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Abstract. – OBJECTIVE: The crosstalk be-
tween age and immunity in the context of ulcer-
ative colitis (UC) remains incompletely under-
stood. Our objective is to elucidate the specific 
age-associated genetic factors that modulate 
immune cell infiltration in UC, with the aim of 
identifying innovative therapeutic targets for the 
treatment of this disease. 

MATERIALS AND METHODS: Potential batch 
effects between samples were removed by R 
package “inSilicoMerging”. Unsupervised clus-
tering analysis via the “ConsensusClusterPlus” R 
package was utilized to perform consensus mo-
lecular subtyping of immune subtypes in UC. The 
construction of a heat map was accomplished 
through the utilization of the R package “pheat-
map”, while functional enrichment analysis was 
executed by means of the Metascape database. 
The identification of the age-related gene mod-
ule was achieved by performing weighted gene 
co-expression network analysis (WGCNA) analy-
sis using the R package “WGCNA”. The support 
vector machine (SVM), least absolute shrinkage 
and selector operation (LASSO), and random for-
est algorithms were performed via the “e1071”, 
“glmnet” and “randomForest” packages in R, re-
spectively. The diagnostic performance of the 
parameter was assessed using the receiver op-
erating characteristic (ROC) curve. Correlation 
analysis was performed by Spearman correla-
tion. The “XSum” package in R was employed to 
identify potential small-molecule drugs for UC 
utilizing the Connectivity Map (CMap) database. 
Molecular docking was performed with Autodock 
Vina molecular docking software.

RESULTS: A significantly greater frequency of 
UC patients aged below 40 years was observed in 
the group with extensive disease extent as com-
pared to those with non-extensive disease extent 
(70% vs. 47%; Chi-square test, p = 0.02). The ap-
plication of unsupervised clustering analysis al-

lowed for the stratification of UC patients into two 
distinct immune subtypes, namely cluster C1 and 
cluster C2. The distribution of immune subtypes 
was significantly different between different age 
categories (Chi-square test,  p = 0.00219). The UC 
samples that were grouped under cluster C1 were 
distinguished by a higher abundance of macro-
phages and an elevated number of neutrophils 
relative to those in cluster C2. Based on both 
WGCNA and Limma analysis, 146 age-related 
genes were identified, which exhibited a predom-
inant enrichment in the biological process of cel-
lular senescence. Two age-related genes (MIDN, 
and PLD6) affecting the immune cell infiltration in 
UC were identified based on machine learning al-
gorithms (SVM, LASSO, and random forest). The 
diagnostic performance of MIDN (AUC = 0.93) and 
PLD6 (AUC = 0.90) in discerning UC patients be-
longing to cluster C1 was found to be satisfacto-
ry, as demonstrated by ROC curve analysis. MIDN 
demonstrated a positive correlation (r = 0.50,  p 
< 0.0001) with Neutrophil, while PLD6 exhibited 
a negative correlation (r = -0.52, p < 0.0001) with 
Neutrophil levels. The “XSum” algorithm revealed 
that Entinostat has therapeutic potential for UC. 
The docking glide score between Entinostat and 
MIDN, and PLD6 protein was -8.9 kcal/mol and 
-6.8 kcal/mol, respectively.

CONCLUSIONS: We have identified two 
age-related genes, MIDN and PLD6, that are in-
volved in immune cell infiltration in patients with 
ulcerative colitis. Furthermore, a small molecule 
drug (Entinostat) with potential therapeutic ef-
fects for UC was screened out. This study pre-
sented new perspectives on personalized clin-
ical management and therapy research for UC.
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Introduction

Ulcerative colitis (UC) is a chronic relapsing 
bowel disease characterized by a diffuse inflam-
mation that generates an excess of detrimental in-
jury on colonic mucosa with bloody diarrhea as a 
predominant symptom1. UC has become a glob-
ally prevalent disease with increasing incidence 
rates in both developed and developing nations, 
making UC a major health burden globally2. Al-
though UC can manifest at any age, it is most 
commonly observed in individuals between their 
second and fourth decades of life3. As yet, the ex-
act etiology of UC remains unclear. Genetic and 
environmental factors, impaired epithelial barrier 
function, and dysregulated immune response is 
hypothesized to be an underlying cause of patho-
genesis in UC2,4.

The intestinal epithelium serves as a protective 
barrier in the gut, preventing luminal microbiota 
and antigenic material from infiltrating the un-
derlying lamina propria, which harbors the mu-
cosal immune system5. However, compromised 
intestinal barrier function can lead to bacterial 
translocation, resulting in localized inflammation 
and immune cell infiltration in the upper regions 
of the colonic mucosa. The cellular infiltrates in-
clude cells from both the innate and the adaptive 
immune responses, such as neutrophils , dendrit-
ic cells , natural killer T cells (NKTs) , macro-
phages, and T cells5-12. Furthermore, the activated 
immune cells are responsible for the production of 
several cytokines that regulate cellular function, 
such as tumor necrosis factor (TNF), interferon 
gamma (IFNγ), interleukin-1β (IL-1β), IL-6, and 
IL-23, as well as T helper (Th) 17 cell-associated 
cytokines. The recruitment of leukocytes is regu-
lated by chemokines, which serve as a hallmark 
of inflammation13,14.

Although UC can affect individuals of any 
age, recent investigations have suggested that 
early-onset UC exhibits distinct phenotypic char-
acteristics compared to those of older-onset UC. 
The underlying mechanisms accounting for the 
age-related phenotypic distinctions in UC are not 
fully comprehended and could be related to vari-
ations in intestinal immunity, intestinal microbi-
ota, and genetic and environmental risk factors15. 
In general, the natural disease course of pediat-
ric-onset UC is considered to be more severe than 
that of elderly-onset patients16. Early-onset UC 
is featured by widespread location at diagnosis 
and a high rate of disease extension17-19. Previous 
studies20-22 have detected obvious differences in 

both the systemic and mucosal immune systems 
between young and elderly patients. The elderly 
have the added challenge of immune aging, which 
is related to heightened susceptibility to infection, 
vaccine failure, autoimmunity, and cancer. In the 
mucosal immune system, more gut-associated 
lymphoreticular tissues (GALT), were observed 
in the young compared to the elderly. The decline 
in the level of MALT (mucosa-associated lym-
phoid tissue) cells, Peyer’s patches, isolated lym-
phoid follicles, and immunoglobulin occurs more 
frequently in older adults23-25.

The interplay between age and immune activi-
ty remains incompletely elucidated with regard to 
UC. Our present investigation endeavors to exam-
ine the influence of age-related genes on immune 
cell infiltration in UC, with the ultimate goal of 
promoting tailored clinical interventions and treat-
ment strategies. A graphical overview of our study 
protocol is provided in Supplementary Figure 1.

Materials and Methods

Data Acquisition
The microarray data and clinical information 

of UC patients were acquired from the Gene 
Expression Omnibus (GEO) database, specifi-
cally GSE38713 and GSE87473. GSE38713 and 
GSE87473 cohorts contained patient age informa-
tion for all samples. The sample sizes for the two 
datasets analyzed in this study were as follows: 
GSE38713 (13 normal samples and 30 UC sam-
ples), and GSE87473 (21 normal samples and 106 
UC samples). The microarray data was download-
ed at https://www.ncbi.nlm.nih.gov/geo/ on No-
vember 1, 202226. The R package “inSilicoMerg-
ing” was used for dataset normalization27. The 
batch effects across platforms were removed by 
the “ComBat” algorithm of the R package “inSil-
icoMerging”. As an empirical Bayesian method, 
the “ComBat” algorithm estimated the parame-
ters representing the batch effect by summariz-
ing the information among genes in each batch, 
thereby reducing the batch effect parameters to 
the overall estimated average28. By merging the 
GSE38713 and GSE87473 cohorts, we acquired a 
unified dataset comprising a total of 170 samples, 
including 136 UC and 34 normal colon tissues.

Identification of Immune Infiltration 
Subtype Characterization of UC

We utilized the Immune Cell Abundance Iden-
tifier (ImmuCellAI) database to determine the 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-figure-1-1.pdf
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levels of 24 distinct immune cell types in the 
merged UC dataset by inputting the microarray 
data29,30. We employed the R package “Consen-
susClusterPlus” to conduct an unsupervised hier-
archical clustering analysis on the abundance of 
distinct immune cells in the merged UC dataset, 
aiming to identify diverse immune infiltration 
subtypes31-33. 

Weighted Correlation Network Analysis 
(WGCNA) and Gene Differential Analysis

R package “WGCNA” was utilized to con-
struct the coexpression networks based on the 
microarray data34. As a soft-thresholding power, 
the primary role of β was to emphasize strong 
correlations between the genes and penalize 
weak correlations. The topological overlap matrix 
(TOM) was transformed from the adjacency after 
we chose the β of 20 based on the “pickSoftThresh-
old” algorithm which came with the “WGCNA” R 
package35. Pearson’s correlation analysis was con-
ducted to appraise the correlation between module 
eigengenes (MEs) and age. Subsequently, the gene 
module with the highest Pearson’s coefficient was 
considered as the module most relevant to the age 
(age-related module) in UC. Using the criteria of 
|MM| > 0.8 and |GS| > 0.1, we identified the unique 
hub genes in the age-related module33. Specific 
schematic processes of WGCNA can be found in 
Supplementary Figure 2.

Differential gene expression analysis followed 
the linear models for microarray data (Limma) 
pipeline performed by R package “limma” (ver-
sion 3.40.6). Differential expression genes (DEGs) 
were identified according to the filter criteria 
(|fold change| > 1.5, false discovery rate < 0.05)36.

Gene Enrichment Analysis
The Metascape database was utilized to perform 

enrichment analyses. Terms with a p-value < 0.01, 
minimum count of 3, and an enrichment factor > 1.5 
were utilized in the next step of the analysis37. Using 
screening criteria of kappa scores = 4 and similari-
ty > 0.3. Metascape was utilized to perform hierar-
chical clustering to partition enrichment terms into 
distinct clusters, and the terms with the minimum 
p-value were selected as the representative terms.

Machine Learning for the 
Age-Immune-Related Key Gene Signatures 

The identification of key age-immune-related 
gene signatures in the merged UC dataset was per-
formed through the implementation of the support 
vector machine (SVM), least absolute shrinkage 

and selector operation (LASSO), and random for-
est algorithms, which were available through the 
“e1071”, “glmnet”, and “randomForest” packages 
in R, respectively38-40. The following parameters 
were set in the LASSO algorithm: family = “bino-
mial”; alpha = 1; type measure = “deviance”; and 
nfolds = 10. The “randomForest” package in R was 
used to grow a forest of 500 trees using the default 
settings. The parameters of the SVM were set to 
its default value. We computed feature importance 
scores with the random forest model using the “im-
portance” function in the “randomForest” package 
in R. The top 10 genes with the highest impor-
tance were selected for downstream analysis using 
the “randomForest” algorithms. The overlapping 
genes that emerged from the results of SVM, LAS-
SO, and random forest analyses were identified as 
the key age-immune-related gene signatures.

Small Molecule Drugs Screening and 
Molecular Docking

A similarity scoring algorithm called eXtreme 
Sum (XSum) was performed to screen the candi-
date small molecule drugs based on the connectiv-
ity map (CMAP) database41. The DEGs between 
different immune infiltration subtypes were used 
as input files of “XSum” algorithm. Subsequently, a 
score was calculated for each small molecule drug 
of the CMAP database by “XSum” algorithm. A 
lower score suggests a higher potential to serve as 
a therapeutic agent to reverse immune infiltration.

The crystal structures of proteins encoded by 
the hub gene were obtained from the RCSB Protein 
Data Bank (PDB) database (San Diego, CA, USA). 
The specific website address used for accessing the 
PDB was www.rcsb.org/pdb/home/home.do42. Fur-
thermore, the 3D structure of the small molecule 
drugs was downloaded from PubChem (https://
www.ncbi.nlm.nih.gov/pccompound) database 
(NCBI, USA)43. The molecular docking process 
consisted of several steps, including the prepara-
tion of proteins and ligands, grid setting, and com-
pound docking. These procedures were executed 
with the Autodock Vina software (The Scripps 
Research Institute, La Jolla, CA, USA)44. The best 
pose was chosen based on the docking score and 
the rationality of molecular conformation.

Statistical Analysis
R software (version 4.0.4, Boston, MA, USA) 

was utilized for all statistical procedures. Statistical 
analysis involved the utilization of the Wilcoxon/
Kruskal-Wallis test to compare continuous variables, 
while differences in proportions were assessed using 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-24.pdf


H.-L. Chen, Y.-H. Liu, C.-H. Tan

8450

the Chi-square test. Significance was determined by a 
p-value threshold lower than 0.05. Receiver operating 
characteristic (ROC) curve analysis was performed 
to evaluate the diagnostic performance of variables.

Results

Merging Gene Expression Data Sets
Boxplots were utilized to visualize the distribu-

tion of global array expression in GSE38713 and 
GSE87473 datasets before and after integration 
with the “ComBat” algorithm (Figure 1A, Figure 
1B). The density plot of the gene expression distri-
bution ( Figure 1C, Figure 1D) suggested that the 
batch effects between GSE38713, and GSE87473 
were all eliminated to some extent. UMAP plots 
showed identification (Figure 1E) and removal 
(Figure 1F) of inter-study batch effects through 
“ComBat” algorithm. 

Association Between Age and Immune 
Cell Infiltration in UC 

A cohort of 136 UC patients was stratified into two 
groups based on the median age value (40). UC pa-
tients with extensive disease extent exhibited a lower 
age compared to other patients (p = 0.0024; Figure 
2A). The extensive disease extent group had a higher 
proportion of UC patients aged below 40 years (70% 
vs. 47%; Chi-square test, p = 0.02; Figure 2B).

The role of immune infiltration is of utmost im-
portance in the pathogenesis of UC. Hence, our 
study primarily aimed to investigate the immune 
infiltration patterns, aiming to elucidate the factors 
contributing to the observed heterogeneity in dis-
ease extent across distinct age groups. The extent 
of immune cell infiltration of all the UC patients 
evaluated by ImmuCellAI database was presented 
in Supplementary Table I. We used unsupervised 
clustering to classify UC patients into diverse mo-
lecular subtypes based on the abundance of 24 im-
mune cell types in the merged UC cohort via the 
R package “ConsensusClusterPlus”. The optimal 
cluster number (K = 2) is determined by the area 
under the cumulative distribution function (CDF) 
curve, which corresponds to the largest number 
of clusters that induced the smallest incremental 
change in the area under the CDF curves (Figure 
3A, Figure 3B, Figure 3C). Thus, “ConsensusClus-
terPlus” algorithm partitioned the UC patients into 
2 major immune subtypes (cluster C1, cluster C2; 
Figure 3D). Significantly notable differences were 
observed in the distribution of immune subtypes 
across various age categories (Chi-square test, p 

= 0.00219; Figure 3E). UC patients aged below 40 
demonstrated a higher proportion of cluster C1 and 
a lower proportion of cluster C2 compared to UC 
patients aged 40 and above.

Heatmap of the abundance of 24 immune cell 
types for the two immune subtypes was presented 
in Figure 4. UC samples within cluster C1 exhib-
ited a distinct abundance of macrophages and a 
notably higher presence of neutrophils when com-
pared to cluster C2. Conversely, cluster C1 exhib-
ited a notably lower abundance of Tfh, NK, CD4+ 
T, and CD8+ T cells compared to cluster C2. 

Age-Related Gene Module Revealed by 
WGCNA

The soft threshold for network construction 
was set to 20 (Figure 5A, Figure 5B). Subse-
quently, 8 gene modules with 9,539 genes in the 
merged UC cohort were identified by WGCNA 
(Figure 5C, Figure 5D). The MEs of modules 
were utilized to evaluate Pearson’s correlation 
coefficients between the modules and age. Sub-
sequently, the brown4 module was determined to 
exhibit the strongest association with age in UC, 
indicating its significant correlation with the ag-
ing process in this context (Pearson’s correlation r 
= 0.59, p < 0.0001; Figure 6A). The brown4 mod-
ule comprised a total of 4,291 genes (Figure 6B). 
In addition, we illustrated the correlation between 
module membership (MM) and gene significance 
(GS) for age in brown4 (Pearson’s correlation r 
= 0.79, p < 0.0001; Figure 6C). Subsequently, we 
screened 1,279 distinct hub genes in the brown4 
module based on the criteria of |MM| > 0.8 and 
|GS| > 0.1 (Supplementary Table II).

Identification of DEGs Between Different 
Age Categories

Differential gene expression analysis was con-
ducted to compare the transcriptomic profiles 
between two distinct age categories, namely, in-
dividuals younger than 40 and those aged 40 or 
older. Compared with patients with age ≥ 40, 
there were 505 DEGs (116 up-regulated and 389 
down-regulated) identified in patients young-
er than 40 (Figure 7A; Supplementary Table 
III). We generated heatmaps to visualize the ex-
pression patterns of the top 10 up-regulated and 
down-regulated DEGs, respectively (Figure 7B).

Functional Enrichment Analysis
The intersection of 505 DEGs and 1,279 hub 

genes of WGCNA was taken, and then 146 genes 
in common were identified as age-related genes 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-1.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-2.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-3.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-3.pdf
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(Figure 7C). Enrichment analysis of age-related 
genes was performed to explore their biological 
functions based on the Metascape database (Fig-
ure 7D). The findings indicate that age-related 
genes exhibit significant enrichment in biological 
processes such as cellular senescence, regulation 
of intracellular transport, cell cycle checkpoints, 

and DNA damage/telomere stress-induced senes-
cence.

Identification of Age-Immune-Related 
Key Genes Using Machine Learning

The “Limma” algorithm revealed that among 
the 146 age-related genes, 102 exhibited signifi-

Figure 1. The global array expression distribution in GSE38713 and GSE87473 before (A) and after (B) merged using “Com-
Bat” algorithm. The density plot of the gene expression distribution of GSE38713, and GSE87473 before (C) and after (D) 
merged. UMAP plots for GSE38713, and GSE87473 datasets before (E) and after (F) batch effect correction.
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cant differential expression across different im-
mune subtypes. Among these genes, 25 demon-
strated elevated expression levels in cluster C1, 
whereas 77 exhibited higher expression in cluster 
C2 (Supplementary Table IV). The gene expres-
sion matrix of the 102 DEGs was used as the input 
file of the SVM, LASSO, and random forest algo-
rithms (Figure 8A, Figure 8B, Figure 8C; Sup-
plementary Table V). The dependent variable in 
all algorithms was immune subtypes (cluster C1 
vs. cluster C2). The key genes strongly associated 
with both age and immune infiltration (referred 
to as age-immune-related key genes) in UC were 
identified as the intersection of MIDN and PLD6 
from the three algorithms utilized in this study 
(Figure 8D). MIDN was upregulated in cluster C1, 
and PLD6 was upregulated in cluster C2 (Figure 
8E). The ROC curve showed satisfactory diagnos-
tic efficacy of both MIDN and PLD6 for cluster 
C1 (Figure 8F). Spearman’s correlation analyses 
indicated positive correlations between MIDN 
and Neutrophil (r = 0.50, p < 0.0001; Figure 9A). 
A significant negative correlation between PLD6 
and Neutrophils was observed (r = -0.52, p < 
0.0001). 

Small Molecule Drugs Screening and 
Molecular docking

The DEGs between different immune subtypes 
(cluster C1 vs. cluster C2) were used as the in-
put file of “XSum” algorithm. The XSum score 
calculated for each small molecule drug of the 

CMAP database is shown in Supplementary Ta-
ble VI. Entinostat (MS.275) obtained the lowest 
score, indicating its potential as a small molecular 
compound for reversing the transition from clus-
ter C1 to cluster C2. Molecular docking was then 
performed between the Entinostat and age-im-
mune-related key genes (Figure 9B, Figure 9C). 
We found that Entinostat showed a good binding 
affinity for both MIDN and PLD6 protein with the 
docking glide score of -8.9 kcal/mol and -6.8 kcal/
mol, respectively. 

Discussion

While the immunopathogenesis of ulcerative 
colitis (UC) has been comprehended to some ex-
tent, a comprehensive exploration of the distinctive 
immune landscape across various age categories 
in UC remains incomplete. This unexplored aspect 
could significantly contribute to the age-related 
phenotypic variations observed in the disease. This 
study employed an extensive range of bioinformat-
ics analysis and machine learning techniques to 
elucidate the underlying mechanisms and identify 
key genes involved in the interplay between age 
and the immune landscape in UC.

Two distinct subtypes of UC characterized by 
diverse immune landscapes, namely cluster C1 
and cluster C2, were identified using unsuper-
vised hierarchical clustering. UC samples in clus-
ter C1 were characterized by a higher degree of 

Figure 2. A, Boxplot of the differences of age between UC patients with extensive and limited disease extent. B, The propor-
tion of patients with different ages in that with extensive and limited disease extent.

A B

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-4.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-5.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-5.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-6.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Tables-6.pdf
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nantly characterized by intensive infiltration with 
inflammatory cells, mainly neutrophils, macro-
phages, and dendritic cells. Uncontrolled inflam-

infiltration of macrophage and neutrophils com-
pared to cluster C2. As reported previously, the 
mucosal immune dysregulation in UC is predomi-

Figure 3. Identify different immune subtypes in UC. The optimal number of clusters was determined using the (A) empirical 
cumulative distribution function plot, (B) relative change in area under CDF curve and (C) consensus values. D, Consensus 
matrices of the merged dataset for k = 2. E, The proportion of immune subtypes in different age categories, p-values were from 
the chi-squared test (cluster C1, blue; cluster C2, red). 
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mation will inevitably result in neutrophilic cryp-
titis, crypt abscesses, and mucosal ulceration45. 
When a damaged intestinal mucosa is stimulated 
by pathogenic organisms or inflammatory media-
tors, the activation and aggregation of neutrophils 
in the lesion region occurs to recognize stimuli and 
undergo phagocytosis46-49. In addition, the conse-
quent neutrophil extracellular traps (NETs) also 
play a crucial role in the detection and clearance 
of potential pathogens. The study of Dinallo et al50 
found that NET-related proteins were up-regulat-
ed in inflamed regions of the colon of UC patients 
as compared to Crohn’s disease patients and nor-
mal controls. Yan et al51 study uncovered the sup-
pressive effects of SM934 on macrophages, which 
subsequently contributed to the protective effects 
observed in a murine model of dextran sulfate so-
dium (DSS)-induced colitis. As the first-line de-
fense in the lamina propria of mucosa, intestinal 
macrophages are derived from circulating mono-
cytes, increasing in the active phase of UC52. The 
activated macrophages release a large amount of 
cytokine [IL-1, IL-6, tumor necrosis factor-alpha 
(TNF-α), etc.] and reactive metabolites of oxygen 
and nitrogen. The accumulated proinflammatory 
factors and chemokines stimulate the neutrophils’ 
recruitment and are involved in the lymphocyte 
activation53. The long-term consequences of mac-
rophage accumulation are exacerbation of intes-
tinal epithelial tissue damage and dissemination 
of intestinal bacteria54. Therefore, it is suggested 
that targeting the population of macrophages may 

be a potential therapeutic modality for UC. Tak-
en together, the greater percentage of cluster C1 
UC patients in the group aged below 40 years is 
potentially an important contributor to the more 
extensive extent of lesions.

In our study, “XSum” algorithm suggested 
Entinostat as a potential small molecular com-
pound that can reverse cluster C1 to cluster C2. 
Entinostat, an oral synthetic benzamide-deriv-
ative capable of inhibiting HDAC1 and HDAC3 
enzymes, has been reported to mediate endocrine 
resistance of breast cancer through co-repressor 
proteins in clinical practice55,56. In vitro and in 
vivo experiments57 have suggested that Entinostat 
possesses the ability to ameliorate inflammation, 
reduce apoptosis, and maintain intestinal barrier 
health and function. Furthermore, upon lipopoly-
saccharide (LPS) stimulation of bone marrow-de-
rived macrophages, there was a notable increase 
observed in the expression levels of HDAC158. 
Previous studies59 demonstrated that HDAC1 sub-
stantially reduces LPS-induced Cox-2 expression 
level in RAW264.7 macrophages. Therefore, En-
tinostat, an inhibitor of HDAC1, might be a po-
tential drug candidate targeting the modulation of 
macrophage responses to treat UC.

Furthermore, we identified two age-related 
genes (MIDN, and PLD6) affecting the immune 
cell infiltration in UC based on machine learn-
ing. MIDN was found to modulate the expression 
of a diverse array of genes, such as α-synuclein, 
parkin, and EIF4G1, which play crucial roles in 

Figure 4. Heatmap of the levels of immune cell infiltrates.
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the pathogenesis of neurodegenerative diseas-
es associated with aging. This underscores the 
involvement of MIDN in the intricate molecular 
mechanisms underlying age-related neurodegen-

eration60. Previous studies61,62 revealed that PLD6 
plays an important role in hydrolyzing cardiolipin 
in the outer mitochondrial membrane to generate 
phosphatidic acid. Phosphatidic acid is a crucial 

Figure 5. Determination of soft-threshold power in the WGCNA. A, Analysis of the scale-free index for various soft-thresh-
old powers (β). B, Analysis of the mean connectivity for various soft-threshold powers. C, Clustering dendrogram of UC 
patients in the merged dataset. Identification of modules closely associated with age. D, Dendrogram of all differentially ex-
pressed genes clustered based on the measurement of dissimilarity (1-TOM). The color band shows the results obtained from 
the automatic single-block analysis. 
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signaling molecule in controlling mitochondri-
al dynamics to promote mitochondrial fusion, 
which is tightly linked to cell growth, prolifera-
tion, and differentiation. However, the biological 
function of MIDN and PLD6 in immune cell in-
filtration has not been reported in the literature 
before. In our study, we conducted correlation 
analyses and observed significant positive cor-
relations between Neutrophil levels and MIDN, 
as well as negative correlations between Neu-
trophil levels and PLD6. These findings provide 
valuable insights into the interplay between 
Neutrophil activity and the expression of MIDN 
and PLD6, highlighting their potential roles in 
the context of our investigation. Although fur-
ther experimental validation is required, MIDN 
and PLD6 may represent a novel target for ther-
apeutic intervention in an immune-mediated 

UC. This study offers novel insights and poten-
tial resources for the development of personal-
ized clinical treatment strategies for individuals 
diagnosed with UC. 

Limitations
It is important to acknowledge certain lim-

itations that should be taken into account when 
interpreting the findings of the present study. 
First of all, this research only included a bioin-
formatics analysis, lacking further experimen-
tal verification as a solid foundation. Secondly, 
one of the limitations of our study is that this 
research is a retrospective study rather than a 
prospective trial. Therefore, future follow-up 
studies with prospective clinical trials and 
mechanistic exploration are required for cor-
roboration of our findings.

Figure 6. A, Heatmap of the correlation between the module eigengenes and age of patients with UC. B, Number of assigned 
genes to the different modules. C, A scatterplot of gene significance (GS) for age versus module membership (MM) in the 
brown4 module.
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Figure 7. A, The differences generated by comparison were reflected in the volcanic map, the black genes were nonsignif-
icant differences, and the red and green genes were the significant difference genes. B, Heatmap of the top 20 up-regulated 
and down-regulated DEGs (Red, up-regulation; blue, down-regulation). C, Venn diagram demonstrates overlapping genes of 
the DEGs of “Limma”algorithm and WGCNA hub genes. D, Enrichment analysis of 146 overlapping genes was performed to 
explore their biological functions based on Metascape database.
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Figure 8. The identification of candidate age-immune-related key genes using random forest (A), LASSO (B), and SVM (C) 
algorithms. D, Venn diagram demonstrates overlapping genes of different machine learning algorithms. E, Boxplot shows 
significant differences in the expression of MIDN and PLD6 between the cluster C1 and C2 subtypes. ROC analysis of the 
diagnostic ability of MIDN (F) and PLD6 (G) for cluster C1.
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