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Abstract. – OBJECTIVE: While next genera-
tion sequencing (NGS) has become the technol-
ogy of choice for clinical diagnostics, most ge-
netic laboratories still use Sanger sequencing 
for orthogonal confirmation of NGS results. Pre-
vious studies have shown that when the quali-
ty of NGS data is high, most calls are indicated 
by Sanger sequencing, making confirmation re-
dundant. We aimed at establishing a set of crite-
ria that make it possible to distinguish NGS calls 
that need orthogonal confirmation from those 
that do not would significantly decrease the 
amount of work necessary to reach a diagnosis.

MATERIALS AND METHODS: A data set of 
7976 NGS calls confirmed as true or false posi-
tive by Sanger sequencing was used to train and 
test different machine learning (ML) approaches. 
By varying the size and class balance of the train-
ing dataset, we measured the performance of the 
different algorithms to determine the conditions 
under which ML is a valid approach for confirm-
ing NGS calls in a diagnostic environment.

RESULTS: Our results indicate that machine 
learning is a valid approach to find variant calls that 
need more investigation, but in order to reach the 
high accuracy required in a clinical environment, 
the training data set must include enough obser-
vations and these observations must be well-bal-
anced between true/false positive NGS calls. 

CONCLUSIONS: Our results show that it is 
possible to integrate the diagnostic NGS valida-
tion workflow with a machine learning approach 
to reduce the number of Sanger confirmations 
of high- quality NGS calls, reducing the time and 
costs of diagnosis.

Key Words: 
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informatics.

Introduction

Next generation sequencing (NGS) techniques 
are powerful methods which make it possible to se-

quence billions of nucleic acid molecules in a sin-
gle analytical session1,2. Today, NGS genetic tests 
are widely used in the clinical field and have re-
placed Sanger sequencing (SS)3, which was previ-
ously considered the gold standard for genetic test-
ing. NGS brought a multitude of advantages with 
respect to SS, for example, multiplexing makes 
higher throughput possible by sequencing many 
samples at the same time, and NGS panels can se-
quence hundreds or thousands of genes simultane-
ously. NGS also shows lower limits of detection4 

and higher sensitivity in the detection of low-fre-
quency variants5,6, a fundamental characteristic for 
the diagnosis of rare genetic diseases and identifi-
cation of the genes and variants involved. On top of 
that, NGS techniques dramatically reduce the time 
and cost of sequencing. Although NGS technology 
is constantly improving our understanding of ge-
netics, it has several drawbacks. The most signifi-
cant is that the quality of NGS data can vary con-
siderably, even in the same experiment, depending 
on a variety of factors, like sequencing technology, 
target enrichment platform, bioinformatic pipeline, 
read depth, and mapping accuracy. Even intrinsic 
properties of the DNA region analyzed can have a 
great impact on NGS data quality, which can de-
cline for homologous or low complexity/repeated 
regions. Many genetic laboratories involved in 
clinical diagnostics therefore choose to use SS for 
confirmation and validation of NGS results7, which 
will be the basis of important clinical decisions. 
Each variant is therefore confirmed by an orthog-
onal method to ensure that it is not a false posi-
tive. With continuous advances in the accuracy and 
precision of NGS techniques, it is debated whether 
laboratories should continue using SS to validate 
each variant found with NGS. The topic is contro-
versial7-12. Different studies have proposed using 
machine learning (ML) techniques to distinguish 
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variants that are confident NGS calls from those 
requiring SS confirmation. While this proposal 
seems promising, it can be a challenge to properly 
train an ML algorithm. The quality of the data used 
to train an algorithm hugely influences the reliabil-
ity of its predictions. Moreover, if the validation 
test is not performed correctly, it may be difficult 
to realize that the algorithm is not working proper-
ly. Machine learning approaches usually require a 
large training set in which all the classes that the al-
gorithm needs to distinguish are well-represented13. 
This can be a major problem when applying ML 
to NGS data validation, since collecting numerous 
NGS calls confirmed by Sanger sequencing is not a 
trivial task, especially when dealing with rare dis-
eases. Another drawback is that such datasets tend 
to be highly unbalanced because more than 98% of 
NGS data is found to be confirmed by SS9,11,12, so 
that collecting many false positives may be prob-
lematical. Here, we study the effect of different 
training set parameters on the prediction capacity 
of different ML algorithms, with the aim of defin-
ing good practice for training ML algorithms in the 
field of NGS validation. First, we discuss the need 
for Sanger sequencing to validate NGS calls, then 
we analyze the requirements to implement a ML 
algorithm for evaluation of variants that need SS 
confirmation. Our results show that it is possible 
to develop a ML approach to reliably distinguish 
true/false positives among high-quality NGS calls, 
but they also highlight that if this kind of algorithm 
is not trained and tested properly, it can perform 
poorly. Moreover, due to the limitations of NGS 
and the nature of DNA, we conclude that certain 
types of variant should always be confirmed by SS.

Patients and Methods

Patient Samples and Public Data
A total of 578 patients with rare genetic diseas-

es were enrolled in this study. Depending on their 
disease, their DNA was sequenced using a targeted 
NGS approach with custom panels for rare genetic 
disorders of the eye or for cardiovascular, lymphat-
ic, and metabolic diseases. The first custom panel 
comprises 234 genes and has a target dimension 
of 715 kb (CDS ± 15 bp). Mean coverage is 210X 
and depth of coverage ≥10X, 25X or 40X is 99%, 
98.5%, and 97%, respectively. The second custom 
panel comprises 123 genes and has a target dimen-
sion of 370 kb (CDS ± 15 bp). Mean coverage is 
340X and depth of coverage ≥10X, 25X or 440X is 
98.7%, 98.3%, and 97.6%, respectively. NGS data 

produced on the two custom panels and obtained 
with our custom pipeline yielded 1749 potentially 
clinically relevant variants that were re-sequenced 
by SS. All the selected variants were rare single nu-
cleotide variants (SNVs), small insertions or small 
deletions (indels), and rarely synonymous, if al-
ready associated with a disease. Sanger sequencing 
confirmed the presence of 1739 variants (99.43%) 
and established that 10 variants (0.57%) identified 
by NGS were actually sequencing artifacts. Anoth-
er dataset of 7179 NGS calls validated by Sanger 
sequencing was borrowed from the study of Van 
den Akker et al10. We excluded indels calls, obtain-
ing a refined dataset of 6227 calls, 5754 of which 
were confirmed to be real calls by SS, whereas 473 
variants identified by NGS were sequencing arti-
facts. These two data sets were pooled to obtain a 
data set of 7976 calls, 7493 (93.9%) of which were 
confirmed to be true positives (TPs), while 483 
(6.1%) were confirmed to be false positives (FPs). 
This dataset was then divided into smaller chunks 
(see below) to train and test the algorithms.

Custom Panel Design
A custom-made oligonucleotide probe library 

was designed to capture all coding exons and 
flanking exon/intron boundaries (±15 bp) of genes 
known from the literature or databases [Human 
Gene Mutation Database (HGMD Professional), 
Online Mendelian Inheritance in Man (OMIM), 
Orphanet, NCBI GeneReviews, NCBI PubMed 
and specific database] to be associated with the 
diseases considered. The DNA probe set, com-
plementary to the target regions (GRCh37/hg19), 
was designed using specific Illumina DesignStu-
dio online tools provided by the company (http://
designstudio.illumina.com/Home/SelectAssay/) 
and optimized with company specialist support to 
improve the coverage of low-performance target 
regions.

Panel Design, Library Preparation, 
and Sequencing 

For panel design, library preparation, sequenc-
ing, and data analysis by our in-house bioinformat-
ic pipeline we used a workflow already described 
in our previous papers14.

Training and Test Datasets
We divided the main dataset of 7976 calls in-

to two subsets. The dataset used for training con-
tained 80% of the data, and that used for testing 
contained the other 20%. We used the “train test 
split” function from the Sklearn library to divide 
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the data. The data was first shuffled and then sep-
arated into the two datasets in a stratified manner, 
so that the proportion of TP/FP was maintained in 
both sets. This operation was repeated three times 
to obtain three different training and test sets.

Sanger Sequencing
Confirmation of variants identified by NGS cov-

ered by 10 reads or more (10X coverage), with a 
minor allele frequency (MAF) <1% in public da-
tabases such as 1000 genome and of likely clinical 
importance (pathogenic, likely pathogenic, and of 
unknown significance according to the American 
College of Medical Genetics and Genomics guide-
lines15) were carried out by bidirectional SS of the 
target locus with flanking PCR primers designed 
using the web-based Primer3Plus software16, 
avoiding repeated regions and known SNPs in at 
least the first four bases at 3’ of the primer and test-
ed for specificity by primer Blast17. Targets were 
amplified by PCR and underwent agarose gel elec-
trophoresis for size analysis of the resulting ampl-
icons. Unique, properly sized amplicons were pu-
rified using standard techniques, while in the case 
of PCR reactions with unexpected results a second 
independent set of PCR primers was designed and 
tested. Sanger sequencing was performed accord-
ing to the manufacturer’s protocols (DTCS starter 
kit, Absciex) and sequenced on a CEQ8800 Se-
quencer (Beckman Coulter). Electropherogram 
analysis was carried out using Chromas (version 
2.6.4, Technelysium Pty Ltd).

Results

Selecting Variants for Sanger 
Sequencing Workflow

Our complete workflow of NGS re-sequencing 
to detect false positive results is shown in Figure 
1. Briefly, variants obtained by NGS data analy-
sis were first evaluated for type, i.e., SNV or in-
del. This was done because NGS notoriously has 
problems correctly identifying indels and their 
positions. It often happens that a single indel can 
result in multiple calls in close genomic locations, 
or that the frequency is not estimated correctly7. 
Since there is so much uncertainty about indel 
calls from NGS we prefer to confirm all indels by 
SS, thus determining correct genomic position and 
frequency. The second parameter that we checked 
was depth: any NGS call not covered at least 10X 
was confirmed by SS because below 10X, calls 
show a sharp decline in quality which corresponds 

to an increased error rate. Finally, we confirmed all 
variants in highly homologous regions by SS. In 
these regions call frequency and position may be 
biased and this may not be reflected by the quality 
score and other parameters. The other NGS calls 
were evaluated by the ML algorithm before decid-
ing whether they needed to be confirmed.

Figure 1. NGS validation workflow. Each NGS call is eval-
uated before actually deciding whether to perform Sanger se-
quencing directly or let the ML algorithm decide. If the call 
is an indel or has a depth <10X or the variant is in a highly 
homologous region, we confirm it by Sanger sequencing, 
since the probability of artifacts is high. In all other cases, we 
evaluate the call by an ML approach to determine whether or 
not the call needs confirmation.
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Setting Up a Machine Learning 
Algorithm

The first step of the analysis was to build a data-
set of NGS calls for algorithm training and testing. 
We selected a number of parameters to describe 
each call. We tried to pick parameters that were 
most indicative of call quality, based on our knowl-
edge and observations from previous studies10,12. 
To pick the best parameters for the model, we 
performed a correlation analysis to find out which 
correlated best with SS results. To reduce the di-
mensions of the dataset, we removed parameters 
with a correlation coefficient <0.25 (Figure 2). The 
results before filtering are shown in Supplementa-
ry Figure S1. The features we considered to make 
predictions were:

• Read depth in call position (Depth)
• Allele frequency (AF)
•�� �GC content in the 20 bases around the call po-

sition (GC)

• �Standardized quality score from GATK haplo-
typecaller or Samtools mpileup (QUAL).

In the second step, we selected a number of ML 
algorithms to test against our dataset, and deter-
mined their performance. Since the type of prob-
lem we are dealing with can be classified as a su-
pervised learning classification problem, we chose 
algorithms known to perform well for that type of 
problem and simple to implement. The algorithms 
selected were: 

• Logistic Regression (LR) 
• Nearest Neighbors (NN) 
• Linear SVM (LSVM) 
• Gradient Boosting Classifier (GBC) 
• Decision Tree (DT)
• Random Forest (RF)

Training Test Size
To determine the impact of training set size, each 

algorithm was trained with a series of datasets built 

Figure 2. Correlation matrix of the parameters selected for analysis: sequencing depth in call position (DP), score assigned 
by caller (QUAL), allele frequency (AF), GC content in 20 bases before and after call position (GC 20) and the result of Sanger 
sequencing (confirmation).

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary_Figure_S1.tif
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starting from the training set described in Materials 
and methods “Training and test datasets”. The origi-
nal training set was shuffled and divided into subsets 
of different sizes, ranging from 100% to 10% of the 
dataset intended for training. Since there was a big 
difference in the number of FPs and TPs, we decided 
to stratify when generating the training datasets. This 
allowed us to maintain the same FP/TP proportion 
in all the datasets generated, thus minimizing bias 
from any imbalance. Then, we trained the models 
with all the training sets and tested their accuracy on 
three test sets of 1287 NGS calls, each generated from 
the data intended for testing described in Materials 
and methods. To assess algorithm performance, we 
considered the training and test scores along with the 
percentage of misclassified FPs and TPs. The sec-
ond parameter is needed to ensure that the algorithm 
correctly identifies both classes. Since FPs are much 
fewer than TPs in the test set, it can happen that an 
algorithm obtains a good overall score solely by cor-
rectly identifying TPs. By also checking its capacity 
to correctly identify FPs, we could determine whether 
the algorithm was biased by class balance problems 
during training. Table I and Figure 3 show the perfor-
mance of the different algorithms for various training 
set sizes (for complete table see Supplementary Ta-
ble S1). The results show that even if the training and 

test scores are very high for all the different datasets, 
the percentage of misclassified FPs and TPs shows a 
very clear trend of improvement as the training data-
set grows in size. All the algorithms benefitted from a 
larger training dataset. In all cases, we see clearly that 
the algorithms perform much better at identifying 
TPs than FPs, revealing that the datasets provided for 
training were partially unbalanced. However, for the 
biggest training sets of almost 6000 calls, most algo-
rithms achieved good performance with accuracy ex-
ceeding 99.5% in the best case. Only two algorithms 
showed poor performance: linear SVM and nearest 
neighbors. While their performance in classifying 
TPs was still satisfactory, both clearly had difficul-
ty identifying FPs. This test indicates that for medi-
um-small datasets, the algorithms to consider for an 
ML approach are DT, GBC, and RF. It is possible to 
train these algorithms with several thousand calls and 
obtain accurate results. On the other hand, LSVM 
and NN were clearly penalized by the unbalanced 
TP/FP ratio and should therefore be avoided for this 
type of problem with medium-small datasets.

Train Test Balancing
Another major factor that can have a huge im-

pact on the results of training is dataset balance. For 
proper training, each class (FP and TP in our case) 

Table I. Train and Test score along with misclassified FP and TP percentage for training data sets of different sizes.

	 Train	 Train	 Test	 Misclassified	 Misclassified
Algorithm	 size	 score	 score	 FP (%)	 TP (%)

Logistic regression	 63	 0.97	 0.95	 32.94	 2.61
	 2552	 0.99	 0.99	 10.79	 0.45
	 5742	 0.99	 0.99	 9.99	 0.35

Nearest neighbors	 63	 0.94	 0.93	 100	 0.00
	 2552	 0.97	 0.95	 51.73	 1.97
	 5742	 0.97	 0.97	 34.12	 0.99

Linear SVM	 63	 0.97	 0.94	 97.21	 0.02
	 2552	 0.97	 0.95	 57.85	 1.08
	 5742	 0.98	 0.97	 36.31	 0.82

Gradient boosting
classifier	 63	 1	 0.99	 6.09	 0.51
	 2552	 1	 0.99	 3.9	 0.39
	 5742	 0.99	 0.99	 1.6	 0.23

Decision tree	 63	 1	 0.98	 2.79	 2.39
	 2552	 1	 0.99	 4.98	 0.48
	 5742	 1	 0.99	 2.14	 0.28

Random forest	 63	 1	 0.99	 3.3	 0.79
	 2552	 1	 0.99	 4.98	 0.35
	 5742	 0.99	 0.99	 0.52	 0.21

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary_Table_S1.png
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needs to be properly represented and described. 
Failing to provide enough data to characterize a 
class makes it difficult for an algorithm to correctly 
identify it, which is expressed as poor performance. 
To understand how the FP/TP balance affected the 
performance of the different algorithms, we picked 

the largest dataset for training and used it to cre-
ate different training datasets, each with a larger 
percentage of FPs. Dataset size was kept constant 
while we varied the number of FPs, creating data-
sets with different balances from FP/TP 1/191 to 
1/19. The results are shown in Table II and Figure 4 

Figure 4. Percentage of incorrectly classified false positives. The graph shows the performance of each algorithm in FP classifi-
cation for training sets with different FP/TP ratios.

Figure 3. Percentage of incorrectly classified false positives. The graph shows the performance of each algorithm in FP classifi-
cation for training sets of different sizes.
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(for complete table see Supplementary Table S2). 
The results indicate that dataset balance is anoth-
er fundamental property for the proper training of 
ML algorithms. As the number of FPs increased 
in the dataset, we saw a huge improvement in the 
prediction performance of all algorithms. Not all 
of them were affected by imbalance in the same 
way: GBC, RF, and DT again seemed less affected, 
while the prediction performance of LSVM, LM, 
and LR were clearly more affected by unbalanced 
datasets. This test again indicates that for medi-
um-small datasets, the best algorithms to consid-
er for an ML approach are DT, GBC, and RF. In 
any case, it is clear that the best results can only be 
achieved by ensuring a training dataset in which 
each class is correctly represented. From our anal-
ysis we can conclude that ML algorithms for this 
type of problem should not be trained with a class 
imbalance >1/19. With these settings, Random For-
est achieved an accuracy >99.5% in the classifica-
tion of FPs and TPs.

Testing the Algorithm
The method illustrated above was implemented 

in our in-house pipeline for clinical diagnosis using 
a decisional tree. The ML algorithm was trained 
with the dataset used in this study. Subsequently, 

for each sample analyzed in our laboratory, the 
ML algorithm was used to evaluate which variants 
should be confirmed by SS and which not. Table III 
shows the results for each variant type. The algo-
rithm suggests that most of the variants do not need 
SS confirmation, independently from the variant 
type. Overall preliminary results indicate a reduc-
tion of Sanger confirmations of about 62%, which 
is indeed a good result for the reduction of time and 
cost of the analysis.

Conclusions

In this paper, we discussed the use of Sanger 
sequencing to confirm NGS results. Sanger se-
quencing is still required for confirmation of NGS 
calls made on low-quality data, or in regions that 
can be particularly problematical, like homologous 
or low complexity regions. Indels also need to be 
confirmed by SS, since their position or the exact 
variant is often difficult to determine precisely 
with NGS. In these cases, confirmation with an or-
thogonal method like SS is of primary importance, 
since the accuracy of NGS in such conditions tends 
to drop sharply, often leading to artifact calls. In-
stead when we are dealing with good-quality NGS 

Table II. Train and Test scores and misclassified FP and TP percentages for different FP/TP ratios.

	 Number	 Train	 Test	 Misclassified	 Misclassified
Algorithm	 of FPs	 score	 score	 FPs (%)	 TPs (%)

Logistic
regression	 30	 0.99	 0.93	 98.3	 0.02
	 180	 0.99	 0.99	 12.98	 0.2
	 300	 0.99	 0.99	 10.53	 0.35
Nearest
neighbors	 30	 0.94	 0.93	 100	 0.00
	 180	 0.97	 0.95	 51.73	 1.97
	 300	 0.97	 0.97	 34.12	 0.99
Linear SVM	 30	 0.99	 0.94	 96.43	 0.00
	 180	 0.98	 0.96	 58.47	 0.65
	 300	 0.97	 0.96	 37.27	 1.42
Gradient
boosting
classifier	 30	 1	 0.99	 16.03	 0.13
	 180	 1	 0.99	 2.48	 0.17
	 300	 0.99	 0.99	 1.1	 0.19
Decision
tree	 30	 1	 0.99	 13.58	 0.13
	 180	 1	 0.99	 2.45	 0.17
	 300	 1	 0.99	 1.34	 0.15
Random
forest	 30	 1	 0.99	 12.55	 0.00
	 180	 1	 0.99	 2.73	 0.23
	 300	 0.99	 0.99	 0.26	 0.27

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary_Table_S2.png
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data, different studies have shown that it is possible 
to reduce the number of SS confirmations required, 
since up to 98% of NGS calls are validated by SS. 
Since finding which NGS calls need more investi-
gation and which do not is a conventional classifi-
cation problem, the development of a ML algorithm 
to solve the issue seems intuitive. For an algorithm 
to work properly, good training is fundamental. 
We therefore analyzed the minimum requirements 
in terms of data set size and balance necessary for 
different algorithms to achieve the accuracy dictat-
ed by the stringent criteria of clinical diagnostics. 
Study of training size highlighted the importance 
of having a training dataset big enough to allow 
the model to correctly classify the NGS calls. Our 
analysis concluded that several thousand calls are 
needed to properly train the model; with datasets 
of this size, different algorithms achieved 98% ac-
curacy of prediction for both TPs and FPs, in the 
best case above 99.5%. Our results also show the 
importance of having a balanced dataset, namely 
one in which the classes to identify occur in a suffi-
cient number of NGS calls. We analyzed the effects 
of imbalance by creating datasets with increasing 
numbers of FPs. Our results show that when a class 
is under-represented, the ability of the algorithm to 
correctly identify NGS calls belonging to that class 
falls sharply. If the class is also under-represented 
in the test set, the training and test scores may not 

highlight the problem, showing high scores even 
for poorly trained models. In any case, it is also 
true that a dataset does not need to be perfectly bal-
anced: in our best case, the FP/TP ratio was 1/19, 
quite distant from 1/1, although different models 
correctly classified both FPs and TPs with an accu-
racy exceeding 99%, in the best case above 99.5%.

Regarding the best algorithm to use, we con-
cluded that for medium-small datasets with some 
balancing bias, the method of choice can be RF, 
DT, or GBC. These three algorithms seem the least 
affected by dataset balance and size. The results 
clearly show that ML, when properly trained, is 
a powerful approach that can be integrated in the 
workflow of NGS call confirmation as an alterna-
tive to SS orthogonal confirmation. When applied 
to high-quality NGS data it can considerably re-
duce the number of confirmations required with an 
accuracy that permits its use in clinical diagnostics, 
leading to a faster and less expensive diagnosis.
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Table II. Train and Test scores and misclassified FP and TP percentages for different FP/TP ratios.

Variant type	 No. of selected variants	 Sanger	 No Sanger (%)

Missense_variant	 354	 109	 245 (69.2%)
Intron_variant	 28	 12	 16 (57.1%)
Splice_region_variant&intron_variant	 24	 10	 14 (58.3%)
Stop_gained	 17	 13	 4 (23.5%)
Frameshift_variant	 16	 16	 0 (0.0%)
FRAGMENT	 13	 13	 0 (0.0%)
3_prime_UTR_variant	 8	 3	 5 (62.5%)
Inframe_deletion	 7	 5	 2 (28.5%)
Missense_variant&splice_region_variant	 6	 0	 6 (100%)
Splice_region_variant&synonymous_variant	 4	 1	 3 (75.0%)
5_prime_UTR_variant	 3	 0	 3 (100%)
Splice_donor_variant	 3	 2	 1 (33.3%)
Inframe_insertion	 2	 2	 0 (0.0%)
Splice_acceptor_variant	 2	 1	 1 (50.0%)
Coding_sequence_variant	 1	 1	 0 (0.0%)
Synonymous_variant	 1	 0	 1 (100%)
Total	 489	 188	 301 (61.6%)

Variants selected for Sanger confirmation based on their classification. The table illustrates the reduction of the Sanger 
sequencing confirmations after using a machine learning approach for the analysis of the variants. The column 'SANGER' 
indicates those variants that still required confirmation after machine learning analysis while the column 'NO SANGER' 
indicates the number of variants that were not confirmed by Sanger sequencing.
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