed that over-expression of miR-155 promoted human aortic smooth muscle cell proliferation and migration, while suppressed cell apoptosis by targeted inhibiting endothelial nitric oxide synthase expression. Yang et al²² presented that elevating and decreasing miR-155 markedly accelerated and restrained VSMC cell proliferation, respectively. MiR-155 up-regulation further aggravated hyperplasia in tunica intima. We also confirmed the regulatory role of miR-155 on VSMC cell proliferation, similarly to Zhang et al¹⁵ and Yang et al²² results. Liu et al²⁵ demonstrated that reduction of p27 significantly weakened VSMC cell proliferation and inhibited vascular wall thickening and remodeling after angiogenesis. Hao et al²⁴ showed that up-regulation of p27 significantly suppressed VSMC proliferation and facilitated VSMC transformation from synthetic phenotype and contractile phenotype to alleviate pulmonary arterial hypertension. Though it has been showed that miR-155 was related to

cardiovascular disease, most studies revealed the regulatory role of miR-155 in endothelium inflammation, oxidative stress, and atherosclerosis. This research suggested the role of miR-155 in regulating VSMC cell proliferation and hypertension through targeting p27.

Conclusions

We found that miR-155 promoted VSMC proliferation by targeting p27. MiR-155 enhancement was related to hypertension. Down-regulation of miR-155 played a therapeutic effect in hypertension.

Conflict of Interest

The Authors declare that they have no conflict of interest.

References

- LIAN XL, ZHANG YP, LI X, JING LD, CAIRANG ZM, GOU JO. Exploration on the relationship between the elderly osteoporosis and cardiovascular risk factors. Eur Rev Med Pharmacol Sci. 7:21. 4386-4390.
- ZECHMANN S, SENN O, VALERI F, NEUNER-JEHLE S, MANN T, DJALALI S. The impact of an individual risk-adjusted approach on hypertension trement in primary care. J Clin (Greenw ch) 2017; 19: 510-518.
- 3) THIEME M, SIVRITAS SH, MC, E, POTTH SA, YANG G, HERING L, GRAVE K, SH, RUW ER J. Phosphodiesterase angiotensin II-der Lent hy lon and renal vascular dysfung L. Am J Physiol 201; 312: F47/
- 4) ZHANG MJ, LILL THE STATE OF TRPV1 in improving VSMC Sunction and Prographys Mol Biol 20. 212-216.
- 5) Dr. OND HA. betaENaC is a holecular compoof a VSMC mechanotransducer that contrito republic blood flow regulation, protection dury, and ertension. Front Physiol
 - AMURA

 HATAKEYAN

 SHIDA M, NAKAYAMA K, NAKAYAMA

 Cytoplash

 ubiquitin ligase KPC regulates

 teolysis of p27(Kip1) at G1 phase. Nat Cell Biol

 9-1235.
 - Wang L, Wang G, Yang D, Guo X, Xu Y, Feng B, Kang J. Euphol arrests breast cancer cells at the phase through the modulation of cyclin D1, and p27 expression. Mol Med Rep 2013; 8: 1279-1285.

- 8) ZHENG X, WANG Y, LIU B, LIU C, LIU D, ZHU J, YANG C, YAN J, LIAO X, MENG X, YANG H. Bmi-1-shBNA inhibits the proliferation of lung adenocare by blocking the G1/S phase through ecreas cyclin D1 and increasing p21/p27 rels. Nucleic Acid Ther 2014; 24: 210-216.
- YE MF, Xu GG, Gu JF, ZHOU QL, TAO KL, TAO F. Safety and efficacy evaluation proscopy in colorectal cancer with metast. Rev Med Pharmacol Sci 20 21: 27-32.
- 10) Castro C, Lorenzo Gonzalez A, Cruza nsin II-induced Garlic component ibit and dion: Involvement cell-cycle progres d m 7 and mi of cell-cycle i ibito n-acti-010; 54: vated protei iase. Mu ood 🛭 781-787.
- 11) FOUTY FOR TON B, FAGAN & CRAS TD, HARRAL JV (10EL) M, SCLAFANI NA, RODMAN DM. p27(N, J1) is imported in modulating pulmonary artery smooth muse of the proliferation. Am J Reliable Mol Biol 200 352-658.
- WANG H, JIANG M, Xu Z, HUANG H, GONG P, ZHU H, RUAN C. miR-146b-5p promotes VSMC proliferation and migrann. Int J Clin Exp Pathol 2015; 8: 12901-12907.
- ROUES FZ, CARCHAR FJ. microRNAs in essential tension and blood pressure regulation. Adv 2015; 888: 215-235.
- 14) YANG LX, LIU G, ZHU GF, LIU H, GUO RW, QI F, ZOU MicroRNA-155 inhibits angiotensin II-induced ar smooth muscle cell proliferation. J Renin Assotensin Aldosterone Syst 2014; 15: 109-116.
- 15) ZHANG J, ZHAO F, YU X, LU X, ZHENG G. MicroR-NA-155 modulates the proliferation of vascular smooth muscle cells by targeting endothelial nitric oxide synthase. Int J Mol Med 2015; 35: 1708-1714.
- 16) Hara T, Kamura T, Kotoshiba S, Takahashi H, Fujiwara K, Onoyama I, Shirakawa M, Mizushima N, Nakayama KI. Role of the UBL-UBA protein KPC2 in degradation of p27 at G1 phase of the cell cycle. Mol Cell Biol 2005; 25: 9292-9303.
- 17) HAN DF, ZHANG JX, WEI WJ, TAO T, Hu Q, WANG YY, WANG XF, LIU N, YOU YP. Fenofibrate induces G0/G1 phase arrest by modulating the PPARalpha/FoxO1/p27 kip pathway in human glioblastoma cells. Tumour Biol 2015; 36: 3823-3829.
- JAISWAL S, SHARMA P. Role and regulation of p27 in neuronal apoptosis. J Neurochem 2017; 140: 576-588.
- CHEN LC, LEE WS. P27/Kip1 is responsible for magnolol-induced U373 apoptosis in vitro and in vivo. J Agric Food Chem 2013; 61: 2811-2819.
- 20) LIU P, YANG F, ZHUANG Y, XIAO Q, CAO H, ZHANG C, WANG T, LIN H, GUO X, Hu G. Dysregulated expression of microRNAs and mRNAs in pulmonary artery remodeling in ascites syndrome in broiler chickens. Oncotarget 2017; 8: 1993-2007.
- 21) CEOLOTTO G, PAPPARELLA I, BORTOLUZZI A, STRAPAZZON G, RAGAZZO F, BRATTI P, FABRICIO AS, SQUARCINA E, GION M, PALATINI P, SEMPLICINI A. Interplay between

- miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives. Am J Hypertens 2011; 24: 241-246.
- 22) YANG Z, ZHENG B, ZHANG Y, HE M, ZHANG XH, MA D, ZHANG RN, Wu XL, WEN JK. miR-155-dependent regulation of mammalian sterile 20-like kinase 2 (MST2) coordinates inflammation, oxidative stress and proliferation in vascular smooth muscle cells. Biochim Biophys Acta 2015; 1852: 1477-1489.
- 23) ZHU J, CHEN T, YANG L, LI Z, WONG MM, ZHENG X, PAN X, ZHANG L, YAN H. Regulation of microRNA-155 in

- atherosclerotic inflammatory responses by targeting MAP3K10. PLoS One 2012; 7: e46551
- 24) HAO M, Li M, Li W. Galectin-3 inhibition tes hypoxia-induced pulmonary and hypertesion. Mol Med Rep 2017; 15: 160 4 3.
- 25) LIU X, CHENG Y, ZHANG S, LIN Y, J, ZHANG C. A necessary role of miR-221 and lar smooth muscle cell proliferation neointimal hyperplasia. Circ Rep. 209; 104.
- 26) Velu CS, Grimes HL. U' g antagomiR to microRNA) to knock in microRNA in murine marrow cells. Method lol Biol 2; 928: 185-195.