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Abstract. – OBJECTIVE: Recent evidence 
shows that indicators testing conventional ol-
factory function have a high degree of similari-
ty to cognitive function tests and the potential to 
diagnose early-stage Alzheimer’s disease (AD). 
In this study, the efficacy of functional near-in-
frared spectroscopy time-series data obtained 
through olfactory stimulation was investigated 
as an early diagnostic tool for mild cognitive im-
pairment in AD using random forest, a machine 
learning algorithm.

PATIENTS AND METHODS: We conducted a 
patient-level, single-group, diagnostic interven-
tional trial using near-infrared signals measured 
during olfactory stimulation in the prefrontal cor-
tex of 178 older adults ranging from normal to 
participants with AD as markers to discriminate 
AD stages. We first divided the participants in-
to normal older adults, AD mild cognitive impair-
ment, and AD groups using dementia diagnos-
tic criteria such as the Mini-Mental State Exam-
ination and Seoul Neuropsychological Screen-
ing Battery. We compared the left and right oxy-
genation difference by calculating the relative ox-
ygenation difference from the change in relative 
oxygen concentration.

RESULTS: A total of 168 participants met the 
eligibility criteria: 70 (41.6%) had normal cog-
nitive function; 42 (25%) mild cognitive impair-
ment; 21 (12.5%) mild AD; and 35 (20.8%) moder-
ate AD. A random forest machine learning model 
was developed to predict the AD stage, with an 
area under the receiver operating characteris-
tic curve of 90.7% for mild cognitive impairment 
and AD, 90.99% for mild cognitive impairment, 
and 93.34% for AD only.

CONCLUSIONS: Based on the classification 
of the oxygenation difference index of the left 
and right prefrontal cortices during olfactory 
stimulation through machine learning, we found 
that it was possible to detect early-stage mild 
cognitive impairment in AD. Our results high-
light the potential for early AD diagnosis using 
near-infrared signals from the prefrontal cortex 
obtained upon olfactory stimulation. Moreover, 
the results showed high similarity to the existing 
cognitive function tests and high accuracy in AD 
stage classification.
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Introduction

Alzheimer’s disease (AD) is the leading cause 
of dementia worldwide1-3. The worldwide prev-
alence is 5-6 per 1000 people, and this number 
is expected to rise further in the future1,2. It is a 
disease in which beta-amyloid entanglement and 
tau protein block nerve signals and induce neuro-
nal cell death, leading to cognitive impairment1,2. 
Therefore, it must be detected at an early stage 
when cognitive decline begins4. Previous studies 
have reported a decrease in olfactory function 
when cognitive function declines5,6. Olfactory 
function is also correlated with cognitive func-
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tion tests7,8. In animal and human autopsy stud-
ies, beta-amyloid entanglement and tau protein 
toxicity have been reported to affect one of the 
thin cranial nerves, the posterior nerve. In animal 
models of AD and studies with humans, when the 
olfactory nerve is affected by the causative agent 
of AD, the ability to identify olfactory sense is 
reduced9-11.

Many studies have used positron emission 
tomography (PET) and magnetic resonance im-
aging (MRI) to quantify brain responses to ol-
factory stimuli and identify activated regions12. 
The results confirmed that activation occurred 
more frequently in the right orbital frontal cortex 
(OFC) than in the left eye13,14. In addition, studies 
have shown that the left OFC is activated more 
by unpleasant scents, and the right OFC is acti-
vated by familiar or pleasant smells15. Using these 
characteristics, if there is a difference between 
healthy older adults and patients with AD, it can 
be expected that the disease can be detected at the 
stage of mild cognitive impairment14,16.

Functional near-infrared spectroscopy (fNIRS) 
is a technology that can measure oxygenation 
difference in tissues by delivering near-infrared 
wavelength light to organs. This technology can 
track reduced oxygen-haemoglobin and reduced 
deoxy-haemoglobin17. Proper processing of the 
fNIRS signal can be used to measure cortical 
oxygenation difference, similar to PET-computed 
tomography (CT). These methods are being ac-
tively used in neuropsychiatric research18,19. In AD, 
attempts have been made to diagnose and detect 
brain fNIRS signals by providing memorisation 
and behavioural tasks to participants. The fNIRS 
diagnostic method has a good advantage over ex-
isting examination methods in that it can increase 
the accuracy using deep or machine learning19,20.

In this context, fNIRS has several advantages 
over other imaging devices, making it more suit-
able for the diagnosis of AD17. fNIRS can be used 
to measure the change in oxygenation difference 
in the cerebral cortex in small hospitals that do 
not conduct neuropsychological tests or in small 
hospitals without large hospital-level facilities 
such as MRI or CT17. Since fNIRS is a light-based 
technology, patients are not exposed to risks such 
as radiation and do not have to lie down for an 
extended period as with MRI; therefore, there 
are fewer restrictions for older adults. However, 
fNIRS-based studies have not included all stag-
es of AD, have a relatively low-evidence study 
design with a 10-patient/control comparison, and 
included only some patients with normal and AD 

among normal, mild cognitive impairment, and 
AD21. Observations of the mechanisms by which 
the brain activity changes are also limited19,20.

In this study, the efficacy of fNIRS time-series 
data obtained through olfactory stimulation was 
investigated as an early diagnostic tool for mild 
cognitive impairment in AD using random forest, 
a machine learning algorithm.

Patients and Methods

Study Design
This study included volunteers aged ≥60 years 

in the community of Gwangju Metropolitan City, 
South Korea, from 2 March 2021 to 1 March 
202222,23. Participants with malignant tumours, 
head trauma, cerebral haemorrhagic stroke, an-
atomical problems such as loss of smell after 
brain surgery, and mental disorders such as major 
depression, schizophrenia, and bipolar disorder 
were excluded. In addition, those who had mus-
culoskeletal disorders to the extent that they were 
unable to proceed with the examination or were 
uncooperative, were excluded. 

Written consent was obtained from each par-
ticipant and legal guardian at the time of patient 
registration. Research protocols such as olfactory 
stimulation and neuropsychological testing were 
approved by the Gwangju Institute of Science 
and Technology Institutional Review Commit-
tee (20210115-HR-58-01-02). The trial was reg-
istered with the Clinical Research Information 
Service of the Republic of Korea (CRIS number, 
KCT0007589). The study adhered to the tenets of 
the Declaration of Helsinki.

Participants
A total of 178 volunteers aged ≥60 years were 

recruited. The participants were 73 older adults 
with normal cognitive function, 45 with mild cog-
nitive impairment due to AD, and 60 with mild 
to moderate AD dementia. In the final sample, 
168 older adults were included. Three participants 
from the normal group, three with mild cognitive 
impairment, and four with dementia were excluded 
because of poor signal quality and failure to fol-
low the test protocol. Since people with moderate 
dementia cannot undergo tests over an extended 
period, only the Mini-Mental State Examination 
(MMSE)24 and olfactory tests were conducted.

Cognitive function tests were conducted using 
the MMSE and Seoul Neuropsychological Screen-
ing Battery. The diagnostic criteria for each AD 
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group were based on the 2011 National Institute on 
Aging recommendations25.

The normal group included participants whose 
cognitive function test results were normal. The 
AD mild cognitive impairment group had a stan-
dardised uptake value of 1.1 or higher on PET-
CT at Chonnam National University Hospital 
(Gwangju, South Korea) before the cognitive 
function test among those with amyloid-beta 
plaque to confirm AD. Participants were classi-
fied with mild cognitive impairment if the com-
prehensive Jak/Bondi classification criteria were 
met25. In this classification, five diagnostic meth-
ods for mild cognitive impairment are present-
ed based on cognitive function indicators17. The 
comprehensive criteria we used defined the cog-
nitive function test scores as being in the lower 
5% of the standard normal distribution in domain 
2. Participants with AD dementia were defined as 
those diagnosed with AD at a hospital and had a 
clinical dementia grade of 1 or higher17.

Stimulus and Experimental Design
For olfactory stimulation17, a total of five scents 

(unscented, downy, peppermint, leather, and un-
scented) were presented using a sniff stick. For 
each stimulus, participants were asked to smell 
the scent 5–10 cm away from the nose for 20 
seconds. At this time, they were allowed to smell 
naturally, without closing their eyes or blocking 
one nostril. A 40-second break was permitted be-
tween each scent stimulus. The total experiment 
duration time was approximately 5 minutes. 

Data Pre-Processing 
Data for measuring oxygenation difference 

were collected using N.CER N2 fNIRS equip-
ment (N.CER Co., Gwangju, South Korea) with 
wavelengths of 730 and 850 nm. The NIRS probe 
consists of two emitters, three left and right emit-
ters, and one detector for skin signal detection. The 
probe was placed between the eyebrows, where it 
most likely records oxygenation difference in the 
prefrontal cortex. Before the probe was attached, 
the skin was wiped with an alcohol swab.

For fNIRS measurement, the raw data sampled 
at 10 Hz and stored as CSV were signal-processed 
using Python (ver 3.9)26,27. To remove physiologi-
cal signals such as cardiac and respiration signals 
from the original signal, wavelet processing and 
a low-pass filter (cutoff 3 Hz) were performed 
to remove the high frequencies. Subsequently, 
the concentrations of oxidised haemoglobin and 
reduced haemoglobin were calculated using the 

modified Beer-Lambert law, and the skin signal 
was removed to extract the pure brain signal 
using the same detector, and corrected NIRS 
(C-NIRS) data were obtained.

By subtracting the reduction graph value from 
the obtained C-NIRS oxidised haemoglobin 
graph, the relative oxygenation difference (oxy-
gen consumption) separated from red blood cells 
was measured and obtained. Using the difference 
in oxygen consumption between the left and 
right prefrontal lobes, we created a graph of the 
difference in oxygen consumption between the 
two prefrontal lobes (LR oxygenation difference; 
Supplementary Figure 1).

Machine Learning Analysis and Sample 
Size Calculation

We checked the characteristics of the LR oxy-
genation difference graph to determine whether 
it was possible to classify the stages of AD using 
a random forest classifier, a machine learning 
algorithm. In addition, the accuracy and other in-
dicators of this machine learning algorithm were 
calculated using the average value of the five hy-
perparameters to prevent overfitting.

Statistical Analysis
We compared the sample sizes required to use da-

ta applicable to real participants with near-infrared 
spectroscopy. Statistically, 17 participants in each 
group needed to have 90% power at the 10% signif-
icance level for the normal, mild cognitive impair-
ment, and AD groups. We included 70 participants 
with CN, 42 with MCI, and 56 with AD. Therefore, 
even with the hyperparameters modified, the test set 
was averaged by running 10 tests, maintaining the 
test set size of 34 participants. A two-sided p-value 
below 0.05 was considered statistically significant.

Results

Baseline Characteristics
A total of 178 older adult individuals were 

screened. Of these, 168 met the eligibility crite-
ria. Four participants with nasal obstruction and 
acute respiratory disease, and six participants 
who refused cognitive function tests were ex-
cluded. Of the 168 participants, 70 (41.6%) had 
normal cognitive function (73.9 ± 5.7 years), 42 
(25.0%) mild cognitive impairment due to AD 
(73.0 ± 6.0 years), and 21 (12.5%) AD (75.6 ± 7.6 
years), while 35 (20.8%) had moderate dementia 
(83.6 ± 5.4 years) (Table I).

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-2.pdf
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Left and Right Oxygenation Difference 
Graphs for Each Group and 
Important Sections Considered in 
the Random Forest Model

The left and right haemoglobin-oxyhaemo-
globin graphs for the normal, mild cognitive 
impairment, AD, and moderate dementia of the 
participants in each group are shown in Figure 1. 

Prediction Results of Cognitive 
Dysfunction Due to Alzheimer’s Disease

The LR oxygenation difference signal, calcu-
lated from the difference between the oxidised 
haemoglobin and reduced haemoglobin signals 
using the fNIRS signal, was applied to the random 
forest model. The averages obtained using 10 hy-
perparameters are listed in Table II. The training 

Table I. Participant baseline characteristics at enrolment (n=168).

 Total  CN MCI† AD‡ Moderate AD‡

Number (%) 168 (100.0) 70 (41.6) 42 (25) 21 (12.5) 35 (20.8)
Age, years, mean  75.9 ± 7.2 73.9 ± 5.7 73.0 ± 6.0 75.6 ± 7.6 83.6 ± 5.4
Sex, female (%) 96 (57.1) 34 (48.6) 22 (52.4) 12 (57.1) 28 (80.0)
Education, years, median (IQR) 10.5 ± 4.5 10.9 ± 4.3 10.4 ± 4.8 9.4 ± 4.9 -
APOE4 carrier, n (%) 84 (63.6) 37 34 13 -
Mini-Mental State Examination, median (IQR) 23.5 ± 6.3 28.0 ± 1.3 25.8 ± 2.4 19.2 ± 4.3 14.4 ± 5.0
Cognitive measures (composite z score), mean (SD) 
SNSB attention -0.3 ± 1.0 0.0 ± 0.9 -0.6 ± 0.8 -0.9 ± 1.0 -
SNSB language and related function 0.1 ± 1.5 0.6 ± 0.7 -0.0 ± 1.1 -2.0 ± 2.9 -
SNSB visuospatial function 0.2 ± 2.3 1.0 ± 0.7 0.2 ± 1.6 -2.4 ± 4.6 -
SNSB memory -0.4 ± 1.7 0.7 ± 1.0 -0.9 ± 1.5 -2.7 ± 1.2 -
SNSB frontal/executive function -0.3 ± 1.4 0.5 ± 0.8 -0.6 ± 1.1 -2.3 ± 1.4 -
Amyloid PET-CT positive (%) 90 (67.7) 28 (40.0) 42 (100) 21 (100) -

†AD: Alzheimer’s disease; APOE4: apolipoprotein E 4; CN: cognitively normal; IQR: interquartile range; MCI: mild cognitive 
impairment; SD: standard deviation; SNSB: Seoul Neuropsychological Screening Battery; PET-CT: positron emission 
tomography-computed tomography. †The diagnostic criteria for MCI were based on the Jak/Bondi comprehensive criteria. 

Figure 1. Graph of left and right oxygenation difference for each group. CN: cognitively normal; MCI: mild cognitive 
impairment; AD: Alzheimer’s disease; LR: Left/Right; DPF: Differential pathlength factor. ‡Mild dementia and moderate 
dementia were integrated into the dementia stages and trained on the model..
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data and test data were classified as 8:2, and the 
training set accuracy of the best model, sensi-
tivity, and specificity were 96%, 95%, and 96%, 
respectively; the F1 score, and recall were 95% and 
95%, respectively. The accuracy, sensitivity, and 
specificity of the test dataset were 94%, 90%, and 
100%, respectively; the F1 score, and recall were 
94% and 93%, respectively (Figure 2). 

Discussion

Previous studies have confirmed that olfacto-
ry function is associated with cognitive decline 
in patients with AD. A random forest machine 

learning model was developed to predict the stage 
of AD, with an area under the receiver operat-
ing characteristic curve of 90.7% for AD mild 
cognitive impairment and AD, 90.99% for mild 
cognitive impairment, and 93.34% for AD only. It 
showed excellent predictive performance.

Previous studies have shown that olfactory 
function tests using the Brief Smell Identification 
Test or University of Pennsylvania Smell Identifi-
cation Test were predictive for AD, and olfactory 
function decreased with similarity to various 
parts of the cognitive function evaluation index5. 
This is due to the fact that when using a linear 
mixed effect model, similarity is shown in mem-
ory, executive ability, language, and global cogni-

Table II. Ten hyperparameter average results of random forest machine learning.

               Results
 Test Set Performance
 (%, best performance) Accuracy Precision Recall F1 score ROC_AUC PR_AUC
 
Prediction model as AD and 91.159 ± 1.39  91.5 ± 1.9 90.7 ± 1.6 90.9 ± 1.4 90.7 ± 1.6 84.6 ± 3.3
MCI using machine learning (94.1) (95.5) (92.9) (93.8) (92.9) (91.6)
algorithm
Prediction model as only MCI using 92.06 ± 2.36 92.66 ± 3.17 90.99 ± 2.40 91.42 ± 2.46 90.99 ± 2.40 90.98 ± 2.58
machine learning algorithm (95.80) (96.80) (94.40) (95.40) (94.40) (93.70)
Prediction model as only AD using 94.00 ± 3.40 94.86 ± 2.36 93.33 ± 4.51 93.56 ± 3.78 93.34 ± 4.52 92.79 ± 5.54
machine learning algorithm (100) (100) (100) (100) (100) (100)

ROC: receiver operating characteristic; AUC: are under the curve; PR_AUC: area under the precision-recall curve; MCI: mild 
cognitive impairment; AD: Alzheimer’s disease.

Figure 2. Receiver operating characteristic curve and precision/recall curve for the best performance of the random forest 
diagnostic model from normal older adult patients with Alzheimer’s disease (receiver operating characteristic curve 0.941, 
area under the precision-recall curve 0.915). ROC: receiver operating characteristic; AUC: area under the curve.
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tive function in normal participants and memory, 
language, and global cognitive functions have 
been statistically significantly correlated with ol-
factory function in patients with mild cognitive 
impairment28,29. As in the cohort study for a dura-
tion 5 years, when the olfactory function deterio-
rated in patients with mild cognitive impairment, 
the progression to AD was strongly predicted30. 
Decreased olfactory function has also been asso-
ciated with all mild cognitive impairment types 
but not with non-amnestic mild cognitive impair-
ment, with memory retention30.

This study had several limitations. In order to re-
duce the experimental time for participants with de-
mentia with limited concentration, participants with 
AD were exposed to only three fragrances, provid-
ing a more limited olfactory response than would be 
observed through stimulation with a greater variety 
of fragrances. However, machine learning yielded 
satisfactory results, and they can be used to predict 
cognitive function test results and disease stage in 
people with AD. In addition, to utilise the fNIRS 
technology used in this study as a biomarker for 
AD, it is necessary to confirm the relationship be-
tween fNIRS markers through repeated individual 
evaluations and longitudinal studies.

Even though limitations as mentioned above, 
this study has several advantages due to the fact 
that it was conducted to investigate the entire AD 
spectrum from normal to AD, not just two groups 
of participants with normal and mild cognitive 
impairment or normal and AD. In addition, the 
study was conducted using the fNIRS technolo-
gy, which is smaller and more portable than large 
instruments used such as MRI or CT. 

Conclusions

This work confirmed the possibility of early 
detection for AD mild cognitive impairment and 
AD using a machine learning algorithm by mea-
suring the difference in the left and right relative 
cerebral metabolic rates during olfactory stim-
ulation with fNIRS. A random forest machine 
learning model was developed to predict the AD 
stage, with an area under the receiver operat-
ing characteristic curve of 90.7% for AD mild 
cognitive impairment and AD, 90.99% for mild 
cognitive impairment, and 93.34% for AD only. 
We found that the results of the machine learning 
processing for the fNIRS signals were diagnos-
tically useful. As a result, it is expected that AD 
can be detected at an early stage.
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