Arterial involvement in Fabry disease: state of the art and future diagnostic purposes

G. PASSARO¹, L.L. SICIGNANO², R. FLORE¹, M.G. MASSARO², E. VERRECCHIA², L. GERARDINO¹, M. CRASTI¹, L. SANTORO¹, R. MANNA², P. TONDI¹

¹Internal Medicine and Angiology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, School of Medicine, Rome, Italy
²Internal Medicine, Rare Diseases and Periodic Fevers Research Centre, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, School of Medicine, UOC Continuità Assistenziale, Rome, Italy

Giovanna Passaro, Ludovico Luca Sicignano and Roberto Flore contributed equally to this work

Abstract. – Anderson-Fabry disease (FD) is a rare genetic, progressive, and multi-systemic condition, with X-linked inheritance. This is caused by pathogenic variants in the GLA gene, coding for the lysosomal enzyme called alpha-galactosidase A (aGLA), responsible for the cleavage of globotriaosylceramide (Gb3). The reduced or absent activity of aGLA causes the intracellular accumulation of Gb3, particularly in smooth and endothelial muscle cells, which causes cellular dysfunction. The main organs involved are the central nervous system, heart, and kidneys. However, being a ubiquitous enzyme, FD disease must be considered a systemic disease involving the peripheral nervous system, ocular and audio-vestibular systems. Also, the vascular district is damaged but the pathophysiology of vasculopathy in FD is not yet entirely understood. In literature, many vascular diagnostic tests were used to evaluate this specific involvement in FD, i.e., carotid intima media thickness (cIMT), arterial stiffness (AS), flow-mediated dilation (FMD) and atherosclerotic plaques; evaluation of vascular calcifications in FD patients is not presently available. In this review, we examined the current available literature on vascular aspects in FD. Moreover, we presented our global vascular evaluation, based on Radio Frequency Duplex Ultrasound (RF-DU), plaques, and vascular calcifications, to apply to FD patients.

Key Words: Fabry disease, Vasculopathy in Fabry disease, Radio frequency duplex ultrasound, Vascular calcification, Atherosclerosis.

Introduction

Anderson-Fabry disease (FD) is a rare genetic, progressive, and multi-systemic condition, with X-linked inheritance. This is caused by pathogenic variants in the gene GLA, coding for the lysosomal enzyme called alpha-galactosidase A (aGLA), responsible for the cleavage of globotriaosylceramide (Gb3). The reduced or absent activity of aGLA causes the intracellular accumulation of Gb3, affecting endothelial cells in particular, inducing cellular dysfunction. However, the aGLA gene expresses itself in a ubiquitous way causing damage to many organs and systems, such as the central and peripheral nervous system, heart, kidneys, eyes, lungs, and audio-vestibular system. Compared to other lysosomal storage disorders, FD has a slower evolution and, although the onset of symptoms can present in childhood, it is considered a pathology of adulthood. Progressive lysosomal Gb3 deposition causes oxidative stress, and therefore cellular apoptosis. In the late stages of the disease, irreversible fibrosis with cellular dysfunction and organ failure occurs. Some authors demonstrated the presence of microcirculation damage and a pro-thrombotic state. Moreover, a work published in 2017 showed a higher incidence of autoantibodies in FD patients. Rozenfeld et al. have supposed that progressive accumulation of Gb3 could trigger inflammatory processes, contributing to FD pathogenesis. In fact, the accumulation of Gb3 at the lysosomal level and higher release of glycosphingolipids, recognized as antigens by the natural killer cells, could lead to an altered capacity for autophagocytosis with altered release of different inflammatory mediators, as seen for other lysosomal storage disorders. Despite these breakthroughs, there is no clear evidence for an autoimmune mechanism underlying FD and the pathogenesis of FD requires further clarification.
Clinically, FD patients present various signs and symptoms depending on the district involved. The progressive accumulation of Gb3 at the level of the myocardium occurs with EKG abnormalities in its initial phase, such as short PR interval and increased voltages, and then, with bi-ventricular concentric hypertrophy, valve abnormalities, angina, dyspnea, syncope, and severe arrhythmias that often require pacemaker implantation. The first manifestations of kidney involvement are microalbuminuria and increase in the glomerular filtration rate, with the subsequent appearance of proteinuria and renal failure, until end stage renal disease (ESRD)\(^8\). The Central Nervous System (CNS) may be affected by the progressive accumulation of Gb3. FD patients can exhibit non-specific symptoms, such as headaches, and present high risk of ischemic strokes or transient ischemic attack (TIA) at young age\(^8\). The presence of white matter lesions is usual at radiological imaging, and sometimes it can resemble multiple sclerosis\(^9,10\). Regarding the peripheral nervous system (PNS), the progressive accumulation of Gb3 causes damage to the small nerve fibers C and A-delta with progressive reduction of the nerve endings, impairing transmission of sensory and nociceptive signals. Pain is one of the most frequent symptoms and can be classified into four types: acute, chronic, neuropathic, and acute pain attacks, also called “Fabry crises”, which are often caused by exposure to thermal and physical stress\(^11\). The accumulation of Gb3 also determines an impairment of the sympathetic nerve fibers and sweat glands with altered regulation of heat dispersion and sweating. Clinically, hypo-anhidrosis and severe heat intolerance are the main symptoms. The involvement of the peripheral nervous system also presents with gastro-intestinal symptoms, such as diarrhea, vomiting, abdominal pain, and dyspepsia\(^12\). Aguilera-Correa et al\(^13\) showed that the accumulation of Gb3 could lead to a change in gut microbiota with a higher prevalence of Bacteroides \textit{spp} and a lower production of short chain fatty acids, such as butyric acid, performing a trophic function on the intestinal mucosa. Another possible clinical manifestation of FD is fever of unknown origin (FUO). On a retrospective analysis, our group found that about 21% of FD patients presented unexplained fever attacks during their childhood\(^14\). For this reason, a consensus of experts has suggested to include FD among the possible causes of FUO\(^15\). Ocular involvement determines the appearance of the cornea verticillata caused by GB3 deposits and retinal vascular tortuosity. The main dermatological manifestations are angiookeratomas, distributed at the periumbilical and genital regions. The audio-vestibular system is also affected, leading to tinnitus, dizziness, and sudden hearing loss with progressive deafness. These manifestations can be ascribed to damage caused to the cochlear region but also to vascularization defects of the acoustic nerve. Non-coronary circulation is also involved in FD, although poorly studied in literature\(^16\). However, FD patients must be considered at high cardiovascular risk\(^17\).

Diagnosis of FD is difficult due to the presence of non-specific symptoms, especially in its early disease stages. For this reason, the diagnostic delay of this rare pathological condition is often considerable, helping to fuel FD’s reputation as a “Great Imposter”\(^18\). In males, the diagnosis is based on the determination of the enzymatic activity on leukocytes or fibroblasts on whole blood, which is absent or markedly reduced. Molecular analysis, then, confirms FD diagnosis, revealing the presence of mutations on the \textit{GLA} gene. In females, the diagnosis is based exclusively on a genetic test which highlights the heterozygous state, as the determination of enzyme activity is not considered reliable, producing potentially misleading results.

The treatment of FD is based on two main options: enzyme replacement therapy (ERT) with the infusion of recombinant enzymes, agalsidase alfa and agalsidase beta, and oral chaperone therapy\(^19\). Agalsidase alfa is administered at a dosage of 0.2 mg/kg, while agalsidase beta is administered at 1 mg/kg. Both molecules are administered intravenously every 14 days. The goal of intravenous therapy is to provide the body of the affected patient with the missing enzyme. On the other hand, chaperone therapy is taken orally at a dosage of 123 mg every other day. This treatment is only eligible for patients with amenable mutations (i.e., mutations with residual enzyme activity). It is estimated that only 30% of patients are candidates for chaperone therapy\(^20\). It is essential to underline the importance of early treatment, before non-reversible damage has occurred, regardless of the therapeutic choice\(^21\).
FD and related vascular features. We used many combinations of keywords: Fabry Disease, vasculopathy, Intimal-Medial Thickness, Flow-Mediated Dilatation OR Pulse Wave Velocity OR micro-angiopathy OR calcifications. These search terms had to be identified anywhere in the article text. We selected main scientific studies conducted on humans, published in international journals in English on any date. We excluded single patient case reports focusing on studies with a larger number of patients, always considering that FD is a rare disease. Abstracts were reviewed to assess if the article met the inclusion criteria and, in case this could not be determined from the abstract, we reviewed the full article when it was available online.

At present, the pathophysiology of vasculopathy in FD remains uncertain. As reported above, the lysosomal accumulation of Gb3 in the cells of the arterial wall is considered the basis of this process and its main complications, including stroke, hypertrophic cardiomyopathy, and renal failure. On the contrary, venous involvement in FD is not known in literature, and is certainly less involved than arteries. Frustaci et al described a case of a 54-year-old man affected by FD, underwent a double aorto-coronary by-pass, one from the saphenous vein (SV) and the other from the left internal mammary artery (LIMA). It was concluded that veins are more suitable for grafts than arteries in FD patients, due to the histological absence of Gb3 accumulation in the veins. Usually, in patients with advanced or severe disease, ERT is not able to stabilize FD nor prevent its further progression. These facts suggest that the accumulation of Gb3 is not the unique way of vascular damage, but that there are other mechanisms, such as the formation of reactive oxygen species (ROS). We know that the accumulation of Gb3 occurs in various layers of vascular tissue, causing different alterations in endothelial and smooth muscle cells, with thickening of the neo-intimal fibrotic structures, consequent loss of vascular compliance, and endothelial dysfunction. The result is an enhanced activation of the local renin-angiotensin system with overexpression of adhesion molecules, cytokines, chemokines and pro-thrombotic factors, and a decrease in the synthesis of nitric oxygen (NO). Some authors suggest that storage of Gb3 is sufficient to induce ROS, activate Rho-Kinase (ROCK), and dysregulate the activity of endothelial NO synthase (eNOS). This mechanism predisposes to muscle hyper-contractility and vasospasm, and it may represent the initial phase in the cascade that leads to FD vasculopathy. In the end, calcium/vitamin D metabolism could also interfere with cardiovascular health. Although an alteration in serum calcium levels is not described, FD patients are at high risk for vitamin D deficiency. In fact, they tend to have low exposure to sunlight due to heat intolerance and are at risk of malabsorption or reduced nutritional intake due to the FD itself. Drechsler et al in 2014, found a vitamin D deficiency in 73% of FD patients. We know that vitamin D deficiency has a negative impact on cardiac outcomes. In 2010 Pilz et al showed that vitamin D metabolites may have anti-hypertrophic and anti-proliferative actions, and its deficiency is related to worse phenotype of FD cardiomiopathy. Moreover, Chen et al evidenced a higher expression of Vitamin D Receptor (VDR) in cardiac myocytes and fibroblasts of hypertrophic hearts. Teitcher et al evidenced a correlation between FD and the presence of vitamin D receptor (VDR) polymorphisms, showing a potential protective effect of some haplotypes on cardiovascular outcome. We know that vitamin D plays a protective role for the vascular system. Its deficiency is associated with early atherosclerotic damage and with increased cardiovascular-related morbidity and mortality, although in absence of clear evidence.

Both large and small vessels can have morphological and structural alterations, i.e., vascular tortuosity of the retina, skin, and dolichoectasia of intracranial arteries. The accumulation of glycosphingolipids in the endothelial and smooth muscle cells in FD causes microcirculatory dysfunction and Raynaud phenomenon. Some recent studies noticed an increased frequency of Raynaud phenomenon in FD patients, using capillaroscopy to assess the presence of capillary changes in affected subjects. These studies, although numerically limited, highlighted the presence of capillaroscopic abnormalities in FD patients. Costanzo et al examined a cohort of FD patients without left ventricular hypertrophy by carotid ultrasound, FMD, and nail capillaroscopy. Compared to the healthy subjects, FD patients had higher mean values of IMT, significantly lower FMD, and irregular nailfold architecture. They found significant presence of dystrophic capillaries, especially ramified dystrophic capillaries. FD vasculopathy is basically different from prema-
ture atherosclerosis. In FD there is more fibrotic structure formation and the smooth muscle cells are primarily involved with enhanced arterial stiffness. Rombach et al16 reviewed twenty-four studies about histopathology of arteries in FD and only three investigations indicated atherosclerosis as a major finding. In FD arteries, smooth muscle cell involvement with stored Gb3 is one of the most prominent and early features. Instead, in females and atypical cardiac variants, no significant endothelial storage is found. The smooth muscle cells are also hypertrophic; the proliferation of smooth muscle cells and Gb3 storage results in higher carotid Intimal-Medial Thickness (cIMT).

The increase in cIMT is probably the most specific FD vessel wall alteration compared to the more traditional cIMT changes seen in premature atherosclerotic diseases40. Boutouyrie et al40,41 showed that FD patients had a higher cIMT and distensibility of the radial artery than healthy controls. Barbey et al42 provided evidence for a marked thickening of the cIMT wall in FD patients, compared with 120 age-matched controls with a low cardiovascular risk profile. The smooth muscle cells hypertrophy occurred to the same extent in men and women, which indicates that the vascular remodeling is independent of residual alpha-galactosidase A activity. Atherosclerotic plaques were not observed in the common carotid artery (CCA) of any FD patient, while ultrasound signals revealed homogeneous thickening of cIMT. Most of the FD patients have one or more traditional cardiovascular risk factor, which could contribute to the marked thickening of the CCA wall. cIMT was only correlated with age, confirming data on elastic arteries previously reported by Boutouyrie et al40,41. Kalliokoski et al43 showed a statistically significant increase not only in cIMT, but also in the brachial artery and abdominal aorta IMT in 17 FD patients, compared to 34 health controls matched by age, sex, and smoking.

Barbey et al42 have shown a correlation between cIMT and left ventricular hypertrophy in the absence of arterial hypertension. Based on these results, the authors hypothesized that the presence of common pathogenic factors underlying both processes suggest the use of cIMT as a clinically relevant indicator of LV mass; moreover, they suggest cIMT as a potential marker for clinical follow-up and intervention studies. As indicated above, increased cIMT in both sexes is not related to residual alpha-galactosidase activity. This suggests that there was an additional pathogenic mechanism other than the mere accumulation of Gb3, as confirmed by some histological surveys44.

In another study45 conducted in male patients with typical FD, brachial FMD was decreased ($p=0.01$) and cIMT was increased ($p=0.01$) compared to healthy matched controls. Pulse wave velocity (PWV) was not different. In this study, IMT and flow-mediated dilation FMD have not shown remarkable improvement after ERT.

Puccio et al46 showed an impaired FMD after reactive hyperthermia in FD patients. Collin et al47 also demonstrated an increase in aortic stiffness, expressed as PWV, in FD patients prior to the onset of ERT. In 2013, Bensalah et al48 used cardiovascular magnetic resonance (CMR) to analyze the stiffness of the aortic arch in 29 FD males, highlighting a significant increase of pulse wave velocity (PWV) compared to 58 healthy controls. Patients with FD also had a marked decrease in distensibility and an increase in the beta-stiffness index in the ascending aorta. Instead, Kalliokoski et al49 found that patient FDs have FMD values that are superimposable compared to healthy controls, although FD patients have higher minimal coronary resistance values and decreased coronary reserve than healthy controls. This data seems to be concordant, but to our knowledge, cIMT, arterial stiffness (AS), plaques, and vascular calcification have never been evaluated together by ultrasound radiofrequency (RF-US) data technology in FD patients. We summarized the results of our investigation in Table I.

Diagnosis of Subclinical Atherosclerosis by (RF-US) Data Technology in Different Scenarios

Cardiovascular diseases (CVD) are a major health problem in Western Countries, due to their slow and often asymptomatic progression, and the unavoidable impact on morbidity and mortality49. Every possible means should be used to prevent CV events, ranging from the identification and control of the cardiovascular risk factors, to the early diagnosis of subclinical atherosclerosis. As stated by American Heart Association since 2009, a noninvasive assessment of subclinical atherosclerosis is advisable even in children and adolescents, because precise and reliable non-invasive tests for atherosclerosis in youth could improve our ability to estimate future risk of heart attack andstroke50.

...
Table I. Principal studies in Literature which analyzed vascular aspects of Fabry Disease.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design study</th>
<th>Subjects included (case/control)</th>
<th>Age (years) mean ± SD or range and group</th>
<th>Gender (case vs. control)</th>
<th>Vessel type</th>
<th>Outcome</th>
<th>Results (case vs. control %)</th>
<th>Used Method (instrument)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rombach et al16</td>
<td>Case control</td>
<td>67/55</td>
<td>38.4 ± 14.3 M 45.7 ± 13.3 F</td>
<td>27M-40F vs. 20M-35F</td>
<td>CCA and femoral arteries</td>
<td>Increased IMT in CCA, increased PWV, reduction in FMD</td>
<td>IMT: +9% M, +8% F PWV: -7% M, +4% F FMD: -30% M, -5%</td>
<td>DUS (B-mode DICOM), Sphygmo Cor</td>
</tr>
<tr>
<td>Wasik et al22</td>
<td>Observational</td>
<td>25</td>
<td>37.1 years (mean age) M 41.8 years (mean age) F</td>
<td>17M-8F</td>
<td>Nailfold Capillaries</td>
<td>Morphological and functional microangiopathy + Bushy capillaries (62% vs. 10%) presence of others pathological patterns</td>
<td>Capillaroscopy (Fluorescence video microscopy)</td>
<td></td>
</tr>
<tr>
<td>Costanzo et al39</td>
<td>Case control</td>
<td>19/19</td>
<td>30.1 ± 14.8</td>
<td>3M-16F vs. 6M-13F</td>
<td>CCA Nailfold capillaries</td>
<td>Increased IMT in CCA, reduction in FMD, alteration of capillaries</td>
<td>IMT: +23% FMD: -32% Significative microangiopathy of nailfold capillaries in case</td>
<td>DUS (GE Vivid E) and capillaroscopy</td>
</tr>
<tr>
<td>Boutouyrie et al40</td>
<td>Case control</td>
<td>21/21</td>
<td>31 ± 13</td>
<td>21M vs. 21M</td>
<td>Radial artery</td>
<td>Increased IMT in radial artery +2.3-fold higher (case)</td>
<td>DUS (high precision NIUS 02)</td>
<td></td>
</tr>
<tr>
<td>Boutouyrie et al41</td>
<td>Case control</td>
<td>21/24</td>
<td>32 ± 13</td>
<td>21M vs. 24M</td>
<td>CCA Radial artery</td>
<td>Increased IMT in CCA and radial artery CCA: +18% Radial artery: +2.3-fold higher (case)</td>
<td>High definition echotracking systems (not reported)</td>
<td></td>
</tr>
<tr>
<td>Barbey et al42</td>
<td>Case control</td>
<td>53/120</td>
<td>45.0 ± 1.7 M 55.0 ± 2.2 F</td>
<td>24M-29F vs. 83M-37F</td>
<td>CCA</td>
<td>Increased IMT in CCA, no atherosclerotic plaques +13% M +18% F</td>
<td>DUS (not reported)</td>
<td></td>
</tr>
<tr>
<td>Kalliokoski et al43</td>
<td>Case control</td>
<td>17/34</td>
<td>38 ± 14</td>
<td>7M-10F vs. 16M-18F</td>
<td>CCA, aortic and brachial artery</td>
<td>Increased IMT in CCA, aortic and brachial artery, reduction in FMD CCA IMT: +11% Aortic IMT: +27% Brachial IMT: +16% FMD: -33%</td>
<td>DUS (Acuson)</td>
<td></td>
</tr>
</tbody>
</table>
Table 1 (Continued). Principal studies in Literature which analyzed vascular aspects of Fabry Disease.

<table>
<thead>
<tr>
<th>Authors</th>
<th>Design study</th>
<th>Subjects included (case/control)</th>
<th>Age (years) mean ± SD or range and group</th>
<th>Gender (case vs. control)</th>
<th>Vessel type</th>
<th>Outcome</th>
<th>Results (case vs. control %)</th>
<th>Used Method (instrument)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbey et al⁴⁴</td>
<td>Case control</td>
<td>68/324</td>
<td>40.7 ± 10.9 M 44.7 ± 2.8 F</td>
<td>30M-38F vs. 208M-116F</td>
<td>CCA</td>
<td>Increased IMT in CCA</td>
<td>+13% M</td>
<td>DUS (Toshiba PowerVision 6000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7M vs. 8M</td>
<td>Radial artery</td>
<td>Increased IMT</td>
<td>+8% F</td>
<td>Intra-arterial pressure transducer</td>
</tr>
<tr>
<td>Moore et al⁴⁵</td>
<td>Case control</td>
<td>7/8</td>
<td>22-42 years</td>
<td></td>
<td></td>
<td>Increased PWV</td>
<td>IMT: +32% PWV: +2%</td>
<td>DUS (instrument not reported)</td>
</tr>
<tr>
<td>Puccio et al⁴⁶</td>
<td>Case control</td>
<td>6/12</td>
<td>Mean age 37 years</td>
<td>4M-2F vs. 8M-4F</td>
<td>Brachial artery</td>
<td>Reduction in FMD</td>
<td>FMD: -44%</td>
<td>DUS (instrument not reported)</td>
</tr>
<tr>
<td>Collin et al⁴⁷</td>
<td>Case control</td>
<td>46/30</td>
<td>33 ± 12</td>
<td>43M-3F vs. 28M-2F</td>
<td>CCA, Radial artery, Aorta</td>
<td>Increased IMT in CCA and radial artery, increased PWV in aorta</td>
<td>CCA IMT: +23% Radial artery IMT: +28% PWV: +29%</td>
<td>DUS (WTS, Pie MEdical)</td>
</tr>
<tr>
<td>Bensalah et al⁴⁸</td>
<td>Case control</td>
<td>29/58</td>
<td>Not reported</td>
<td>29M vs. 58M</td>
<td>Aortic Arch</td>
<td>Increased PWV</td>
<td>+24%</td>
<td>CMR</td>
</tr>
<tr>
<td>Kalliokoski et al⁴⁹</td>
<td>Case control</td>
<td>15/30</td>
<td>35 ± 12 years</td>
<td>9M-6F vs. 30F</td>
<td>Brachial artery</td>
<td>Reduction in FMD</td>
<td>No difference in rest and after hyperaemia</td>
<td>Acuson XP 128/10 US</td>
</tr>
</tbody>
</table>

The importance of obtaining a complete evaluation of the atherosclerotic burden was recently provided from Näslund et al51. For these authors, an open dialogue with both primary care physicians and individuals about silent atherosclerosis may be useful for improving patient’s adherence to a healthy lifestyle, enhancing primary prevention of CV diseases. In this pragmatic, open-label, randomized, and controlled trial the simple presentation of an atherosclerosis picture to patients could reduce the CV disease burden by the 1-year follow-up.

Coronary Artery Calcification (CAC) score, introduced by Agatston et al52, is the gold standard to predict future cardiovascular events. A limitation of CAC score is that CT imaging follow-up is not widely suitable due to the risk related to radiation exposure; moreover, it may have a considerable economic impact on public health costs. Currently, flow-mediated dilation, arterial stiffness, intima media wall thickness, ankle-brachial index, atherosclerotic plaques, and vascular calcification evaluation are the most widely used diagnostic tools to assess preclinical atherosclerosis53,54.

Evaluation of subclinical atherosclerosis by ultrasound radiofrequency data technology (RF-US) has gained popularity in experimental and clinical conditions recently55,56. The availability of vascular ultrasound instruments, implemented with RF-US, allows an automatic measurement of far-wall arterial QIMT (quality intima-media thickness), inter-adventitial diameter, and distension over the cardiac cycle (QAS, quality arterial stiffness). It provides feedback on the measurement’s quality with high accuracy. RF-US technology allows precise and quantitative measurements of both IMT elevation and decreases in vascular elasticity. For example, in rheumatologic patients, some authors found stiffness values and cIMT measurements higher than in healthy controls, especially in phases of active diseases57,58. RF-US technology was also used to evaluate a cohort of children with increased body mass index (BMI), compared with healthy peers. These studies documented an increased Q-IMT in overweight and obese children compared to those with normal weight59. In conclusion, many reports contributed to providing evidence in the usefulness of atherosclerosis early diagnosis in different scenarios.

Flore et al60 published by our group RF-US data technology, associated with a new ultrasound-based score for non-coronary arterial calcifications (CALCs), represented a non-invasive and complete method with great utility in subjects with subclinical atherosclerosis. In another report61 we found, QAS, QIMT and CALCs were highly correlated in subjects at low cardiovascular risk without previous cardiovascular events.

Our hypothesis is that QIMT, QAS and CALCs together could also be a useful tool to evaluate the “vascular age” in FD patients. In Figure 1, 2, 3 several paradigmatic examples of these diagnostic purposes are presented (images from personal archive). We believe that such pictorial representations could maximize the chances of identification.

Conclusions

A comprehensive evaluation of the cardiovascular system must be performed in all subjects to identify initial changes, stratify the patient’s CV risk, and lower the number of CV events in the general population. The importance of this goal is greater in FD patients. Determining...
CV risk in FD patient is very complex, since some authors claim that FD is itself a CV risk factor\(^1\). The reduction of the overall CV risk in this category of patients is one of the objectives to be pursued, considering the high risk that they have. A fortiori, FD patients should undergo periodic assessments of atherosclerotic involvement of the arteries, through non-invasive and economic techniques. Ultrasound could be the most accurate choice, although most studies describe the absence of characteristic plaque formation\(^2\). More frequently we find traces of subclinical atherosclerosis, such as an increase in IMT. Therefore, it is very important to find parameters that can constitute milestones in the evaluation of vascular involvement. Average intimal wall thickness and arterial stiffness have gained popularity in several scenarios and could be useful for this purpose. One of the future perspectives for this area is to perform simultaneous assessments of QAS, QIMT and CALC to study their role in the early diagnosis of atherosclerosis, and in the prediction of cardiovascular risk in FD.

Conflict of Interest
The Authors declare that they have no conflict of interests.

Acknowledgements
This article was created thanks to the logistical support of InGenomics Srl and Dr. Favalli V

Authors’ Contribution
Passaro G, Sicignano LL, and Flore R conceived and designed the study. Passaro G, Sicignano LL, Flore R, Gerardino L, Verrecchia E, Crasti M, Santoro L, Massaro MG consulted literature and collected data. Passaro G and Sicignano LL wrote the paper. Sicignano LL and Massaro MG drew up the bibliography. MR and TP reviewed and edited the manuscript. All authors read and approved the manuscript.
References

2) Germain DP. Fabry disease. Orphanet J Rare Dis 2010; 5: 30.

