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Abstract. Cervical cancer (CC) is the fourth 
most common cancer in women worldwide. There-
fore, it is very important to understand cervical 
carcinogenesis, as well as the molecular mech-
anisms and signaling pathways involved in this 
process, in order to develop new strategies that 
contribute to diagnosis, prognosis and treatment 
of cervical cancer. Infection by high risk-human 
papillomavirus (HR-HPV) is a key event in cervi-
cal carcinogenesis, as well as, other factors, such 
as sociodemographics, lifestyle, sexual behavior, 
etc. In recent years, it has been shown that long 
non-coding RNA (lncRNA) are involved in CC and 
can be classified into tumor promoters or sup-
pressors. Currently, several studies have ana-
lyzed the molecular mechanisms of some lncRNA 
in CC that might be acting, such as 1) competing 
endogenous RNAs (ceRNAs), 2) activators of sig-
naling pathways, and 3) transcriptional regulators 
of genes. In this review, we summarized the more 
recent information on lncRNA and their role in the 
development of CC.
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Introduction

During cervical carcinogenesis, the expression 
of several proteins involved in cell cycle/prolifer-
ation1,2, apoptosis3-5 and invasion/metastasis6-8 are 
altered and their use as prognostic biomarkers has 

been proposed6,7,9. However, it is currently recog-
nized that only 2% of human genome RNA encode 
proteins and that the majority of RNAs are tran-
scribed into non-coding RNA10; interestingly, it 
has been estimated that 76% of the human genome 
is transcribed into generating thousands of long 
non-coding RNA (lncRNA)11,12. LncRNA are RNA 
˃200 nucleotides (nt) transcribed by RNA poly-
merase II, do not present conserved an open read-
ing frame (ORF) and contain a poly(A) tail, a 5-cap 
and a promoter region13,14. LncRNAs possess great-
er structural complexity than messenger RNA15,16, 
the structural versatility of RNA allows protein 
recognition17,18, metabolite sensing19,20, competing 
endogenous RNA (ceRNA)21, etc. LncRNAs are 
involved in the activation and inhibition of gene 
expression through molecular mechanisms, such 
as the following: a) the signal, which modulates of 
miRNAs regulation; b) the decoy, mRNA degra-
dation and RNA-RNA interaction (transcriptional 
inhibition), and c) the guide, which participates in 
splicing, editing, turnover and miRNA sequestra-
tion, and the scaffold, which also participates in 
chromatin modification and epigenetic modifica-
tion22.

Biogenetic control of lncRNA is cell type-spe-
cific, stage-specific and IncRNA-specific, fur-
thermore, different classes of lncRNA are tran-
scribed from several DNA elements, such as 
enhancers, promoters and intergenic regions in 
eukaryotic genomes22,23. Different mechanisms 
are involved in the biogenesis of lncRNA, such as 
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cleavage by ribonuclease P (RNAse P) to gener-
ate mature ends, the formation of small nucleolar 
RNA (snoRNA)/protein (snoRNP) complex caps 
at their ends, and the formation of circular struc-
tures and subnuclear structures (paraspeckles)22.

Current research in cervical carcinogenesis 
focuses on lncRNA, which is a novel area at pres-
ent; some studies have demonstrated the regula-
tion, function, signaling pathways and expression 
of lncRNA in CC. Previous studies12,24-27 have 
shown that lncRNA play a critical role in a wide 
range of biological processes, such as metabo-
lism, migration, invasion, proliferation, cell cy-
cle progression, apoptosis and metastasis. In this 
review, we recapitulate and summarize new and 
recent information on the role of the most stud-
ied lncRNA and infection by HR-HPV in cervical 
carcinogenesis.

Cervical Cancer

Cervical cancer (CC) is the fourth most com-
mon cancer in women, with an estimated incidence 
of 560,481 and 300,054 deaths annually, represent-
ing an age-standardized mortality rate of 6.828. CC 
is preceded by precursor lesions, which are char-
acterized by alterations in cellular differentiation, 
stratification and nuclear atypia, and which can be 
classified histologically as cervical intraepithelial 
neoplasia (CIN), according to the Richart classi-
fication or cytologically as squamous intraepithe-
lial lesions (SIL) and according to the Bethesda 
classification29,30, although CC is associated with 
sociodemographic and gynecological factors31. 
However, the most important factor comprises per-
sistent infection with high-risk human papilloma-
virus (HR-HPV)32. A high prevalence of HPV 16 
infection has been demonstrated in precancerous 
lesions and cervical cancer33,34. Specifically the E6 
and E7 oncoproteins of HR-HPV induce cellular 
transformation by the interaction/regulation of cel-
lular proteins, miRNA and lncRNA35,36.

The HR-HPV E6 protein interacts with the 
cellular E3 ubiquitin ligase to binding E6AP to 
p53, resulting in the transfer of ubiquitin pep-
tides from E6AP to p53 for its degradation by the 
26S proteosome37. However, E6 is involved in the 
regulation of several processes by means of the 
interaction with proteins, the regulation of tran-
scription and DNA replication (p300/CBP, Gps2, 
IRF-3, hMCM7, E6TP1 and ADA3); proteins in-
volved in apoptosis and immune response evasion 
[Procaspase 8, Bak, TNF receptor 1 (TNF R1), 

FADD, and c-Myc]; proteins involved in epithelial 
organization and differentiation (paxillin, E6BP/
ERC-55, zyxin and fibulin-1); proteins involved 
in cell-cell adhesion, polarity and proliferation 
regulation, which contain a PDZ-binding motif 
(NFX1, hDLG, hScrib, PKN, MAGI-1, MAGI-2, 
MAGI-3 or MUPP1), proteins involved in DNA 
repair [XRCC1 and 6-O-methylguanine-DNA 
methyltransferase (MGMT)]37,38 and proteins in-
volved in cellular metabolism (HIF1-α, VHL and 
PI3K/AKT)39,40. HR-HPV E7 can interact with 
pRb, resulting in enhanced phosphorylation and 
degradation. pRb destruction leads to the release 
the family of E2F transcription factors and the 
subsequent activation of genes promoting cell 
proliferation. However, E7 can also regulate sev-
eral cellular transcription factors (c-Myc, HIF1α, 
AP-1, p48, interferon regulatory factor-1 (IRF-1), 
forkhead transcription factor MPP2, TATA- box 
binding protein (TBP), TATA-box binding pro-
tein- associated factor (TAF110) and Mi2 histone 
deacetylase activity), proliferation (gamma-tubu-
lin, cyclin A, cyclin E, BRCA, cyclin-dependent 
kinase inhibitor p21Cip1 and p27kip1) and proteins 
involved in cellular metabolism (acid-α-glucosi-
dase and pyruvate kinase M2)37,41,42.

In relation to miRNA regulation by E6 and/or 
E7, miR-218 is downregulated in several HPV-16 
positive cervical cancer cell lines and tissues, and 
this effect is mediated by the HPV-16 E643. Hsa-
miR-139-3p target HPV-16 oncoprotein and induces 
the expression of tumor suppressor proteins (p53, 
p21, and p16), this result in inhibition of prolifera-
tion and cell migration, cell cycle arrest at the G2-M 
phase and the increase of cell death in HPV-16-pos-
itive cells44. E6/E7 maintains the expression levels 
of members of the miR-17-92 cluster, which reduce 
the expression of p21 anti-proliferative gene in 
HPV-positive cancer cells. In exosomes secreted by 
HeLa cells, a distinct seven-miRNA-signature was 
identified, with significant downregulation of let-7d-
5p, miR-20a-5p, miR-378a-3p, miR-423-3p, miR-7-
5p and miR-92a-3p and the upregulation of miR-21-
5p, upon E6/E7 silencing45.

Recent studies46-52 have shown that E6 and 
E7 have the ability to regulate lncRNA PVT1, 
HOTAIR and MALAT1, which make them new 
players in cervical carcinogenesis. Previously, 
we mentioned that E6 and E7 oncoproteins can 
regulate IncRNAs, miRNA, mRNA and pro-
teins36,48,53-55, which in turn can also be regulated 
among themselves, interestingly, in agreement 
with their function lncRNA can be classified into 
tumor promoters and tumor suppressors.



E.G. Salmerón-Bárcenas, M.A. Mendoza-Catalán, B. Illades-Aguiar, I. Peralta-Arrieta, et al

8316

Long Non-Coding RNA as Tumor 
Promoters

HOTAIR
Hox transcript antisense intergenic RNA 

(HOTAIR) was discovered in primary foreskin 
fibroblasts by tiling array. It is located in chromo-
some (chr) 12q13.13 in locus HOXC and encodes 
a 2.158 kb lncRNA56. Currently, eight isoforms of 
HOTAIR has been reported as the result of alter-
native splicing, alternative promoters and polyad-
enylation sites57,58.

HOTAIR is up-regulated in tissues and plas-
ma samples from patients with CC. Its expression 
correlates with tumor progression59-62, and could 
be a diagnostic biomarker63-65.

HOTAIR over-expression increases prolifera-
tion, cell migration, invasion and tumor growth; and 
decreases apoptosis in vitro59,60,62,66-69. Mechanistical-
ly, HOTAIR promotes cell migration and invasion 
through the downregulation of vimentin followed 
by the collapse of the vimentin fibers, an increase 
of cytoplasmatic stiffness, and the downregulation 
of Ubiquinol-Cytochrome C Reductase, Complex 
III Subunit VII (UQCRQ), which promotes mito-
chondrial dysfunction and increase the generation 
of reactive oxygen species in HeLa cells70. HOTAIR 
activates Notch, STAT3, mTOR signaling pathways 
and promotes the epithelial-mesenchymal transi-
tion (EMT)61,62,71,72. HOTAIR downregulates TET1 
expression by the methylation of its promoter and 
significantly increases the Wnt/β catenin signal-
ing pathway, but does not affect the mRNA level 
of β-catenin. Its effect is through alteration in the 
methylation and expression of the negative regula-
tors (SOX17, AJAP1, MAGI2 and PCDH10) of this 
pathway in HeLa cells73.

HOTAIR acting as miRNA “sponge” by direct 
interaction with miR-326 and miR-17-5p in HeLa, 
SiHa and CaSki cells66,68. HOTAIR promotes this 
cellular process through an increase of the human 
leukocyte antigen-G (HLA-G), mitogen-activated 
protein kinase 1 (MAPK1), megakaryoblastic leu-
kemia 1 (MKL1), BCL2 (B-Cell-CLL) and Neuro-
pilin 2 (NRP2), as well as the expression by compet-
itively binding (ceRNA) to miR-148a74, miR-23b75, 
miR-20676, miR-143-3p77 and miR-331-3p78.

HOTAIR has a single nucleotide polymor-
phism (SNP) in a potential enhancer located in in-
tron 2 (rs920778) and the TT genotype correlates 
with HOTAIR over-expression, the risk of CC and 
poor prognosis in Chinese population79. This SNP 
is significantly associated with HR-HPV infec-
tion and non-response to chemo-radiotherapy80. 

The GG genotype of this SNP is associated with 
worse overall survival in Taiwanese population81. 
Another SNP is rs2366152, which is located in the 
3’ region of HOTAIR, a LSD1 binding domain; 
the TC genotype and T allele are frequent in pa-
tients with CC, low HOTAIR expression and the 
patients being HPV16 positive. This SNP signifi-
cantly change the HOTAIR secondary structure 
and creates a binding site to miR-22, leading to its 
down regulation in patients with CC82.

It is well known that in CC the main risk fac-
tor is HR-HPV infection. In this regard, HOTAIR 
is enriched in cervicovaginal lavage samples of pa-
tients with CC and HPV (+) infection83. HOTAIR 
expression correlates with HPV16 E7 expression 
in CC samples and cell lines. E7 overexpression in-
creases HOTAIR expression in C-33A cells, It also 
interacts with HOTAIR to reduce the recruitment of 
PRC2 leading to a loss of global H3K27me3, which 
increases the expression of PRC2 target genes in-
volved in metastasis in cases of CC with high levels 
of E7/HOTAIR48. The HPV16 E7/HOTAIR/miR-
331-3p/NRP2 complex forms a regulator feedback 
loop to promote cervical carcinogenesis; E7 over-
expression decreases the expression of HOTAIR, 
NRP2 and p53, moreover, it increases miR-331-3p 
expression, inhibiting the apoptosis and increasing 
the growth rate of MRI-H196 and MRI-H186 cells78.

HOTAIR might be a therapeutic target, given 
that its downregulation decreases radio-resistance 
in C-33A cells via up-regulation of p2184 and de-
creases the Wnt/β catenin signaling pathway, which 
inhibits EMT in radioresistant HeLa cells85, while its 
overexpression increases resistance to radiotherapy 
via the downregulation of p21 in HeLa cells84 and 
increases resistance to radiotherapy via upregula-
tion of HIF-1α in HeLa and C-33A cells86. Recently, 
it was shown87 that Bleomycin, a drug used in the 
treatment of CC, decreased HOTAIR expression 
in HeLa cells through activation of the genotoxic 
stress-induced intrinsic apoptotic pathway. More-
over, Artesunate, an active component from Arte-
misia annua used in Chinese traditional medicine 
and a semi-synthetic analog of artemisinin, inhibit-
ed HOTAIR expression, decreasing the stability and 
catalytic activity of COX-2, which promotes cell 
migration and invasion in CaSki and HeLa cells88. 
On the other hand, the anesthetic agent Propofol, de-
creases cell proliferation and promotes apoptosis by 
inhibition or the mTOR/p70S6K signaling pathway 
mediated by HOTAIR in C-33A, HeLa and CaSki 
cells71. Finally, HOTAIR expression increases in 
spheroid cervical cancer cells and promotes resis-
tance to cisplatin-induced cytotoxicity89 (Figure 1).
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PVT1
Plasmacytoma variant translocation 1 

(PVT1) was first discovered as an activator of 
MYC in murine plasmacytoma variant translo-
cations and acts as a retroviral integration site in 
murine leukemia virus (MLV)-induced T lym-
phomas90,91. Fusion of the PVT1 region and the 
immunoglobulin region could directly activate 
MYC by interrupting the gene itself or indirectly 
by disrupting protein production92,93. The human 
PVT1 is encoded in a large locus (>30 kb) span-
ning 128806779-129113499, 57 kb downstream 
of the MYC gene, it is located in the chr 8q24.21 
region94-96.

PVT1 is up-regulated in tissues and serum 
from patients with CC; its expression is associated 
with the size of the tumor, advanced FIGO stage 
and the poor prognosis of patients with CC52,97-100. 
The PVT1 level is not changed in patients with 
breast cancer and ovarian cancer patients, these 
results suggest that PVT1 expression might be a 
specific diagnostic biomarker for CC and PVT1 
overexpression promotes cell cycle progression, 
proliferation and cell migration52,100,101.

Bioinformatics analysis and Dual-Luciferase 

Reporter Assays System reveal that PVT1 is tar-
geted by several miRNA. PVT1 downregulates 
mir-424 expression, acting as a ceRNA in CC98; 
miR-486-3p induces ECM1 expression to pro-
mote proliferation and viability102; and miR-140-
5p induces Smad3 expression to promote prolifer-
ation, migration and invasion103.

PVT1 interacts with EZH2, increasing 
H3K27me3 levels in miR-200b and miR-195 
promoters, silencing miR-200b expression to 
promote proliferation, cell cycle progression and 
migration. On the other hand, the PVT1/miR-195 
axis can inhibit the response of the cancer cells to 
Paclitaxel via the regulation of EMT, HPV16 E7 
knockdown also significantly inhibits PVT1 and 
restores miR-195 expression50,52.

In addition, PVT1 interacts with Nucleolin, a 
multifunctional protein located in the cytoplasm 
and cell membrane, that induce ribosomal DNA 
transcription and regulate some oncogene expres-
sion101, the dysregulation of cancer-related genes 
or their pathways is an important factor for the 
transformation of normal into cancer cells; once 
a structural or regulatory abnormality occurs, the 
resulting products or activity will accelerate the 
formation of cancer104. Finally, PVT1 negatively 
regulates TGF-β1 expression, which inhibits the 
growth of tumors through its antiproliferative 
function99 (Figure 1).

H19
H19 was the first maternally expressed ln-

cRNA reported (H19/IGF2 gene cluster). H19 was 
discovered in mouse fetal liver by hybridization 
of the cDNA library. It is transcribed from chr 
11.p15.5 and encodes a 2.5 kb lncRNA105. H19 has 
two isoforms (one without part of exon 1 and an-
other without exon 4)106,107. 

H19 expression is down-regulated in CC sam-
ples with a loss of imprinting by the usage of 
promoter P1 of the Insulin Like Growth Factor 
gene108,109, which could be mediated by aberrant 
methylation in the IGF2/H19 cluster110,111.

H19 is up-expressed in high-grade lesions 
(CIN3) and HeLa cells, but not in CaSki and 
SW756 cells, suggesting that the de-regulation of 
H19 expression could be an early event in cervical 
carcinogenesis112. H19 overexpression promotes 
proliferation by down-regulation of miR-138-5p113, 
and the tumor spheroid forming ability in CC 
cells114. Finally, the C˃T genotype of SNP located 
in exon 5 of H19 (rs217727), is associated with the 
risk of CC development in Chinese population115, 
while the C˃T genotype of SNP (rs2839698) and 
the A˃G genotype of SNP (rs3741219) are relat-
ed to poor clinical and pathological parameters in 
Taiwanese population110.

MALAT1
Metastasis-associated lung adenocarcino-

ma transcript 1 (MALAT1 or MALAT-1), also 
known as nuclear-enriched abundant transcript 2 
(NEAT2), is an lncRNA with a length of ~8 kb 
and it derives from chromosome 11q13. MALAT 
was first as sociated with high metastatic poten-
tial in patients with non-small cell lung cancer116, 
however is currently associated with metastasis in 
several types of cancer69,117-119.

MALAT1 expression is upregulated in tissues 
with CC and HeLa, SiHa and CaSki cells26,120,121. 
MALAT1 expression is correlated with tumor 
size, FIGO stage, vascular invasion and lymph 
nodes metastasis. Its expression is a predictor for 
poor overall survival of CC120,122.

MALAT1 knockdown reduces proliferation, 
invasion, cell migration, number of colonies and 
apoptosis, moreover, it induces the mesenchy-
mal-epithelial transition (MET) and cell cycle 
arrest26,46,120,122,123. A microarray analysis showed 
that MALAT1 knockdown upregulated 2,819 
genes and downregulated 1,944 genes related to 
carcinogenesis (proliferation, apoptosis, transfor-
mation, etc.) in CaSki cells. MALAT1 expression 
is higher in HPV positive cervical cells compared 
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Figure 1. Molecular mechanisms of lncRNA in cervical carcinogenesis. Tumor suppressor lncRNA (Blue) inhibit onco-miR-
NA expression and the activation of cellular signaling pathways that promote CC. Tumor promoting lncRNA (red) inhibit 
tumor suppressor genes and miRNA expression, stabilize proteins through direct interaction and active cellular signaling 
pathways that promote CC. Ubiquinol-Cytochrome C Reductase, Complex III Subunit VII (UQCRQ),human leukocyte anti-
gen-G (HLA-G), mitogen-activated protein kinase 1 (MAPK1), megakaryoblastic leukemia 1 (MKL1), B-Cell-CLL (BCL2), 
Neuropilin 2 (NRP2), Signal Transducer and Activator of Transcription 3 (STAT3), Transforming Growth Factor Beta 1 
(TGF-β1), Enhancer of Zeste 2 Polycomb Repressive Complex 2 Subunit (EZH2), Ribosome-interacting GTPase 2 (RBG2), 
High Mobility Group AT-Hook 2 (HMGA2).
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with normal cervical cells26, promoting the cell 
growth and invasion of the HR-HPV-positive 
CC cells through the MALAT1-miR-124-RBG2 
axis47. In the presence of HR-HPV, MALAT1 is 
involved in radio-resistance and its knockdown 
with irradiation exposure increases apoptosis, 
cell cycle regulation and the number of cells in G2 
phase in CaSki and HeLa cells. Also, MALAT1 
expression also negatively correlates with miR-
145 expression, which directly interacts with 
the RNA-induced silencing complex (RISC) to 
promote miR-145 degradation124. In relation to 
HR-HPV oncoproteins, HPV16 E6 promotes 
MALAT1 and DNMT1 expression, decreasing 
miR-375 expression via methylation in SiHa and 
CaSki cells, in turn, miR-375 decreases cell inva-
sion and inhibits EMT via MALAT1 downregu-
lation in SiHa cells125. HPV16 E6/E7 knockdown 
reduces MALAT1 expression in CaSki cells46; 
in contrast, up-expression E6/E7 synergistically 
with IL6/STAT3 induces MALAT1 expression126.

Periostin promotes metastatic growth by in-
ducing cancer cell survival, invasion, and an-
giogenesis in several types of human cancer. 
Periostin expression positively correlates with 
MALAT1 expression and negatively correlates 
with miR-202-3p expression in CC; MALAT1 
positively regulates the expression of periostin 
by negatively modulating miR-202-3p, MALAT1/
miR-202-3p/periostin axis, regulating viability, 
cell migration, invasion and EMT in CC cells127. 
MALAT1 knockdown inhibits proliferation, in-
vasion, tumor size, and active apoptosis by in-
teraction with miR-429128. During the process 
of tumor metastasis, miR142-3p is significantly 
upregulated, whereas MALAT1 and HMGA2 are 
suppressed by metformin129.

In radiotherapy, MALAT1 expression is sig-
nificantly elevated compared with that of non-ra-
diated control cells. MALAT1 knockdown 
enhances radiotherapy sensitivity, depresses sur-
vival percentage and cell cycle. Additionally, it 
enhances apoptosis in CaSki cells. Similar results 
are obtained by silencing miR-143/MALAT1121, 
while, in treatment with Cisplatin, MALAT1 si-
lencing promotes cisplatin-induced apoptosis in 
HeLa and C-33A cells130 (Figure 1).

ANRIL
Antisense non-coding RNA in the INK4 locus 

(ANRIL) was discovered in the Melanoma-Neural 
System Tumor syndrome by sequence-tagged site 
real-time PCR-based gene dose mapping, long-
range PCR and sequencing131. It is transcribed from 

chr 9p21 (p15/CDKN2B-p16/CDKN2A-p14ARF 
gene cluster) and encodes a 3.834 kb lncRNA132,133.

ANRIL expression is upregulated in CC tissues 
and in HeLa, SiHa and CaSki cervical cancer cell 
lines. ANRIL expression correlates with advanced 
FIGO stage, lymph node metastasis and shorter 
overall survival134,135. ANRIL knockdown decreas-
es cell migration, invasion and proliferation, and 
increases apoptosis in CC cell lines135 by decreas-
ing pPI3K/pAKT levels134, to act as a sponge of 
miR-186136 and increasing p15 expression137.

XIST
LncRNA X-inactive specific transcript (XIST) 

is produced by the XIST gene; it is a master regula-
tor of X inactivation in mammals138,139. XIST pres-
ents a size of 15–17 kb and is transcripted on chr 
Xq13140,141. It has six conserved regions of tandem 
repeats denominated A to F essentials due to its 
function142,143. XIST is known to act as scaffolding 
for protein recruitment, as well as an organizer of 
the inactive X chr (Xi) in a 3D-space144.

In mammalian cells, one X chromosome is 
inactivated to achieve dosage compensation be-
tween male and female cells; XIST is important 
in this process. Random Xi takes place during 
early embryonic development and is initiated by 
upregulation of the Xist gene; Xist encodes an 
untranslated RNA and its accumulation in the X 
chromosome in cis creates a silent nuclear com-
partment that excludes RNA polymerase II and 
associated transcription factors. Upon the accu-
mulation of Xist RNA, various proteins involved 
in silencing are recruited to the X chromosome; 
the final outcome is than the majority of genes 
on the Xi are stably silenced. Interestingly, some 
genes can escape inactivation; conditional de-
letion of Xist shows that, once established, Xist 
RNA no longer appears to be required to maintain 
XCI. Intriguingly, after the establishment of XCI, 
silenced genes remain inactive144. 

XIST overexpression in CC cells is closely 
related with larger tumor size, FIGO stage and 
distant metastasis, as well as with a low survival 
rate145-148. 

XIST over-expression contribute to tumor pro-
gression in CC cells by inhibiting miR-140-5p 
through the XIST/miR-140-5p/ORC1 axis. XIST 
or ORC1 knockdown suppresses cell proliferation, 
blocks the cell cycle and decreases the expression of 
Bcl-2, while increasing the apoptosis rate and the ex-
pression of c-caspase3 and cleaved PARP, improving 
E-cadherin expression and decreasing Ki-67 and vi-
mentin expression in HeLa and C-33A cells149.
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XIST knockdown decreases proliferation, in-
vasion and EMT and increases apoptosis by the 
up-regulation of miR-200a, which decreases Fus 
expression147, decreasing the Wnt/β-catenin sig-
naling pathway146 and binding to miR-889-3p, de-
creasing miR-889-3p expression148 (Figure 1).

NEAT1
Nuclear enriched abundant transcript 1 

(NEAT1) was discovered through microarrays in 
WI-38 and GM00131 cells. It is transcribed from 
Chr11q13.1 and encodes a 3.7 kb transcript150.

NEAT1 expression is upregulated in CC tis-
sues and in MS751, C-33A, CaSki, HeLa, ME-180 
and SiHa cell lines151-156. NEAT1 expression cor-
relates with larger tumor size, poor differentia-
tion, depth of cervical invasion, advanced FIGO 
stage, lymph node metastasis, and with short 
overall and disease-free survival152-154.

NEAT1 overexpression promotes cell prolif-
eration, invasion and migration151-154. It bound to 
miR-361 on order to up-regulate the expression of 
HSP90, thereby promoting EMT156. In non-sensi-
tive tissues and radio-resistant cells (SiHa-R and 
HeLa-R), NEAT1 expression is increased and is 
more up-regulated in non-responsive patients157. 
Interestingly, NEAT knockdown exerts an effect 
as follows: 1) it decreases cell proliferation and 
migration in C-33A, SiHa, HeLa and CaSki cells 
through the activation of the PI3K/AKT signaling 
pathway and by ceRNA for miR-9-5p and miR-
101151-154, 2) it decreases cell proliferation and in-
creases apoptosis by competitively sponging miR-
193b-3p, which increases CCND1 expression in 
SiHa-R and HeLa-R cells, and in vivo 157, and 3) it 
decreases proliferation, colony formation, capac-
ity of migration and invasion, also induces apop-
tosis due to NEAT1 negatively modulating miR-
133a expression and regulating SOX4155.

Long Non-Coding RNA as Tumor 
Suppressors

GAS5
Growth arrest-specific transcript 5 (GAS5) 

was initially identified in the cDNA library spe-
cifically from mouse NIH 3T3 cells with cycle cell 
arrested in G1/S phase. It is transcribed from chr 
1q25 and encodes a 656 bp lncRNA158,159. GAS5 is 
spliced in two isoforms (GAS5a and GAS5b) and 
hosts 10 Small Nucleolar RNAs159-161.

GAS5 expression is downregulated in CC 
tissues and in HeLa, C-33A, CasKi, SiHa, HT-3, 

SW756 and ME-180 cell lines. GAS5 down-reg-
ulation is associated with advanced FIGO stage, 
vascular invasion, lymph node metastasis and 
poor prognosis in patients with CC69,162-164.

GAS5 knockdown increases cell migration, in-
vasion and proliferation69,162,163 and decreases apop-
tosis by the up-regulation of miR-21, phosphoryla-
tio E2F3 and STAT3 and the down-regulation of 
TIMP3 and PDCD4 in HeLa and SiHa cells165.

Conversely, GAS5 overexpression decreases 
cell viability, anchorage-independent growth and 
invasion, and increases apoptosis by acting as a 
molecular sponge of miR-196a and miR-205 in 
SiHa and ME-180 cells. Moreover, it decreases 
tumor growth in vivo through the downregulation 
of miR-196a, miR-205166 and miR-21 expression, 
which increases PTEN and PDCD4 expression 
and inhibits proliferation, cell migration and in-
vasion in HeLa, SiHa and CaSki cells164. GAS5 
is targeted by miR-135a through the JAK/STAT 
signaling pathway that participates in the devel-
opment of CC. GAS5 overexpression inhibits pro-
liferation, cell cycle, migration, invasion, EMT 
and tumor growth and metastasis (nude mice), 
also activates apoptosis167,168. 

GAS5 expression could be a therapeutic target. 
Its overexpression increases sensitivity to cispla-
tin-induced apoptosis165, decreases miR-106b ex-
pression, which increases IER3 expression169 and 
decreases tumor growth in vivo and the pAKT 
level, which decreases the survival of SiHa/cDDP 
cells and cisplatin-resistant CC cells164. 

The hypermethylation of GAS5 induce its 
downexpression in CC tissues as well as in HeLa, 
SiHa, CaSki and C-33A cells168, and finally, to the 
down expression of GAS5 in HEKa cells trans-
fected with E6170 (Figure 1).

MEG3
The maternally expressed gene 3 (MEG3) 

is a maternally expressed imprinted lncRNA. 
MEG3 was discovered in normal fertilized em-
bryos by subtraction and hybridization. MEG3 
is transcribed from Chr14q32 and encodes a ~7 
kb lncRNA171. Twelve isoforms has been reported 
of MEG3 in human fetal liver identified by RT-
PCR and sequencing. These isoforms stimulate 
p53-mediated transactivation and decrease DNA 
synthesis in HCT116 cells172. The MEG3 gene is 
the host gene for miR-770 tumor suppressor173. 

MEG3 expression is down-regulated in CC tis-
sues and in C-33A, C4-1, CaSki, SiHa and HeLa 
cell lines174,175. MEG3 expression is decreased 
in the exosomes of cervicovaginal lavage speci-
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mens with CC patients compared with those of 
patiens who are HPV-positive and HPV-negative, 
cancer-free patients83. On the other hand, MEG3 
methylation is increased in the plasma and tis-
sue of patients with CC compared with healthy 
volunteers. The ROC curve analysis showed that 
this could be useful as a diagnostic biomarker, 
and Kaplan-Meier plots revealed that the hyper-
methylation of MEG3 was associated with poor-
er recurrence-free survival and overall survival. 
These data suggest that MEG3 methylation in 
plasma and tissues from patients with CC can 
serve as a diagnostic and prognostic biomarker 
in CC176,177. Methylation in MEG3 promoter is in-
creased in patients with CC and cell lines (HeLa 
and CaSki); the de-methylation of the MEG3 pro-
moter increases its expression, decreasing cell 
proliferation in HeLa and CaSki cells176. 

MEG3 overexpression gives rise to the fol-
lowing: 1) it inhibits proliferation, cell migration 
and invasion, and induces cell cycle arrest at the 
G2/M phase and apoptosis through p53 and the 
cyclin B1-CDK 1 signaling pathway in HeLa 
and C-33A cells175, 2) it decreases cell prolifera-
tion and increases apoptosis by the downregula-
tion of miR-21-5p in HeLa and CaSki cells178; 3) 
it decreases cell invasion and proliferation by the 
downregulation of Rac1 in HeLa cells174 and by 
promoting the degradation of pSTAT179; and 4) 
it decreases cell proliferation, invasion and mi-
gration, and increases apoptosis/ cell cycle arrest 
at the G1 phase by the down-regulation of PI3K, 
AKT, Bcl-2, and MMP-2/9, as well as the up-reg-
ulation of Bax and P21 in HeLa cells180. Finally, 
Lidocaine inhibits cell viability and apoptosis by 
inducing the expression of MEG3, which acts as a 
ceRNA, downregulating miR-421 expression and 
inducing BTG1 expression in HeLa cells181 (Fig-
ure 1).

Other LncRNAs
Recently, it has been reported that the expres-

sion of other lncRNA are altered in CC (with 
<5 papers for each of these) which could acts 
as onco-lncRNA or tumor suppressor lncRNA. 
In Supplementary Table I, we summarized the 
main characteristics, such as expression level 
(up or down-regulated), samples analyzed (tis-
sues or cell lines), association with clinicopath-
ological characteristics (tumor size, FIGO stage, 
survival, etc.), affected cell processes (migration, 
invasion, apoptosis, etc.) and involved molecular 
mechanims (activation of cell signaling pathways, 
acting as a molecular sponge, target genes, etc.).

Future Perspectives 

The de-regulation of lncRNA is a key event in 
carcinogenesis and knowing more about its role 
will contribute to our understanding of cervical 
carcinogenesis. Nonetheless, little is known about 
many lncRNAs, which represent a new field in 
investigation. In this regard, it will be important 
to determine the following: 1) the mechanisms of 
de-regulation of tumor suppressor and oncogen-
ic lncRNA (promoter hypermethylation and ge-
nomic DNA deletions); 2) the molecular mecha-
nisms by which lncRNA suppress or promote CC 
(de-regulation of signaling pathways and de-reg-
ulation of tumor suppressor genes/oncogenes); 3) 
their importance as a therapeutic target as well 
of as a prognostic or diagnostic biomarker; 4) 
the role of lncRNA isoforms and SNP and 5) the 
role of HR-HPV in the de-regulation of these ln-
cRNA, considering the role of HR-HPV E6/E7 in 
the regulation of lncRNAs, miRNA, mRNA and 
proteins expression.

Conclusions

The study of lncRNA comprises an emerg-
ing field in cervical carcinogenesis given that al-
teration in its expression modulates the cellular 
processes involved in tumor progression. These 
studies show that lncRNA expression might serve 
as prognostic or diagnostic biomarkers. Notwith-
standing this, the complete understanding of the 
molecular mechanisms is necessary to develop 
drugs against novel targets in CC.
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