Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the microbiome era

R. FERRARESE¹, E.R. CERESOLA², A. PRETI², F. CANDUCCI³

¹Microbiology Unit, Vita-Salute San Raffaele University, Milan, Italy
²Microbiology Unit, University of Insubria, Varese, Italy
³Microbiology Unit, Ospedale San Raffaele, Milan, Italy

Abstract. – OBJECTIVE: Excessive body fat and the associated dysmetabolic consequences affect both developed and emerging countries. An altered gut microbiota composition is an important environmental cause of these conditions. Clinical trials targeting gut microbiome composition or functions with pro or prebiotics to promote a healthier profile are considered a promising tool for excessive body weight treatment and prevention of dysmetabolic complications.

MATERIALS AND METHODS: We searched PubMed and Cochrane Library using combinations of probiotics/prebiotics and synbiotics with obesity/weight loss/metabolic syndrome as the search terms. Clinical studies and significant pre-clinical results showing molecular mechanisms supporting clinical results were also discussed.

RESULTS: Several studies in humans and in animal models have elucidated biological mechanisms supporting the observed clinical efficacy of selected probiotic and prebiotic compounds for weight management. Efficacy appears to be species or strain-specific. Fibers such as inulin or galactomannan promote independent and synergistic beneficial effects.

CONCLUSIONS: Diet supplementation with synbiotics prepared using selected strains (such as Lactobacillus gasseri strains) showed to exert weight-reduction and anti-inflammatory activity in large independent studies. Their administration, together with galactomannan and/or inulin fibers, may increase weight management effects due to synergistic effect on short chain fatty acid production and microbiota ‘re-configuration’.

Key Words
Probiotic, Prebiotic, Synbiotic, Microbiome, Metabolic syndrome, Weight.

Introduction

Excessive body fat and its metabolic consequences are worldwide epidemics affecting both developed and emerging countries (Obesity and overweight: World Health Organization; fact-sheets updated October Available from: http://www.who.int/mediacentre/factsheets/fs311/en/). Metabolic comorbidities more frequently associated with excessive abdominal body fat and obesity are dyslipidemia, insulin resistance, hypertension (the so-called Metabolic Syndrome), diabetes, cardiovascular diseases (CVD), but also cancer⁶⁷. However, despite the increased risk to develop metabolic syndrome or CVD, recent data suggest that not the body fat mass alone but a systemic state of increased subclinical low-grade inflammation and local (in the adipose tissue) metabolic dysfunction may explain the pathogenic potential of adipose tissue accumulation despite genetic or environmental causes⁸. It has been proposed that metaflammation is a key feature of the metabolic syndrome, where a leaky intestinal barrier allows translocation of proinflammatory bacterial components (such as lipopolysaccharide released by gram-negative bacteria, LPS). Metaflammation promotes insulin resistance in the liver (eventually leading to non-alcoholic steatohepatitis; NASH) and the release of various inflammatory mediators from adipose tissues⁸⁹.

Among the environmental determinants of obesity and its comorbidities, the intestinal microbiota has recently been proposed to have a significant impact⁹. Its role in human energy balance has been demonstrated and, in a co-evolutionary perspective, it can be speculated that the increased energy extraction from ingested food obtained by virtue of the vast enzymatic armamentarium of intestinal bacteria (especially for plant-derived complex carbohydrates) is an advantage in conditions of limited food availability¹¹¹₂. Nowadays the increased availability of food in Western countries and changes in the proportion of diet components have markedly changed the composition of our gut microbiota¹³¹⁴. The main responsible for this
change is the increased intake of fat (especially unsaturated fatty acids) and sugar, the reduction of plant-derived carbohydrates, the consumption of processed food with wide usage of antimicrobial preservatives and the antibiotic abuse (especially at younger ages).

The recent availability of the next generation technology for the massive sequencing of nucleic acid extracted from human samples (sputum, feces, biopsies, etc.) allowed us to reveal changes in the microbiome (when referring to data collected from microbiota sequencing), population and sometimes even variation of very few bacterial species related with increased weight accumulation and with metabolic dysfunctions or systemic inflammation. In fact, the gut microbiota has important physiologic functions that have direct impact on host metabolism, gut mucosal barrier development and both local and systemic immune functions. Targeting gut microbiota composition or metabolic functions with natural and safe compounds, such as pro or prebiotics, to promote a healthier “non-obese” profile might, therefore, represent a promising tool for prevention and treatment of obesity and correlated diseases. Indeed, a heterogeneous group of pioneer clinical trials and more recent molecular metagenomic analyses of intestinal microbes have investigated these possibilities.

Recently, the ISAPP consensus panel proposed a new definition of a prebiotic that better fits recent data obtained in the “microbiome era”: “a substrate that is selectively utilized by host microorganisms conferring a health benefit”28. Today, even if new substances are known to influence microbiota composition, fructans (fructooligosaccharides (FOS), inulin) and galactans (galactomannan or other galactooligosaccharides) dominate this group of compounds. Their activity is mainly mediated through enrichment of Lactobacillus and/or Bifidobacterium species but possibly also through modulation of the metabolism of other beneficial microorganisms, such as Akkermansia muciniphila, Faecalibacterium prausnitzii or some Clostridia groups28. The metabolic activity of gut microbes directly affects host energy homoeostasis and variations of microbiome composition are associated with obesity pathogenesis. Part of these effects may also be due to the fact that humans utilize not only glucose, long-chain fatty acids, and amino acids as energy sources, but also short chain fatty acids (SCFA) produced by these beneficial organisms through fermentation of dietary fibers that reach the anaerobic colon environment.

Probiotics are defined as live microorganisms that confer a health benefit to the host when administered in adequate amounts. Bifidobacterium and Lactobacillus strains are still the most widely used probiotic genera included in many functional foods and dietary supplements. Next generation probiotics, such as F. prausnitzii, A. muciniphila, or Clostridia strains, were shown to be present in the majority of people’s microbiota, but their relative reduction was associated with increased risk of suffering from immunometabolic diseases. However, in part due to complex large-scale production of strictly anaerobe bacteria, they are still lacking clinical trials to support their beneficial usage as supplements. At the same time, the newly discovered or better elucidated beneficial interactions with the host of commercially available probiotics preparation can nowadays lead to a more scientifically robust and evidence-based therapeutic or preventive approach for weight loss, to limit the metabolic consequences of obesity or to maintain and reinforce the efficacy of weight reduction regimens.

Materials and Methods

The selected studies were reviewed independently by all four researchers. Any disagreement between the investigators was resolved by discussion. The following information were collected: probiotic strain used, study design, duration of intervention, sample size, subjects’ characteristics, age, dose of probiotics/prebiotics and composition of the synbiotic preparation, the vehicle used and results of the intervention. The search was limited to human studies for the generation of Tables. Significant pre-clinical results obtained with the bacterial strains present in the probiotic/synbiotic compound described in the selected clinical studies were also analyzed to identify molecular mechanisms explaining clinical results. Studies with probiotics that enrolled less than 50 subjects were not considered, nor those that were not randomized placebo-controlled trials. All results with possible impact on weight loss and dysmetabolic diseases were reported (BMI, body weight, TC, LDL-C, triacylglycerol (TAG), inflammatory markers, the homeostasis model assessment of insulin resistance (HOMA-IR), etc.). We searched PubMed, Cochrane Library, and EMBASE databases from their inception through October 2017, using combinations of probiotics/prebiotics and synbiotics with obesity or weight loss metabolic syndrome, lactobacilli as the search terms.
Plant-Derived Prebiotics: Glucomannan and Inulin-Type Fructans

Not all fibers have the same efficacy and structural characteristics. There are short-chain (oligofructose) and long-chain (polyfructose, such as inulin) fructans typically present in the plant roots where they are used as energy pools. Moreover, their preferential degradation by host or bacterial enzymes in the small or in the large intestine respectively, suggests that enrich our diet with prebiotics supplemented with specific type of fibers can be more beneficial than a generic lifestyle recommendation to eat indistinctly more vegetables. Eating adequate amounts of fibers, especially highly viscous plant-derived fibers such as glucomannan or inulin, was demonstrated to reduce serum triacylglycerols in humans.

Among the plant-derived beneficial fibers, glucomannan (KJM), extracted traditionally from the tuber root of *Amorphophallus konjac*, has been used for centuries in Asia as a food source and beneficial healthy remedy. Its safety profile was recently assessed by the Food and Drug Administration and Health Canada, and was approved for general use by the European Union (as E425). More interestingly, in 2010, the European Food Safety Authority (EFSA) approved important health claims related to the usage of glucomannan and reductions in body weight, postprandial glycemia, and blood cholesterol concentrations (EFSA Panel on Dietetic Products, Nutrition and Allergies. EFSA J 2010; 8: 1798). EFSA strictly require assuming at least 1 g three times daily to allow the above mentioned approved claims. Similarly, Health Canada also approved health claims for reductions in cholesterol and postprandial glycemia related to glucomannan supplementation, thus confirming its beneficial metabolic function (Summary of Health Canada’s assessment of a health claim about a polysaccharide complex. Ottawa (Canada): Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada; 2016. 8. Summary of Health Canada’s assessment of a health claim about a polysaccharide complex (glucomannan, xanthan gum, sodium alginate) and a reduction of the post-prandial blood glucose response [updated May 2016]. Ottawa (Canada): Bureau of Nutritional Sciences, Food Directorate, Health Products and Food Branch, Health Canada; 2016.).

Several meta-analyses of large clinical trials confirmed that KJM can safely and effectively be used for cardiovascular diseases (CVD) risk reduction, reduction of LDL cholesterol (about 20% total reduction) and non-HDL cholesterol (almost 20-30% reduction) both in adults and children at all doses of KJM used (2.0-15.1 g/d). Several early and more recent investigations have also shown that supplements containing glucomannan, as stated in the EFSA claim promoted weight loss and reduction of postprandial glycemia. Another oligosaccharide with interesting activity and sufficient body of good quality literature is inulin. Even if inulin has not obtained an official claim for weight-loss management, recent meta-analyses of randomized clinical trials that tested the effect of inulin-type fructans on serum triacylglycerols and other dysmetabolic parameters showed that the intake of inulin or oligofructose was associated with a significant decrease (about 20 mmol/L) in serum triacylglycerol concentrations in the vast majority of clinical trials (>80% of trials). Notably, as already observed with galactomannan, the effects were not dependent on the condition of the patients (lipid levels before supplementation). Most effective and safe dosage varies from 3 to 10 g of fibers. Self-supplementation or ad libitum administration of larger doses of purified complex fibers (more than 10/15 grams/daily) should be avoided to minimizes gastrointestinal discomfort and bloating, that are otherwise commonly associated side effects that often reduce patients’ compliance. The amount of reduction in serum triacylglycerol (7 and 8%) is remarkable, considering that it is obtained in a few weeks of supplementation (4-12) without difficult-to-follow changes in dietary (reduction of carbohydrates, fats, etc.) and behavioral strategies (exercise, etc.) (Table 1). Moreover, because inulin fibers are not absorbed in the small bowel, they have no effect on postprandial blood glycemia and, at the same time, their low-glycemic-index minimally stimulates cholesterol synthesis, thus lowering cholesterol blood concentrations. Of note, short chain fatty acids (SCFA) produced during colon fermentation of inulin or galactomannan fibers that reach the colon almost unaltered, specifically bind a series of orphan G protein-coupled receptors. In particular, the free fatty acid receptor 3 (FFA3/GPR41) that is expressed both in the intestine and sympathetic nervous system, recognize SCFA including propionate and butyrate, that trigger several folds higher receptor activation compared to acetate. Lack of this GPR41 receptor in mice causes lower energy expenditure and reduced glucose tolerance compared to wild-type mice. Other groups have also shown that SCFA are directly involved...
Table 1. Prebiotics.

<table>
<thead>
<tr>
<th>Fiber</th>
<th>Duration</th>
<th>Population: M/F</th>
<th>Study design</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligofructose-enriched inulin (8 g/day)</td>
<td>16 weeks</td>
<td>42 subjects; 24M/18F</td>
<td>Single center, double blind, placebo controlled</td>
<td>Reduced body weight z-score, percent body fat, percent trunk fat, and serum level of interleukin 6</td>
<td>Nicolucci et al<sup>100</sup></td>
</tr>
<tr>
<td>Low calorie diet + Inulin 10 g</td>
<td>12 weeks</td>
<td>59 female subjects</td>
<td>Randomized, controlled, longitudinal</td>
<td>Reduced triglycerides and improved intake of micronutrients</td>
<td>Tovar et al<sup>101</sup></td>
</tr>
<tr>
<td>Galacto-oligo-saccharide (5.5 g)</td>
<td>12 weeks</td>
<td>45 subjects; 16M/29F</td>
<td>Double blind, randomized, placebo controlled, crossover</td>
<td>Decreased: fasting insulin, TC, TG, CRP, fecal calprotectin</td>
<td>Vulevic et al<sup>102</sup></td>
</tr>
<tr>
<td>Inulin (10 g)</td>
<td>8 weeks</td>
<td>49 female subjects</td>
<td>Randomized, triple blind controlled</td>
<td>Decreased: FBG, A1c, malondialdehyde; Increased: antioxidant defense</td>
<td>Gargari et al<sup>103</sup></td>
</tr>
<tr>
<td>Inulin (10 g)</td>
<td>8 weeks</td>
<td>49 female subjects</td>
<td>Randomized controlled</td>
<td>Reduction in FBS, HbA1c, total cholesterol, triglyceride, LDL-c, LDL-c/HDL-c ratio and TC/HDL-c ratio, increased HDL-c</td>
<td>Dehghan et al<sup>104</sup></td>
</tr>
<tr>
<td>Oligofructose-enriched inulin (10 g)</td>
<td>8 weeks</td>
<td>52 female subjects</td>
<td>Triple-blind randomized controlled</td>
<td>Decreased fasting plasma glucose, glycosylated hemoglobin, interleukin-6, tumor necrosis factor-a and plasma lipopolysaccharide</td>
<td>Dehghan et al<sup>107</sup></td>
</tr>
<tr>
<td>Glucomannan/Capsule (0.43 g)</td>
<td>4 weeks</td>
<td>63 subjects</td>
<td>Double-blind crossover, placebo controlled</td>
<td>Reduced total cholesterol, LDL-C, triglycerides and systolic BP</td>
<td>Arvill et al<sup>105</sup></td>
</tr>
<tr>
<td>Glucomannan/Capsule (2 g/d)</td>
<td>8 weeks</td>
<td>40 subjects; 20M/20F</td>
<td>Randomized controlled</td>
<td>Reduced plasma total cholesterol and LDL-C</td>
<td>Martino et al<sup>106</sup></td>
</tr>
<tr>
<td>Glucomannan/Capsule (2 g/d)</td>
<td>8 weeks</td>
<td>40 subjects; 19M/21F</td>
<td>Randomized, double blind, six-arm parallel</td>
<td>Reduced total cholesterol and LDL-C</td>
<td>Martino et al<sup>107</sup></td>
</tr>
<tr>
<td>Glucomannan/Capsule (2 g/d)</td>
<td>8 weeks</td>
<td>60 subjects; 33M/27F</td>
<td>Randomized, double blind</td>
<td>Decrease of alpha-lipoprotein; increase of pre-beta-lipoprotein and triglycerides</td>
<td>Vido et al<sup>108</sup></td>
</tr>
<tr>
<td>Glucomannan/Capsule (3 g/d)</td>
<td>8 weeks</td>
<td>42 subjects; 22M/20F</td>
<td>Randomized, placebo double blind, crossover</td>
<td>Reduced body mass, fat mass, total cholesterol, and LDL-C</td>
<td>Kraemer et al<sup>109</sup></td>
</tr>
<tr>
<td>Glucomannan/Capsule (1.5 g/d)</td>
<td>12 weeks</td>
<td>58 subjects; 12M/46F</td>
<td>Double-blind, placebo controlled</td>
<td>Reduced total cholesterol and LDL-C</td>
<td>Vasques et al<sup>110</sup></td>
</tr>
</tbody>
</table>
in the so-called ‘gut-brain axis’, that affects host energy expenditure by directly up-regulating the activity of the sympathetic nervous system via GPR41 and enhancing body energy expenditure43.

The biological mechanisms by which prebiotics, viscous plant-derived oligosaccharides, exert their health effects (Figure 1)

Highly viscous soluble fibers exert their activity in different districts of the gastrointestinal tract and can affect host physiology and gut barrier function directly or indirectly.

• Delay gastric emptying, thereby affecting nutrient kinetics and satiety44.
• Enhance intestinal viscosity, that impairing the uptake of dietary cholesterol and reducing bile acids reabsorption44.
• Increase bacterial fermentation in the colon and promote beneficial bacteria replication and metabolic production of SCFA thus increasing the molar ratio of propionate to acetate, that affect gut barrier integrity and cholesterol metabolism45.
• Inhibit or down-regulate liver lipogenic pathways through propionic acid production46.
• SCFA production reduced translocation of Gram-negative bacteria derived Lipopolysaccharide (LPS) systemic metaflammation both in human and animal models47.
• SCFA production affects the secretion of gastrointestinal hormones such as regulation of incretin hormone GLP-1 and other gastrointestinal peptides (the PYY satiety hormone for example)48,49.

Figure 1. The biological mechanisms by which prebiotics exert their health effects. 1) Delay gastric emptying, thereby affecting nutrient kinetics and satiety. 2) Enhance intestinal viscosity, that impairing the uptake of dietary cholesterol and reducing bile acids reabsorption. 3) Increase bacterial fermentation in the colon and promote beneficial bacteria replication and metabolic production of SCFA thus increasing the molar ratio of propionate to acetate, that affect gut barrier integrity and cholesterol metabolism. 4) Inhibit or down-regulate liver lipogenic pathways through propionic acid production. 5) SCFA production reduced translocation of Gram-negative bacteria derived Lipopolysaccharide (LPS) systemic metaflammation both in human and animal models. 5) SCFA production affects the secretion of gastrointestinal hormones such as regulation of incretin hormone GLP-1 and other gastrointestinal peptides (the PYY satiety hormone for example).
Probiotics

A major obstacle in defining the efficacy of currently available probiotic preparations on weight control and metabolic syndrome treatment reside in the numerous confounding factors that affect both the formulation and, most of the time, also the study design. In fact, under the common definition of probiotics, several microbial strains including yeasts or bacteria were used. Unfortunately, even if bacteria present in different products belong to the same genera or species, they often have important strain-specific phenotypic differences that may modulate their beneficial activity. Different amount of viable bacterial cells in the available commercial preparations were used, sometimes with poorly standardized shelf-life (number of living bacterial cell at time of expiration) determinations. Commercial preparations often lack clear description of the relative representation of each strain when bacterial blends are used. Similarly, different types of formulations, including capsules, sachets, yoghurts etc. were used. Moreover, several comorbidities or co-factors (such as age, sex, autoimmune diseases, diabetes, etc.) today known to be independently associated with microbiota alterations, were not always considered in the exclusion criteria for patient’s enrolment nor were they eventually discussed in the analysis of results. However, and despite these biases, several meta-analyses and large review studies clearly suggest that some probiotic strains or synbiotic formulations may exert a beneficial effect on weight loss and on metabolic syndrome management and may help to design improved probiotic or synbiotic formulations. Only very few products containing the probiotic strain alone or in blend were tested in sufficiently large clinical trials in order to promote weight loss, improve lipid metabolism or reduce inflammatory markers in patients with metabolic syndrome (Table II). The majority of results are negative regarding the weight loss effect, with a few of them showing improved lipid or inflammatory markers (Table II). This suggests that the beneficial effects are species, or even strain dependent and cannot be ascribed indistinctly to all available commercial products. This seems especially true if recent analyses will be confirmed, suggesting a deleterious weight-gain effect caused by the majority of probiotic preparations containing very commonly used Lactobacilli strains. This may represent an important issue for products containing probiotic blends or for those preparations that indicate the species but not the strain as per good-manufacturing guidelines. This may cause under-supplementation of the beneficial strains or over-supplementation with bacteria with deleterious weight-gain consequences. Some strains are in fact more resistant than others to the industrial processing or at normal storage conditions (such as Streptococcus thermophilus). Thus, by the time the commercial preparations reach the shelf, the supplement may still contain a high number of living microbes but with only one or a few single species (personal observation). Moreover, some products commercialized under the same blend name, varied the strains quantity and composition many times (even changing the strains) over the years, thus affecting the scientific reproducibility of previously obtained results or any reliable conclusion.

In many cases probiotics were administered as fermented milk or yoghurt or cheese in human trials not allowing a proper evaluation of the number of living bacteria. Moreover, in this case, products should more properly considered synbiotic preparations, since they contain also prebiotic components that are fermented by the probiotic bacteria or by the host microbiota, that some authors or patients were not probably fully aware (milk oligosaccharides for examples, or other carbohydrates present in yoghurts or in fermented milks or skimmed milk powder exipients that may confer synergistic beneficial effects). In some cases, this bias was addressed by using chemically ‘fermented’ yoghurt as placebo. For these reasons, these studies are discussed in the Synbiotic session.

As an example, the administration for eight weeks of L. acidophilus La5, B. lactis Bb12, and L. casei DN001 as yoghurt to patients with high BMI, showed a reduction in BMI, fat percentage, and leptin level and also a reduction in the serum levels of inflammatory markers as well as immunomodulation of PBMCs. The effect was augmented if the supplement was associated with weight-loss diet. The intake of a similar combination of bacteria, (L. acidophilus La5 and B. animalis subs. lactis Bb12) in capsules, did not affect HOMA-IR, blood pressure, heart rate nor the serum lipid concentrations in overweight adults. This may suggest a critical role for the presence of the prebiotic milk present in the yoghurt vehicle or to L. casei present in only one product. Researches that evaluated Lactobacillus casei Shirota alone as probiotic in patients with insulin resistance demonstrated that the only
Table II. Probiotics.

<table>
<thead>
<tr>
<th>Strain/vehicle (dosage)</th>
<th>Duration</th>
<th>Population: M/F</th>
<th>Study design</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. salivarius Ls-33/Capsule (10⁶ CFU)</td>
<td>12 weeks</td>
<td>50 obese adolescents</td>
<td>Double-blind, randomized, placebo controlled</td>
<td>Increase in ratios of Bacteroides, Prevotellaceae and Porphyromonas</td>
<td>Larsen et al⁵⁹</td>
</tr>
<tr>
<td>L. salivarius Ls-33/Capsule (10⁶ CFU)</td>
<td>12 weeks</td>
<td>50 adolescents with obesity: 22M/28F</td>
<td>Double-blind, randomized, placebo controlled</td>
<td>No effect</td>
<td>Gobel et al⁵⁸</td>
</tr>
<tr>
<td>Bifidobacteria, Lactobacilli, and S. thermophiles/Capsule (112.5x10⁹ CFU)</td>
<td>6 weeks</td>
<td>60 overweight subjects</td>
<td>Randomized, placebo controlled</td>
<td>Improvement in lipid profile, insulin sensitivity and decrease in CRP</td>
<td>Rajkumar et al⁶⁶</td>
</tr>
<tr>
<td>L. paracasei N19/Sachet (9.4x10⁹ CFU)</td>
<td>6 weeks</td>
<td>58 obese post-menopausal women</td>
<td>Single-blind, randomized, parallel group</td>
<td>No effect</td>
<td>Brahe et al⁶⁰</td>
</tr>
<tr>
<td>B. longum BL999 (1.3x10⁹ CFU)</td>
<td>16 weeks</td>
<td>112 subjects: 54M/58F</td>
<td>Multicentric: prospective, double blind, reference controlled, randomized</td>
<td>Weight gain; daily weight gain on 4 months (g/d)</td>
<td>Chouraqui et al¹¹¹</td>
</tr>
<tr>
<td>L. salivarius CECT5713 (2x10⁶ CFU/g) on formula</td>
<td>24 weeks</td>
<td>80 subjects: 39M/41F</td>
<td>Monocentric: prospective, double blind, placebo controlled, randomized</td>
<td>Weight gain on 6 months (g)</td>
<td>Maldonado et al¹¹²</td>
</tr>
<tr>
<td>L. acidophilus ATCC4962 and ATCC4963 (>5x10⁸ CFU), 1 ml to each quart of formula</td>
<td>1 week</td>
<td>800 newborns subjects</td>
<td>Two centers: prospective, randomized</td>
<td>Weight gain; weight gain at one month</td>
<td>Robinson et al¹¹³</td>
</tr>
<tr>
<td>Hydrolyzed casein formula with L. rhamnosus strain GG (10⁶ CFU/g of formula powder)</td>
<td>16 weeks</td>
<td>188 subjects: 94M/94F</td>
<td>Multicentric: prospective, double blind, randomized</td>
<td>Growth and tolerance; weight gain (g/d)</td>
<td>Scalabrin et al¹¹⁴</td>
</tr>
<tr>
<td>L. rhamnosus strain GG ATCC53103/Formula (1x10⁷ CFU)</td>
<td>24 weeks</td>
<td>120 subjects: 60M/60F</td>
<td>Multicentric: prospective, double blind, randomized</td>
<td>Growth and fecal flora on 6 months</td>
<td>Vendt et al¹¹⁵</td>
</tr>
</tbody>
</table>
Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome

Parameter that was clearly ameliorated was insulin sensitivity index, but gut permeability was unfortunately increased despite lack of increased LPS translocation. Other studies tested the effect of a blend containing bifidobacteria, lactobacilli, and *Streptococcus thermophilus* (as capsules) in overweight subjects. The mixture had a significant improvement in their lipid profiles, reducing triacylglycerols, total cholesterol, and LDL-C levels with beneficial effect on high-density lipoprotein cholesterol levels and on insulin sensitivity as well as on inflammatory markers (C-reactive protein, CRP)\(^6\). Other randomized, double-blind, placebo-controlled studies in overweight and obese subjects designed to evaluate the effects of an *Enterococcus faecium* strain (that unfortunately is a pathobiont, an opportunistic microbe that can cause infections in humans) and two strains of *Streptococcus thermophilus* supplemented as yoghurts, showed a beneficial effect on cardiovascular risk factors including reduction in body weight, blood pressure and LDL-C\(^5\). Negative results were also obtained by Gobel et al\(^5\) with *Lactobacillus salivarius* Ls-33 on inflammation biomarkers and several dysmetabolic parameters associated with metabolic syndrome in a population of adolescents with obesity. These data are in agreement with more recent findings\(^7\) obtained in a similar population of obese adolescents that showed no effects on weight reduction after 12 weeks of supplementation with *L. salivarius* Ls-33. Other studies showed that *L. paracasei* F19 did not modulate any markers associated with metabolic dysfunctions (HOMA-IR), C-reactive protein, and lipid profile when compared with the placebo\(^8\).

The biological mechanisms by which some probiotic strains exert their health effects (Figure 2)

- Competitive adherence to the mucosa and epithelium with proinflammatory microbes\(^6\).
- Regulation of the gut associated lymphoid immune system through intestinal cell pattern recognition receptors, (toll-like receptors and nucleotide-binding oligomerization domain-containing protein-like receptors) or through the release of metabolites or immunomodulating peptides\(^6\).
- Bile-acid deconjugation by some lactobacilli strains, thus reducing lipid absorption and calories intake\(^6\).
- Induction of lipolysis via production of trans-10, cis-12-conjugated linoleic acid\(^6\).
- Increase in sympathetic nerve activity\(^8\).
- Suppression of fat deposition via increased expression of angiopoietin-like 4, a circulating inhibitor of lipoprotein lipase\(^6\).
- Induction of transcriptional activation of fatty acid β-oxidation-related genes in the liver and muscle\(^6,9\).
- Inhibition of the transcription of fatty acid synthase in the liver\(^7,8\).
- Improve insulin sensitivity and glucose tolerance through SCFA production and reduction of LPS translocation\(^7,4\).
- Improvement of the gut barrier function, through SCFA production and immunomodulation of gut immune cells\(^7\).
- Modulate the gene expression profile in PBMCs and intestinal immune cells of ROR-gt (down-regulated) and FOXP3 (up-regulated) transcription factors, dampening inflammation and promoting immunomodulation\(^9\).
- Regulation of appetite\(^7\).

Synbiotics

When the probiotic strains are used in combination with prebiotics, the final product can correctly be described as synbiotic if an increased synergistic health benefit is obtained\(^7\). Some trials were conducted with synbiotics to investigate their combined effects on weight loss and maintenance in obese adults or children. Used preparations contained mainly lactobacilli, more frequently including *L. rhamnosus* (CGMCC1.3724 strain), *L. plantarum*, *L. paracasei* F19, *L. acidophilus* La5 and *B. animalis* subsp. *Lactis* Bb12 together with oligo-fructose and inulin fibers (Table III). Some studies used complex blends of probiotics (5 or more strains) and different amounts of inulin-type fructans. Despite some discrepant results, supplementation with synbiotics appears to confer clear beneficial effects on waist circumference, on BMI, VFA and hip circumference in overweight or obese people (Table III). In women, but not in men, *L. rhamnosus* CGMCC1.3724 + inulin supplementation allowed to obtain a significantly higher weight loss than in the placebo group after the first 12 weeks, with a parallel modification of gut microbiota\(^9\). The synbiotic induced weight loss was also associated with reductions in visceral fat mass and circulating leptin concentrations. In obese children, the intake of synbiotics resulted in a significant reduction in the BMI z-score, waist circumference, TC, LDL-C and TAG as well as reduction of total oxidative stress serum.
levels suggesting an overall protection against CVD risk factors80,81. Patients with insulin resistance supplemented with synbiotic capsules (seven strains plus fructo-oligosaccharide) showed a significant improvement of fasting blood sugar and insulin resistance as compared with the placebo group82. Recently, a randomized study on the use of a synbiotic that contains five probiotics (\textit{L. plantarum, L. delbrueckii spp. bulgaricus, L. acidophilus, L. rhamnosus, B. bifidum} and inulin) over 6 months in adult patients with NASH was associated with a significant decrease in IHTG83,84. The evaluation of supplementation with a symbiotic containing \textit{L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus} and fructo-oligosaccharides, in a study with 52 adults over 28 weeks, demonstrated that synbiotic supplementation dampened NF-kB and reduced TNF-a production. This observation suggests that the reduction of pro-inflammatory cytokines, such as tumor necrosis factor (TNF), may have improved insulin resistance and reduced hepatic inflammatory cell recruitment observed in metabolic syndrome and NASH85. Two \textit{L. gasseri} strains supplemented in synbiotic preparations (SBT2055 and BNR17 in yoghurt, fermented milk or with skimmed milk powders) have shown significant anti-obesity effects in independent well-designed clinical trials with medium to low risk of biases in study design86-88.

Figure 2. The biological mechanisms by which probiotics exert their health effects. 1) Competitive adherence to the mucosa and epithelium with proinflammatory microbes. 2) Regulation of the gut associated lymphoid immune system through intestinal cell pattern recognition receptors (toll-like receptors and nucleotide-binding oligomerization domain-containing protein-like receptors) or through the release of metabolites or immunomodulating peptides. 3) Bile-acid deconjugation by some lactobacilli strains, thus reducing lipid absorption and calories intake. 4) Induction of lipolysis via production of trans-10, cis-12-conjugated linoleic acid. Increase in sympathetic nerve activity. 5) Suppression of fat deposition via increased expression of angiopoietin-like 4, a circulating inhibitor of lipoprotein lipase. 6) Induction of transcriptional activation of fatty acid \(\beta \)-oxidation-related genes in the liver and muscle. 7) Inhibition of the transcription of fatty acid synthase in the liver. 8) Improve insulin sensitivity and glucose tolerance through SCFA production and reduction of LPS translocation. 9) Improvement of the gut barrier function through SCFA production and immunomodulation of gut immune cells. 10) Modulate the gene expression profile in PBMCs and intestinal immune cells of ROR-gt (down-regulated) and FOXP3 (up-regulated) transcription factors, dampening inflammation and promoting immunomodulation. 11) Regulation of appetite.
<table>
<thead>
<tr>
<th>Strain/vehicle (dosage)</th>
<th>Duration</th>
<th>Population: M/F</th>
<th>Study design</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. rhamnosus CGMCC1.3724/Capsule (1.6x10⁹ CFU)</td>
<td>36 weeks</td>
<td>125 obese subjects: 48M/77F</td>
<td>Double-blind, randomized, placebo controlled</td>
<td>Weight loss and reduction in leptin. Increase in Lachnospiraceae</td>
<td>Sanchez et al⁷⁹</td>
</tr>
<tr>
<td>L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus, and FOS</td>
<td>8 weeks</td>
<td>70 children and adolescents with high BMI</td>
<td>Randomized, triple-masked controlled</td>
<td>Decrease in BMI z-score and waist circumference</td>
<td>Safavi et al⁸⁰</td>
</tr>
<tr>
<td>L. acidophilus, L. rhamnosus, B. bifidum, B. longum, E. faecium, and FOS</td>
<td>4 weeks</td>
<td>77 obese children</td>
<td>Open-label, randomized, controlled study</td>
<td>Changes in anthropometric measurements. Decrease in TC, LDL-C</td>
<td>Ipar et al⁸¹</td>
</tr>
<tr>
<td>L. gasseri SBT2055/Yoghurt (5x10⁸ CFU/g)</td>
<td>12 weeks</td>
<td>87 subjects with high BMI: 59M/28F</td>
<td>Multicenter, double-blind, randomized, placebo controlled</td>
<td>Reduction in BMI, abdominal VFA. Increase in adiponectin levels</td>
<td>Kadooka et al⁸⁸</td>
</tr>
<tr>
<td>L. gasseri SBT2055/Yoghurt (10⁹ CFU/g)</td>
<td>12 weeks</td>
<td>210 adults with large VFA: 105M/105F</td>
<td>Multicenter, double-blind, parallel group randomized controlled</td>
<td>Reduction in BMI, waist, abdominal VFA and hip circumference</td>
<td>Kadooka et al⁸⁷</td>
</tr>
<tr>
<td>L. gasseri BRN17/Capsule (10⁹ CFU); filler powder (50% trehalose, 25% skim milk and 25% FOS)</td>
<td>12 weeks</td>
<td>57 subjects: 22M/35F</td>
<td>Randomized, double blind, controlled</td>
<td>Body weight, BMI e waist and hip circumferences decreased in test group</td>
<td>Jung et al⁸⁷</td>
</tr>
<tr>
<td>L. acidophilus, L. casei, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophilus, (10⁹ CFU) and 100 mg FOS</td>
<td>8 weeks</td>
<td>54 patients with T2D (35-70 years)</td>
<td>Double-blind, randomized, placebo controlled</td>
<td>Increased HOMA-IR and TGL plasma level: reduced CRP in serum</td>
<td>Asemi et al⁸⁶</td>
</tr>
<tr>
<td>L. sporogenes/Bread (1x10⁹ CFU) and Inulin/Bread (0.07g/1 g)</td>
<td>8 weeks</td>
<td>81 patients with T2D</td>
<td>Double-blinded, randomized, controlled</td>
<td>Significant reduction in serum insulin levels, HOMA-IR, and homeostatic model assessment-cell function</td>
<td>Tajadadi-Ebrahimi et al¹¹⁷</td>
</tr>
<tr>
<td>L. sporogenes/Bread (1x10⁹ CFU) and Inulin/Bread (0.07g/1 g)</td>
<td>8 weeks</td>
<td>78 patients with T2D: 15M/63F</td>
<td>Double-blinded, randomized, controlled</td>
<td>Decrease in serum lipid profile (TAG, TC/HDL-C) and increase in HDL-C levels</td>
<td>Shakeri et al¹¹⁸</td>
</tr>
<tr>
<td>L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus, and FOS/ Capsule (2x10⁹ CFU)</td>
<td>30 weeks</td>
<td>52 adult individuals with NAFLD: 25M/27F</td>
<td>Double-blind, randomized, placebo controlled</td>
<td>Inhibition of NF-kB and reduction of TNF-α</td>
<td>Eslamparast et al⁸²</td>
</tr>
<tr>
<td>Bofutsushosan herb + DUOLAC7 (L. acidophilus, L. plantarum, L. rhamnosus, B. lactis, B. longum, B. breve, S. thermophilus) (5x10⁹ CFU)</td>
<td>8 weeks</td>
<td>50 female subjects</td>
<td>Randomized, double blind, placebo controlled</td>
<td>Increased HDL, increased B. Breve, B. Lactis, B. rhamnosus, B. Plantarum</td>
<td>Lee et al¹¹⁹</td>
</tr>
<tr>
<td>Inulin 1.08 g + L. sporogenes (2.7x10⁹ CFU)</td>
<td>6 weeks</td>
<td>62 subjects: 19M/43F</td>
<td>Randomized, double blinded, crossover controlled</td>
<td>Decreased hsCRP; increased GSH, Uric acid</td>
<td>Asemi et al¹²⁰</td>
</tr>
</tbody>
</table>

Table III. Synbiotics. Continued
Table III. Synbiotics.

<table>
<thead>
<tr>
<th>Strain/vehicle (dosage)</th>
<th>Duration</th>
<th>Population: M/F</th>
<th>Study design</th>
<th>Results</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOS 2.5 g + B. longum W11 (5x10⁹ CFU/g)</td>
<td>24 weeks</td>
<td>66 subjects: 33M/33F</td>
<td>Randomized, double blind, placebo controlled</td>
<td>Decreased LDL, CRP, TNF-α, LPS, Steatosis</td>
<td>Malaguarnera et al¹²⁵</td>
</tr>
<tr>
<td>L. acidophilus La5, B. lactis Bb12, and L. casei DN001/ Yoghurt (10⁶ CFU/g)</td>
<td>8 weeks</td>
<td>75 subjects with high BMI</td>
<td>Double-blind, randomized, placebo controlled</td>
<td>Changes in gene expression in PBMCs as well as BMI, fat percentage and leptin levels</td>
<td>Zarrati et al¹⁷⁶</td>
</tr>
<tr>
<td>E. faecium, two strains of S. thermophiles/Yoghurt (6x10⁷ – 1x10⁹ CFU/g)</td>
<td>8 weeks</td>
<td>70 overweight and obese subjects: 20M/50F</td>
<td>Double-blind, randomized, placebo and compliance controlled, parallel</td>
<td>Reduction in body weight, systolic BP, LDL-C, and increase on fibrinogen levels</td>
<td>Agerholm-Larsen et al¹⁹³</td>
</tr>
<tr>
<td>L. acidophilus La5, B. animalis subsp. Lactis Bb12/Yoghurt-capsule (3x10⁹ CFU)</td>
<td>6 weeks</td>
<td>156 overweight adults: 96M/60F</td>
<td>Double-blind, randomized, parallel study</td>
<td>Reduction in fasting glucose concentration and increase in HOMA-IR</td>
<td>Ivey et al¹²²,¹³³</td>
</tr>
<tr>
<td>L. acidophilus La5 and B. lactis Bb12/Yoghurt (7.23x10⁶ and 6.04x10⁶ CFU/g)</td>
<td>6 weeks</td>
<td>60 patients with T2D: 23M/37F</td>
<td>Double-blind, randomized controlled</td>
<td>Reduced fasting blood glucose and antioxidant status</td>
<td>Ejtahed et al¹⁲²</td>
</tr>
<tr>
<td>L. acidophilus La5 and B. lactis Bb12/Yoghurt</td>
<td>6 weeks</td>
<td>60 patients with T2D: 23M/37F</td>
<td>Double-blind, randomized controlled</td>
<td>TC and LDL-C improvement</td>
<td>Ejtahed et al¹²³</td>
</tr>
<tr>
<td>L. acidophilus La5 and B. breve subsp. Lactis Bb12/Yoghurt</td>
<td>8 weeks</td>
<td>72 patients with NAFLD: 33M/39F</td>
<td>Double-blind, randomized, controlled</td>
<td>Reduced serum levels of ALT, ASP, TC, and LDL-C</td>
<td>Nabavi et al¹²⁴</td>
</tr>
<tr>
<td>Lactobacillus curvatus (2.5x10⁹ CFU) and L. plantarum (2.5x10⁹ CFU)/powder containing 1.24 g of cellulose, 0.5 g of lactose, 0.06 g of blueberry flavoring</td>
<td>12 weeks</td>
<td>95 subjects: 34M/61F</td>
<td>Double blind, Placebo controlled, randomized</td>
<td>Body weight, BMI, waist circumference and subcutaneous fat mass decreased in test group</td>
<td>Jung et al¹²⁴</td>
</tr>
<tr>
<td>L. amylovorus CP1563/Powder (skim milk, citrate, flavors, sweeteners, soybean polysaccharide, food emulsifier and 200 mg of L. amylovorus)</td>
<td>12 weeks</td>
<td>200 subjects: 100M/100F</td>
<td>Randomized, double blind, placebo controlled</td>
<td>Body fat percentage, visceral fat area and whole-fat area decreased in test group</td>
<td>Nakamura et al¹²⁶</td>
</tr>
<tr>
<td>S. thermophilus, L. acidophilus, B. infantis/Yoghurt (10⁷-10⁹ CFU)</td>
<td>8 weeks</td>
<td>101 subjects: 31M/70F</td>
<td>Randomized, double blind, placebo controlled, parallel</td>
<td>Reduced LDL-cholesterol, body weight and BMI</td>
<td>Chang et al¹²⁷</td>
</tr>
<tr>
<td>L. acidophilus L-1/Yoghurt (5x10⁹ to 3x10⁷ CFU/g)</td>
<td>2 weeks</td>
<td>78 subjects: 22M/56F</td>
<td>Monocentric; prospective, double blind, randomized</td>
<td>Lipid profile and body weight change; weight change difference (kg)</td>
<td>De Roos et al¹²⁸</td>
</tr>
<tr>
<td>L. acidophilus La1 and Bifidobacterium lactis Bb12/ Yoghurt (4x10⁹ CFU)</td>
<td>6 weeks</td>
<td>90 female subjects</td>
<td>Prospective, double blind, randomized</td>
<td>Lipid profile; weight change (kg)</td>
<td>Sadrzadeh-Yeganeh et al¹²⁹</td>
</tr>
</tbody>
</table>
Lactobacillus gasseri strains are probiotic lactic acid bacteria isolated from the gastrointestinal tract or sometimes from the vagina of healthy subjects. L. gasseri SBT2055 strain was examined in two studies86-88 using a cohort of Japanese adults with large visceral fat areas (VFA). The participants received increasing amounts of L. gasseri SBT2055 for 12 weeks. The results showed a reduction in body mass index (BMI), waist, abdominal VFA and hip circumferences. In obese individuals, the difference was clinically relevant since an average weight loss of 6 kg (3-6\%) was obtained in overweight patients in a few weeks86-88.

Both studies with L. gasseri strains observed decreased visceral fat. This is an important achievement since visceral fat is associated with insulin resistance, cardiovascular risk and diabetes mellitus86,87. In vitro and preclinical data suggest that these genera of Lactobacilli strains suppress lipogenic gene expression and accumulation of lipids in adipose cells89,90. This is also in agreement with Kawano et al91 findings that demonstrated, in rats, that L. gasseri strain SBT2050 reduced gut permeability in mice fed with high fat diet, thus possibly ameliorating gut barrier function and reducing bacterial translocation and the associated low-grade systemic inflammation86,92. L. gasseri BRN17 was also associated with weight loss in humans (even if not statistically significant) and with reduced adipose tissue accumulation under a carbohydrate-rich diet in animal models72,93-95. Lactobacillus gasseri BNR17 has recently received the South Korean FDA approval as functional ingredient for body fat reduction96. Other authors showed that LG2055 supplementation decreases lymphatic triacylglycerols (TAG) absorption, increases fecal fatty acid excretion in animal models and decreases postprandial TAG absorption in humans. This may be explained in part by the strong bile salt hydrolase (BSH) activity of some lactobacilli, including L. gasseri strains, that may help to reduce bile-acid re-adsorption97. Bile salts are conjugated with glycine or taurine in the liver and stored in the gall bladder and released into the small intestine where they help to absorb lipids98. The BSH enzyme hydrolyzes conjugated bile salts into a deconjugated form that is much less soluble and thus not absorbed by intestinal cells. Elimination of deconjugated bile salts, results in de novo synthesis of bile acid from cholesterol in the liver, thereby lowering both lipid absorption from the bowel and serum cholesterol levels86,97. Other mechanisms demonstrated in animal models probably involve increased energy expenditure and improved glucose tolerance by synbiotic L. gasseri supplementation99.

Conclusions

In the pre-microbiome era, almost none of the trials were designed to identify the molecular mechanisms underlying the beneficial effects observed in humans supplemented with pre/pro/synbiotic preparations on weight loss and metabolic syndrome dysmetabolism. Nevertheless, more recent studies on human and animal models have in part elucidated several biological mechanisms supporting their usage in these clinical conditions. Future studies attempting to demonstrate a beneficial role for synbiotics in clinical trial will have to evaluate accurately the gut microbiota composition and functions to confirm already described mechanism of actions or to identify new beneficial microbe-host interactions affecting local and systemic inflammation and metabolic pathways. Characterization of baseline microbiome composition in patients’ enrolled in future clinical trial may help to understand the individual responses to synbiotic supplementation and may indeed guide to more effective weight-management treatments and results interpretation. Some results obtained in early studies appear indeed controversial, but several reasons may explain some discrepancies. In fact, heterogeneous amounts of bacterial cells, complex mixtures of bacteria strains and different dosages of prebiotic fibers were used (Tables I-III). In fact, the weight control activity appears to be a species or even a strain-specific characteristic and some probiotic strains such as L. acidophilus, L. inlguei, L. fermentum and delbrueckii (and probably other endogenous Lactobacillus species that increase in obese patients) were linked to a paradoxical significant weight-gain effect both in animal or human studies51. Therefore, diet supplementation only with synbiotics, prepared using selected strains (such as Lactobacillus gasseri strains) that showed to exert weight-reduction and anti-inflammatory activity in large independent correctly designed studies, together with galactomannan and/or inulin fibers, may exert more powerful anti-obesity effects due to synergism in SCFA production and microbiota ‘re-configuration’. Novel synbiotics may reduce insulin resistance, cardiovascular risk and type-2 diabetes development through VFA reduction. Better-designed syn-
biotics may promote not only weight loss but they may also help to maintain the beneficial results of weight reduction regimens through the promotion of a persistently healthier microbiota composition. Obese-type gut microbiota, in fact, induces neurobehavioral changes even in the absence of obesity and data on the effects of the gut microbiota on host behavior showed that microbiota composition and some microbial metabolites can regulate host appetite. This further suggests that symbiotic preparations may exert their beneficial effect on weight control also through the gut-brain axis by activating host satiety pathways and affecting host control of appetite. Probiotic strains may indeed interact with the brain-gut axis, by producing, upon fibers fermentation, SCFA or specific molecules that have evolved to regulate host nutrient intake or energy expenditure. Further investigations to evaluate the best dose-response effect and the length of probiotics and synbiotics supplementation are also needed, to evaluate if the persistence of their potential beneficial effects is maintained after interruption or if continuous supplementation should be used for an efficient treatment or dysmetabolic diseases prevention.

Acknowledgments

This study was partially funded by the Italian Ministry of University and Research and by the Italian Ministry of Health (grant GR-2011-02347170).

Conflict of Interests

The Authors declare that they have no conflict of interests.

References

Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome

39. Ichimura A, Harat T, HirasaWa A. Regulation of energy homeostasis via GPR120. Front Endocrinol (Lausanne) 2014; 5: 111.

Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Commun 2013; 431: 258-263.

Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome

77. PARNELL JA, REIMER RA. Weight loss during oligofructose supplementation is associated with decreased ghrelin and increased peptide YY in overweight and obese adults. Am J Clin Nutr 2009; 89: 1751-1759.

111. Chudnovsky JP, Gratthoff-D, Labanne JM, Hascoet JM, de Montgelois I, Leclaire M, Giabbe M, Steenhout P. Assessment of the safety, tolerance, and protective effect against diarrhea of infant formulas containing mixtures of probiotics or prebiotics and prebiotics in a randomized controlled trial. Am J Clin Nutr 2008; 87: 1365-1373.

