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Abstract. – OBJECTIVE: A lack of objec-
tive biomarkers is preventing the screening and 
diagnosis of COVID-19 combined with major 
depression disorder (COVID-19-MDD). The pur-
pose of this study was to identify diagnostic bio-
markers and gene regulatory mechanisms asso-
ciated with autophagy; a crucial process signifi-
cantly involved in the pathogenesis of COVID-
19-MDD.

MATERIALS AND METHODS: In this study, 
differentially expressed genes (DEGs) were 
screened using GSE98793 from the GEO2R 
analysis (GEO) database, and intersected with 
the COVID-19-related gene (CRGs) and autoph-
agy-related genes (ARGs) to obtain common 
genes involved in. Then, Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) enrichment analyses of these 
common genes were performed. Subsequent-
ly, the transcription factor (TF)–gene regula-
tory network and comorbidity network were 
constructed. In addition, 10 drug candidates 
were screened using the DSigDB database. To 
identify diagnostic markers, we used LASSO 
regression. 

RESULTS: In total, 13 common genes were 
screened, which were primarily enriched in ly-
sosomes, endoplasmic reticulum membranes, 
and other endomembrane systems also associ-
ated with autophagy. Additionally, these genes 
were involved in neurological cell signaling 
and have a functional role in pathways related 
to vascular endothelial growth factor, tyrosine 
kinase, autophagy, inflammation, immunity, 
and carcinogenesis. Tumors and psychiatric 
disorders were the most highly linked diseas-
es to COVID-19. Finally, ten drug candidates 
and eight diagnostic markers (STX17, NRG1, 
RRAGD, XPO1, HERC1, HSP90AB1, EPHB2, and 
S1PR3) were screened.

CONCLUSIONS: This is the first study to 
screen eight diagnostic markers and construct 
a gene regulatory network for COVID-19-MDD 
from the perspective of autophagy. The findings 
of our study provide novel insights into the diag-
nosis and treatment of COVID-19-MDD.
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Introduction

A serious psychiatric disorder that is ma-
jor depressive disorder (MDD) is among the 
leading cause of suicide. A study by the World 
Health Organization (WHO) predicts that de-
pression will be the top-burden disease in the 
world by 20301. It has been reported that the 
MDD prevalence among COVID-19 patients 
ranges between 31%-45% being significant-
ly higher than in the general population2,3. 
The COVID-19 epidemic has led to a dramat-
ic increase in the number of patients with de-
pression. Consequently, an early screening of 
patients with COVID-19 combined with de-
pression and thereby proper intervention may 
help reduce MDD incidence. Currently, depres-
sion screening and diagnosis rely primarily on 
subjective assessments by psychiatrists4,5which 
lead to higher rates of misdiagnosis. As a result, 
there is an urgent need for developing objec-
tive as well as reliable markers that may aid in 
screening and diagnosis of depression. Present-
ly, studies on the diagnostic markers of MDD 
combined with COVID-19 (COVID-19-MDD) 
primarily focus on three aspects: inflammato-
ry, kynurenine pathway, and growth factors, 
but their clinical application is restricted due to 
limited sensitivity and specificity6,7. Therefore, 
it is crucial to identify potent diagnostic bio-
markers for the diagnosis of COVID-19-MDD.

Autophagy, a basic cellular metabolic pro-
cess known for regulating immune responses 
by mediating immune cell activity and cytokine 
release, plays a crucial role in viral infections 
as well as neurodegenerative diseases. Immune 
dysregulation functions such as monocyte acti-
vation, decreased number and/or activity of T 
cells as well as the release of pro-inflammatory 
factors in large amounts are reported as the main 
key pathological mechanisms for the pathogen-
esis of MDD8,9. Additionally, immune cells and 
cytokines activate autophagy10. An effect of au-
tophagy on antidepressants or compounds that 
exert antidepressant-like effects has been re-
ported11. There is also some evidence that auto-
phagy-related genes (ARGs) play a role in the 
diagnosis of MDD12. Therefore, autophagy may 
be an important mechanism in the pathogenesis 
of MDD with significant implications for its di-
agnosis and treatment. Additionally, autophagy 
acts as an essential mechanism in the body’s 
fight against viruses where coronaviruses may 
replicate by usurping and exploiting these auto-

phagic mechanisms13,14. It has also been reported 
that autophagy inducers can antagonize corona-
virus replication15. Autophagy may, therefore, 
be involved in COVID-19 pathogenesis. In this 
study, we attempted to utilize autophagy as an 
entry point for identifying the pathogenesis and 
diagnostic markers of COVID-19-MDD there-
by generating newer ideas for its good diagno-
sis and treatment. High-throughput screening is 
becoming increasingly important in the field of 
biomedical research. Microarray data analysis 
is one of the most prominent techniques among 
high-throughput methods used for large-scale 
analysis of gene expression16. Therefore, analy-
sis of genetic data using high-throughput tech-
niques can help to screen potential diagnostic 
biomarkers for COVID-19-MDD. In this study, 
differentially expressed genes (DEGs) for MDD 
were screened by downloading the GSE98793 
dataset from the GEO database and intersect-
ed with ARGs and COVID-19-related genes 
(CRGs) to obtain common genes. Subsequently, 
gene enrichment analyses of the common genes 
were performed to clarify the gene regulation 
mechanism of COVID-19-MDD, construct a 
transcription factor (TF)-gene regulatory net-
work, and screen for target drugs. Finally, a ma-
chine learning algorithm was used to screen for 
diagnostic biomarkers of COVID-19-MDD.

The flow chart for this study is presented in 
Figure 1.

Materials and Methods

Data Acquisition
We have utilized the NCBI–GEO database17 

from which the GSE98793 dataset was down-
loaded as the MDD dataset18. This dataset contrib-
uted by Kelly et al18 contains whole blood sam-
ple measurements from 128 patients with MDD 
(64 of them were diagnosed with a generalized 
anxiety disorder) while the remaining 64 were 
healthy controls. We have used GPL570/HG-
U133_Plus_2 Affymetrix Human Genome U133 
Plus 2.0 Array as a platform for the analysis. A 
search in GeneCard (https://www.genecards.org/) 
for “COVID-19” yielded a total of 4585 related 
genes. Here, a total of 803 ARGs were obtained 
using the Human Autophagy Database (HADB, 
http://autophagy.lu/) and the Human Autopha-
gy Regulator Database (HAMDB, http://hamdb.
scbdd.com)19.
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Identification of DEGs and Common 
Genes

A DEGs search was conducted on the GSE98793 
dataset. In order to analyze the GSE98793 dataset, 
we used the GEO2RWeb tool (https://www.ncbi.
nlm.nih.gov/geo/Geo2r/) and its LIMMA package. 
In order to screen for DEGs within GSE98793, we 
used the criterion of p-value < 0.05 and |log2Fold-
Change|≥0.2. Subsequently, for the visualization 
of the DEGs, the heatmap package (R package 
version 4.1.1) and ggpolt2 package (R 4.1.1) were 
used to draw gradient volcano and heat maps. The 
common genes obtained from the intersection of 
DEGs with genes of the other two datasets are pre-
sented in a Venn diagram.

Enrichment Analyses of Common Genes
In order to analyze these common genes, Gene 

Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses were 
performed on these common genes20. A GO enrich-
ment analysis of common genes has clarified their 
cellular component (CC), molecular function (MF), 
and biological process (BP)21. In addition, a KEGG 
enrichment analysis has been applied for detecting 
the specific functioning and metabolic pathways of 

common genes22. A viable network platform that is 
Enrichr (https://amp.pharm.mssm.edu/Enrichr/) is 
also being utilized for the enrichment analysis. As a 
final step, we have entered the common genes into 
the Enrichr web platform to yield GO and KEGG 
enrichment analysis results23.

Construction of the TF-Gene Regulatory 
Network

DNA-binding proteins, also known as trans-act-
ing factors (TFs) can specifically interact with genes 
while affecting gene transcription either by posing 
activating or inhibiting effects. The construction of 
the TF–gene regulatory network facilitates the iden-
tification of pathways through which TFs affect gene 
expression24. Gene expression in numerous species 
can be analyzed using NetworkAnalyst3.0, a web-
based platform. In the NetworkAnalyst 3.0 platform, 
the TF-gene regulatory network was constructed on 
the basis of the JASPAR database25.

COVID-19-MDD-Related Comorbidities
DisGeNET (http://www.disgenet.org/), a da-

tabase integrating multiple disease-related genes 
and variants, covers the expression profiles and 
normal and abnormal traits of human diseases. 

Figure 1. Flowchart of this article.
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As a result of integrating existing relevant gene 
or mutation databases and obtaining the relevant 
information from the literature through machine 
learning methods26, the current version constructs 
a unified database of disease-related genes and 
mutation loci covering more than 24,000 diseas-
es and traits, 17,000 genes, and 117,000 genom-
ic variants. The DisGeNET database in Networ-
kAnalyst 3.0 was used to examine relationships 
between common genes and diseases for identify-
ing COVID-19-MDD-related comorbidities.

Identification of Drug Candidates
A key component of this study was drug-based 

molecular characterization to provide new ideas 
for clinical drug use. We have utilized the Drug 
Signature Database (DSigDB) on the Enrichr web 
platform which is a database that basically ad-
dresses the repurposing of targeted drugs27. The 
common genes obtained were entered into the 
Enrichr platform (https://amp. pharm.mssm.edu/
enrichr/) for screening common gene-related drug 
candidates in the DSigDB database.

Identification of Diagnostic Biomarkers 
Using a Machine Learning Algorithm

To address multicollinearity in regression 
analysis, the “glmnet” software package was used 
to screen for autophagy-related diagnostic bio-
markers of COVID-19-MDD using the least ab-
solute shrinkage and selection operator (LASSO) 
regression28.

Results

Identification of DEGs in MDD and Their 
Common Genes with CRGs and ARGs

From an analysis of the GSE98793 dataset 
using the GEO2RWeb tool and its LIMMA pack-
age, we have identified 496 DEGs including 250 
up-regulated and 246 down-regulated DEGs. A 
Heatmap and a gradient volcano plot were shown 
in Figure 2A–2B demonstrating DEGs. Based 
on the intersection of MDD DEGs with CRGs 
and ARGs, around 13 common genes are yield-
ed including STX17, VEGFA, NRG1, RRAGD, 
NPC1, XPO1, HERC1, HSP90AB1, CAMP, ATM, 
EPHB2, S1PR3, and TRIM13. The Venn diagram 
as shown in Figure 3 illustrated the visualization 
of the common genes among the three datasets.

GO and KEGG Enrichment Analyses
We have applied Enrichr to perform GO and 

KEGG enrichment analyses of common genes ((Table 
I). A GO enrichment analysis revealed that the com-
mon genes are primarily enriched in autophagy-re-
lated endomembrane systems such as lysosomes and 
endoplasmic reticulum membranes being involved in 
the signaling of nervous system cells while primarily 
functioning among vascular endothelial growth fac-
tors as well as tyrosine kinase (Figure 4A-4C). Fur-
ther, KEGG enrichment analysis revealed that these 
common genes are primarily enriched in autophagy-, 
inflammation-, immune- and carcinogenesis-related 
pathways as shown in Figure 4D.

Figure 2. Identification of DEGs. A, The heatmap represented the expression of the DEGs of GSE98793. B, Asymptotic 
volcano plot showing the gene expression of GSE98793. The top 10 genes that met the threshold value [p-value < 0.05 and 
log2FoldChange (absolute value) of 0.2] were indicated on the plot, only FAM3B was found to be an up-regulated gene and all 
others were down-regulated genes. The two vertical lines represented gene expression ploidy of -0.2 and 0.2, respectively. The 
horizontal line indicated a p-value of 0.05. The color of the dots indicated the magnitude of the p-value. 
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Table I. Gene enrichment analysis (GO and KEGG pathway enrichment analyses).

Category Term p-value Genes

Biological Positive regulation of cellular process (GO:0048522) 1.29E-06 HSP90AB1; TRIM13; 
 Process    NRG1; ATM; S1PR3; 
    VEGFA
 Commissural neuron axon guidance (GO:0071679) 1.09E-05 EPHB2; VEGFA
 Positive regulation of intracellular signal transduction  0.000016 HSP90AB1; RRAGD; 
  (GO:1902533)  TRIM13; NRG1; 
    VEGFA
 Central nervous system neuron axonogenesis  3.03E-05 HSP90AB1; EPHB2
  (GO:0021955) 
 Regulation of establishment of endothelial barrier 5.27E-05 S1PR3; VEGFA 
  (GO:1903140)
 Positive regulation of protein-containing complex  5.48E-05 NRG1; ATM; VEGFA
  assembly (GO:0031334)
 Regulation of cell adhesion (GO:0030155) 7.83E-05 ATM; EPHB2; VEGFA
 Response to gamma radiation (GO:0010332) 0.000107 TRIM13; ATM
 Cardiac muscle cell differentiation (GO:0055007) 0.000107 NRG1; VEGFA
 Mammary gland development (GO:0030879) 0.000107 NRG1; VEGFA

Cellular Secretory granule lumen  0.000993 HSP90AB1; CAMP; 
 Component    VEGFA
 Lysosome  0.003226 STX17; NPC1; RRAGD
 Smooth endoplasmic reticulum membrane  0.003246 STX17
 Integral component of lysosomal membrane  0.006482 NPC1
 Integral component of vacuolar membrane  0.007774 NPC1
 Lytic vacuole  0.008598 NPC1; RRAGD
 Axonal growth cone 0.009064 HSP90AB1
 Smooth endoplasmic reticulum 0.012283 STX17
 Lytic vacuole membrane 0.012569 STX17; NPC1
 Autophagosome membrane  0.01421 STX17

Molecular Growth factor activity  0.001414 NRG1; VEGFA
 Function ErbB-3 class receptor binding 0.003246 NRG1
 TPR domain binding 0.003246 HSP90AB1
 Transmembrane receptor protein tyrosine kinase 0.004542 NRG1 
  activator activity
 Vascular endothelial growth factor receptor 2 binding  0.005189 VEGFA
 Cytokine activity  0.00545 NRG1; VEGFA
 1-phosphatidylinositol-3-kinase activity  0.006482 ATM
 Histone methyltransferase binding  0.007129 HSP90AB1
 Nuclear export signal receptor activity  0.007129 XPO1
 Vascular endothelial growth factor receptor binding 0.007774 VEGFA

KEGG Autophagy 0.003458 STX17; RRAGD
 Fluid shear stress and atherosclerosis 0.003557 HSP90AB1; VEGFA
 NOD-like receptor signaling pathway 0.00595 HSP90AB1; CAMP
 Human T-cell leukemia virus 1 infection 0.008598 XPO1; ATM
 Chemical carcinogenesis 0.01017 HSP90AB1; VEGFA
 Shigellosis 0.010748 RRAGD; ATM
 MicroRNAs in cancer 0.016687 ATM; VEGFA
 Human papillomavirus infection 0.018883 ATM; VEGFA
 SNARE interactions in vesicular transport 0.021245 STX17
 PI3K-Akt signaling pathway 0.021422 HSP90AB1; VEGFA
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Figure 3. Identification of common genes. Venn diagram showed the number of genes that intersected 
between MDD’s DEGs, COVID-19 genes, and autophagy-related genes. 13 common genes (STX17, VE-
GFA, NRG1, RRAGD, NPC1, XPO1, HERC1, HSP90AB1, CAMP, ATM, EPHB2, S1PR3, TRIM13) were 
obtained by taking the intersection of the three.

Figure 4. Gene enrichment analysis. A, Biological process. B, Cellular component. C, Molecular function. D, KEGG enrich-
ment analysis. A higher p-value indicates that there are more genes involved in a specific pathway. 
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Interaction of TF Genes with Common 
Genes

The TF-gene regulatory network was construct-
ed using the JASPAR database in NetworkAnalyst 
3.0. Figure 5 illustrates the interaction between TF 
genes and common genes. The constructed net-
work contains 13 core targets, 56 nodes, and 108 
edges. We have found here that NRG1 is regulated 
by about 17 TF genes whereas VEGFA, RRAGD as 
well as ATM are regulated by 10 TF genes. A high 
degree of interaction between TFs and common 
genes is indicated by the fact that these TFs regu-
late more than one common DEG in the network.

Identification of COVID-19-MDD-Related 
Comorbidities

Diseases are interconnected by common 
genes29. According to the gene-disease interaction 
analysis using NetworkAnalyst 3.0, NRG1, ATM, 
VEGFA, and HSP90AB1 are the key genes in-
volved in COVID-19-MDD related comorbidities 
(Figure 6). Psychiatric disorders and tumors were 
the most commonly associated comorbidities, fol-

lowed by gastric ulcer, liver cirrhosis, experimen-
tal, heart failure, and contact dermatitis.

Identification of Drug Candidates
To screen gene-targeting candidates from the 

DSigDB database, common genes were imported 
into the Enrichr platform at a p-value <0.01 (Ta-
ble II). The top ten drug candidates which were 
screened were 1-phosphatidyl-myo-inositol, lapa-
tinib, dipyridamole, resveratrol, fludarabine, sphin-
gosine, temozolomide, PD 98059, tetracycline, and 
1,1,1-trifluorohenicosa-6,9,12,15-tetraen-2-one.

Identification of Diagnostic Biomarkers 
for Using Machine Learning Algorithms 
for COVID-19-MDD

LASSO regression analysis was conducted to 
further screen common genes which can act as di-
agnostic biomarkers for COVID-19-MDD. Final-
ly, eight genes, including STX17, NRG1, RRAGD, 
XPO1, HERC1, HSP90AB1, EPHB2, and S1PR3 
(Figure 7) were screened as diagnostic biomark-
ers based on the above analysis.

Figure 5. Construction of TF-gene network and gene comorbidity network. Network of transcription factors (TFs) interacted 
with common genes. The highlighted yellow nodes represent common genes, while the other nodes represent TFs. The network 
consists of 56 nodes and 108 edges.
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Figure 6. Network of gene comorbidity in COVID-19-MDD. A purple point represents a common gene, while the other points 
represent gene-related comorbidities.

Table II. Gene targeting drug candidates in the DSigDB database.

Term p-value Combined Score Genes

1-Phosphatidyl-myo-inositol BOSS 5.50E-06 566.85862 NRG1; ATM; EPHB2; VEGFA
Lapatinib BOSS 5.52E-06 1392.455472 NRG1; EPHB2; VEGFA
dipyridamole BOSS 7.94E-06 1190.023463 HSP90AB1; ATM; VEGFA
resveratrol BOSS 1.03E-05 456.4826769 NPC1; ATM; EPHB2; VEGFA
Fludarabine CTD 00001135 1.15E-05 1014.797902 ATM; EPHB2; VEGFA
sphingosine BOSS 1.20E-05 996.0632854 NPC1; S1PR3; EPHB2
temozolomide BOSS 1.65E-05 865.5738314 ATM; EPHB2; VEGFA
PD 98059 CTD 00003206 1.88E-05 369.9156486 NPC1; NRG1; ATM; VEGFA
tetracycline BOSS 2.96E-05 669.1933597 HSP90AB1; EPHB2; VEGFA
1,1,1-trifluorohenicosa-6,9,12,15- 3.03E-05 3435.359022 NRG1; VEGFA
 tetraen-2-one CTD 00002973 
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Discussion

The prevalence of MDD is higher among pa-
tients with COVID-19, which leads to a higher 
prevalence of MDD2,3. COVID-19 may lead to 
MDD due to immune dysfunction and increased 
levels of inflammatory factors30. Autophagy plays 
a crucial role in viral infections and neurodegen-
erative diseases and is directly related to the onset 
and progression of both COVID-19 and MDD. 
There are, however, insufficient studies focusing 
on the mechanisms involved in COVID-19-MDD. 
To the best of our knowledge, this study is the first 
to examine COVID-19-MDD from an autophagy 
perspective using machine learning and bioinfor-
matics.

By differentially analyzing GSE98793 genes 
associated with MDD, we first obtained DEGs 
that were intersected with CRGs and ARGs to 
obtain 13 common genes. By using LASSO re-
gression analysis, eight genes were identified as 
diagnostic biomarkers for COVID-19-MDD, in-
cluding STX17, NRG1, RRAGD, XPO1, HERC1, 
HSP90AB1, EPHB2, and S1PR3. Among them, 
STX17, XPO1, and HSP90AB1 have been con-
firmed to be associated with COVID-19, where-
as NRG1, EphB2, and S1PR3 are associated with 
MDD. However, the link between HERC and 
RRAGD with COVID-19 and MDD has not been 
elucidated and requires further research.

STX17, which was recently identified as an 
autophagosomal SNARE protein, is a key target 
for the treatment of COVID-19-MDD31,32. The 
SNARE protein complex, an essential molecular 
component of neural connectivity, catalyzes syn-
aptic vesicle fusion. COVID-19 viruses inhibit au-
tophagic activity by blocking the interaction of the 
HOPS complex with the autophagosomal SNARE 
protein STX17, thus evading an immune attack33. 
The SNARE protein is a key target protein for se-
vere psychiatric disorders such as depression and 
even suicidal thoughts33,34. Therefore, COVID-19 
viruses may contribute to the onset of depression 
by altering the expression of the SNARE protein 
STX17. KEGG enrichment analysis in this study 
also demonstrated that SNARE interactions in 
vesicular are an important pathway for the onset 
of both COVID-19 and MDD33,34. GO analysis 
revealed that lysosomes and endoplasmic retic-
ulum membranes may be important sites for the 
regulation of cell signaling in the nervous system 
through autophagy in COVID-19-MDD35. For 
this reason, the core gene STX17 is a crucial target 
for the treatment of COVID-19-MDD. 

HERC1, a ubiquitin ligase, contributes to au-
tophagy/lysosome and proteasome pathways that 
lead to protein degradation36-38. In the peripheral 
nervous system, HERC1 mutations alter presyn-
aptic membrane dynamics, resulting in delayed 
neurotransmission and impaired movement and 

Figure 7. Identification of COVID-19-MDD diagnostic markers by least absolute contraction and selection operator (LASSO) 
regression analysis. A, Screening of the best gene features under LASSO regression. B, Distribution of LASSO coefficients for 
the 8 autophagy-associated COVID-19-MDD.
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learning39. According to GO enrichment analysis, 
the most common genes were involved in autoph-
agy-related endomembrane systems such as lyso-
somes and endoplasmic reticulum membranes and 
neurological signaling. Therefore, HERC1 may 
be an important mechanism in the pathogenesis 
of COVID-19-MDD. The relationship between 
HERC1, COVID-19, and MDD is unclear at pres-
ent. The lysosomal pathway, however, is common 
to both COVID-19 and MDD. As a result, HERC1 
may play a role in the onset of COVID-19-MDD.

NRG1, a member of the epidermal growth fac-
tor family, is involved in the regulation of neu-
rodevelopment and synaptic plasticity40, which 
are important mechanisms involved in the patho-
genesis of numerous psychiatric disorders such 
as depression, schizophrenia, bipolar affective 
disorder, and even suicidal thoughts and behav-
iors41,42. Enrichment analysis revealed that mo-
lecular functions of common genes are closely 
associated with vascular endothelial growth fac-
tors. By affecting vascular endothelial growth 
factors and enhancing vascular permeability-in-
duced plasma exudation and pulmonary edema, 
COVID-19 infection can further exacerbate tissue 
hypoxia. The anti-vascular endothelial growth 
factor drug, bevacizumab, inhibits this process, 
improves patient oxygen levels, and shortens the 
duration and demand of oxygen support43. It is 
possible that COVID-19 infection affects the cen-
tral nervous system via trans-synaptic transfer44, 
causing depression. NRG1 gene may, therefore, 
play a significant role in the onset and progression 
of COVID-19-MDD. There is a high prevalence 
of comorbidities associated with COVID-19-
MDD, and NRG1 may play an important role in 
comorbid tumors in COVID-19-MDD patients45. 
The TF-gene interaction network suggested 
that NRG1 was the gene regulated by most TFs. 
Among them, Foxl1 is not only a significant TF 
in COVID-1946 but also plays a key role in the 
pathogenesis of tumors47.

S1PR3, a G protein-coupled receptor, is con-
sidered a functional receptor for sphingosine 
1-phosphate and may be involved in the regula-
tion of angiogenesis and the function of vascular 
endothelial cells48. S1PR3, a modulator of stress 
resilience, is closely associated with psychiatric 
disorders. In the blood of veterans with PTSD, the 
mRNA expression of S1PR3 is reduced and neg-
atively correlated with symptom severity49. Addi-
tionally, pulmonary fibrosis is a common comor-
bidity associated with COVID-1950. S1PR3 is a 
key gene that causes pulmonary fibrosis51. There-

fore, S1PR3 may play a crucial role in secondary 
depression and pulmonary fibrosis among patients 
after COVID-19 infection.

Exportin 1 (XPO1) regulates the export of a 
series of “cargoes” (including proteins and sever-
al RNAs) from the nucleus to the cytoplasm and 
plays a crucial role in maintaining intracellular 
homeostasis. SARS and Middle East Respiratory 
Syndrome (MERS) virus replication are guided 
by several co-proteins, including XPO152,53. In the 
morning, the clinical symptoms of depression are 
alleviated, and in the evening, they are aggravat-
ed. XPO1 is an important protein in the body that 
regulates circadian rhythms54. COVID-19 virus 
replication affects the circadian rhythm of humans 
and induces depression by causing an increase in 
XPO1 protein expression. 

As a member of the heat shock protein 90 
families, HSP90AB1 is involved in signal trans-
duction, protein folding and degradation, and 
morphological evolution. SARS-CoV-2 triggers 
cytokine storms by affecting genes such as HSP-
90AB1, leading to lesions in the lung and ex-
trapulmonary tissues55. Cytokine storm-induced 
neuroinflammation may also be responsible for 
depression caused by COVID-19 infection56,57.

Eph receptors are the largest family of receptor 
tyrosine kinases (RTKs). One of the important mem-
bers of this family, Eph receptor B2 (EphB2), may 
be involved in the onset of depression58,59 and plays 
a crucial role in hippocampal synaptic plasticity, es-
pecially in long-range enhancement and long-range 
inhibition60. As a result of COVID-19-related respi-
ratory distress, it can trigger corticosteroid release, 
hypothalamic stimulation, and glucocorticoid pro-
duction, and thus interferes with brain metabolism 
and attributes to COVID-19-MDD44. Enrichment 
analyses also revealed that tyrosine kinases are im-
portant targets for common gene functions. A key 
component of B-cell receptor (BCR) signaling is 
Bruton’s tyrosine kinase (BTK). As a selective BTK 
inhibitor, acalabrutinib inhibits the hyperinflamma-
tory immune response and improves oxygenation 
levels in patients with COVID-1961. Therefore, this 
gene plays a crucial role in the onset and progression 
of COVID-19-MDD.

RRAGD, a monomeric guanine nucleo-
tide-binding protein (G protein), serves as a mo-
lecular switch in many cellular processes and 
signaling pathways62. A clear association exists 
between RRAGD and COVID-19-MDD and other 
diseases. There is evidence that RRAGD is asso-
ciated with Crohn’s disease63. It can, therefore, be 
studied further as a new diagnostic biomarker.
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Comorbidity analysis of COVID-19-MDD was 
performed based on common genes. Based on our 
predictions, the possible comorbidities of COVID-
19-MDD include various psychiatric disorders 
such as bipolar disorder and schizophrenia, vari-
ous tumors such as breast and prostate tumors, and 
other diseases such as gastric ulcer, cirrhosis, heart 
failure, and contact dermatitis. Patients with psy-
chiatric disorders such as schizophrenia are at high 
risk of SARS-CoV-2 infection64. In patients with 
COVID-19-MDD, tumors are common comor-
bidity. Among cancer patients with SARS-CoV-2 
infection, the incidence rates were 24.7%, 20.5%, 
13.0%, 7.6%, 7.3%, 6.1% and 6.0% for lung, col-
orectal, breast, esophageal, bladder, pancreatic, and 
cervical cancers, respectively65. Dermatosis is also 
common comorbidity. A study by Jimenez et al66 
described a skin rash as the clinical presentation 
found among 21 patients with COVID-1966. The 
prevalence of COVID-19-MDD-related liver dis-
ease is also high. According to a report, 2–11% of 
COVID-19 individuals have primary chronic liver 
disease67. Furthermore, COVID-19-MDD-related 
comorbidities include heart failure and gastric ul-
cers68-70. Drugs for COVID-19-MDD are lacking 
despite many commercially available depression 
medications. In the development of new drugs, 
there is a high cost and a long development pe-
riod. To minimize the cost of drug development, 
we screened drugs based on the key genes using 
bioinformatics analysis. A total of ten drug candi-
dates for COVID-19-MDD were screened from the 
DSigDB database. It is reported that resveratrol in-
hibits protease 3CL, an important therapeutic target 
of SARS-CoV-271,72 and that it has antidepressant 
properties similar to fluoxetine73. SARS-CoV-2 
replication is inhibited by lapatinib74, dipyridamo-
le75, and tetracycline76. Fludarabine inhibits type I 
interferon-induced expression of the SARS-CoV-2 
receptor angiotensin-converting enzyme 277. Sphin-
gosine prevents the interaction of the viral spike 
protein of SARS-CoV-2 with the host cell recep-
tor78. Temozolomide has been used in the treatment 
of COVID-19. However, lymphopenia may predict 
a high mortality rate79. The relationship between 
PD 98059, 1-phosphatidyl-myo-inositol, 1,1,1-tri-
fluorohenicosa-6,9,12, and 15-tetraen-2-one and 
COVID-19-MDD has not been revealed. One of 
the above drug candidates, resveratrol, can be used 
to treat both COVID-19 and depression and may be 
the preferred candidate for future therapeutic trials.

There are some limitations to this study. First, 
it was based on secondary mining and analysis of a 
previously published dataset. Second, even though 

GSE98793 contains the most depression samples, 
its sample size is still relatively small. As a result, it 
is necessary to have a dataset with a larger sample 
size for further mining. Third, further validation of 
the diagnostic biomarkers screened in this study is 
needed in the future because of the lack of patients 
with COVID-19-MDD and their relevant gene sets.

Conclusions

A bioinformatics approach was used to screen 13 
common genes associated with COVID-19-MDD. A 
subsequent GO and KEGG enrichment analysis iden-
tified specific mechanisms underlying COVID-19-
MDD pathogenesis. Additionally, TF-gene regulatory 
networks were constructed. Comorbidities associated 
with COVID-19-MDD were also identified. Finally, 
the DSigDB database was searched to obtain candi-
date therapeutic agents. In summary, the eight diag-
nostic biomarkers of COVID-19-MDD screened by 
the machine learning algorithm provide further in-
sight into its clinical diagnosis and treatment.
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