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Abstract. – OBJECTIVE: In this study, we in-
vestigated the internal relationship between the 
pathogenesis of diabetic kidney disease (DKD) 
and abnormal glucose and lipid metabolism to 
identify potential biomarkers for diagnosis and 
treatment and investigated the role of the im-
mune microenvironment of glucose and lipid 
metabolism disorders in the occurrence and 
progression of DKD. 

MATERIALS AND METHODS: The chip data-
sets GSE104948 and GSE96804 from the Gene Ex-
pression Common Database (GEO) were merged 
using the “lima” and “sva” software packages in 
R Software (4.2.3), and the merged dataset was 
used as the validation set. The intersection be-
tween the differential genes of DKD and the glu-
cose and lipid metabolism genes in the MSigDB 
database was identified, and a nomogram of the 
incidence risk of DKD was built using three ma-
chine learning methods, namely LASSO regres-
sion, support vector machine (SVM), and random 
forest (RF), to validate the accuracy of the predic-
tion model. Immune scores were conducted us-
ing the unsupervised clustering method, and pa-
tients were divided into two subgroups. The two 
subgroups were screened for differential genes 
for enrichment analysis. The differential genes of 
patients diagnosed with DKD were clustered into 
two gene subgroups for co-expression analysis. 
In this study, we utilized the Cytoscape software 
to construct a network of interactions among key 
genes. 

RESULTS: Using machine learning, a diag-
nostic model was developed with G6PC and 
HSD17B14 as key factors. Enrichment analysis 
and immune scoring demonstrated that the de-
velopment of DKD was related to the imbalance 
in the microenvironment brought about by glu-
cose lipid metabolism disorders. 

CONCLUSIONS: G6PC and HSD17B14 may 
be potential biomarkers for DKD, and the estab-
lished predictive model is more helpful in pre-
dicting the incidence of DKD.
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Abbreviations
Diabetic Kidney Disease: DKD; Gene Expression Om-
nibus: GEO; Differential expression analysis: DEG; The 
Molecular Signatures Database: MSigDB; Support vec-
tor machines: SVM; Random Forest: RF; Protein-Protein 
Interaction Networks: PPI Networks ; Tumor microenvi-
ronment: TME; Human leukocyte antigen: HLA; Kyoto 
Encyclopedia of Genes and Genomes: KEGG; Weighted 
correlation network analysis: WGCNA; Natural killer 
cell: NK cell; Tricarboxylic Acid Cycle: TCA cycle; 
Principal Component Analysis: PCA; Reactive oxygen 
species: ROS.

Genes
CYP27B1: Cytochrome P450 family 27 subfamily B 
member 1; HSD17B14: Hydroxysteroid 17-beta dehy-
drogenase 14; G6PC: Glucose-6-phosphatase catalytic 
subunit; TGFBI: Transforming growth factor beta-in-
duced; FABP1: Fatty acid binding protein 1; EHHADH: 
Enoyl-CoA hydratase and 3-hydroxyacyl CoA dehy-
drogenase; ACOX1: Acyl-CoA oxidase 1; ECH1: Enoyl 
CoA hydratase 1; ECI2: Enoyl-CoA delta isomerase 2; 
ACOX2: Acyl-CoA oxidase 2; CRAT: Carnitine O-acet-
yltransferase; CAT: Catalase; SLC27A2: Solute carrier 
family 27 member 2; PECR: Peroxisomal trans-2-enoyl-
CoA reductase; HAO2: Hydroxyacid oxidase 2.

Introduction

Diabetic kidney disease (DKD) is one of the 
most prevalent microvascular complications of 
diabetes, and the kidney is a key target organ 
for microvascular injury in diabetes1. DKD is 
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the leading cause of end-stage renal disease. 
Relevant studies2 revealed that the incidence 
of DKD differs among high-risk subgroups. 
The molecular mechanism of DKD is extreme-
ly complex and is characterized by multiple 
targets, stages, and genes. Several studies3 
revealed that changes in the kidney microenvi-
ronment, genetics, appearance, and other fac-
tors are involved in the pathogenesis of DKD. 
DKD is typically characterized by the interac-
tion between genes and immune microenviron-
ment4. Early diagnosis and targeted treatment 
of DKD have been extremely challenging due 
to its progressiveness and heterogeneity and 
the concealment of the origin of metabolic and 
genetic epigenetic disorders. Experimentation 
and clinical evidence5 suggest that the activa-
tion of immune responses and chronic meta-
bolic inflammation play a significant role in the 
progression of diseases. Over time, the accu-
mulation of immune complexes may exacerbate 
kidney damage, whereas genetic/epigenetic 
factors may increase susceptibility to immune 
responses in specific populations. Poor glu-
cose control (chronic hyperglycemia, transient 
hyperglycemia, hypoglycemia), hypertension, 
dyslipidemia, and diabetes family history are 
all established factors for identifying high-risk 
groups of DKD6. Kidney lipotoxicity caused by 
lipid metabolism disorders may be the patho-
genesis of DKD and kidney insufficiency, and 
the development of lipomics has the potential 
for diagnosing and treating DKD7,8. Studies9,10 

have revealed that kidney tissues possess spe-
cific metabolic reprogramming and molecular 
pathological characteristics and that metabolic 
disorders exacerbate kidney stress and pro-
mote inflammatory responses. The interaction 
of these pathophysiological factors can trigger 
a series of chain reactions that result in glo-
merular filtration barrier damage11. Therefore, 
to explore a new vision for the diagnosis and 
treatment of DKD, metabolism was chosen as 
the target, and the immune microenvironment 
related to metabolism was analyzed.

In recent years, bioinformatics technology 
and microarray technology have been used 
extensively to identify pathogenic factors and 
disease mechanisms. The application of ma-
chine learning in bioinformatics has matured 
and enhanced over time, and the combination 
of these methods provides a solid foundation 
for disease diagnosis and prognosis. In this 
study, we developed a prediction model of di-

abetes related to glucose and lipid metabolism 
for establishing DKD, investigated the cor-
relation between the pathogenesis of DKD and 
the immune microenvironment, and provided 
additional biomarkers for clinical diagnosis as 
well as new ideas for targeted immunotherapy.

Materials and Methods

Pre-Treatment of Gene Expression and 
Identification of Differential Genes

Gene Expression Omnibus (GEO) is an open 
gene expression database that stores chips, 2G 
sequencing, and other forms of high-through-
put sequencing data. In this study, microarray 
datasets related to DKD were downloaded from 
the GEO (https://www.ncbi.nlm.nih.gov/geo/) 
database (the training set comprised a total of 
71 patients, including 41 DKD patients and 
20 non-DKD patients from GSE96804, as well 
as 7 DKD patients and 3 non-DKD patients 
from GSE104948. The validation set included 
22 patients from GSE30528, with 9 DKD pa-
tients and 13 non-DKD patients). GSE104948 
and GSE96804 were combined into one dataset 
for expression analysis. We used GSE30528 as 
the external validation dataset. The “limma” 
and “sva” software packages were used to elim-
inate batch effects and normalize the two sets of 
data. We used the “limma” package to identify 
differentially expressed genes (DEGs) between 
patients diagnosed with DKD and non-DKD 
patients.

Acquisition of Glucose and 
Lipid Metabolism Genes

In this study, 326 glycolysis-related genes 
(HALLMARK_GLYCOLYSIS, REACTOME_
GLYCOLYSIS, BIOCARTA_GLYCOLYSIS- 
PATHWAY, KEGG_GLYCOLYSIS_GLUCO-
NEOGENESIS, GO_GLYCOLYTIC-PRO-
CESS) and 742 lipid metabolism-related genes 
(search term: “lipid metabolism” Select RE-
ACTOME_METABOLISM_OF_LIPIDS) were 
obtained and screened. Based on the “VennDi-
agram” software package, 1,050 genes related 
to glucose and lipid metabolism were taken and 
combined. Intersect genes related to glucose 
and lipid metabolism with DKD-DEGs were 
used as candidate genes for constructing the 
model.
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Establishment and Validation of 
Candidate Genes and Risk Models 
Related to DKD Screening Based on 
Machine Learning

Support vector machine (SVM), LASSO re-
gression, and random forest (RF) feature selec-
tion algorithms were used to screen key genes, 
and we used the intersection of the three ma-
chine learning genes to build a logistic regression 
model using the “glmnet” and “randomForest” 
packages. Using a column chart scoring system, 
the curve was calibrated to assess the accuracy 
of the column chart, and clinical utility was as-
sessed using a clinical decision-making curve. 
The GSE30528 dataset was selected as the vali-
dation group for assessing the performance of the 
model on external datasets.

Analysis of Patient Subtypes and 
Immune Infiltration and Enrichment

DKD is a disease with biological heterogeneity, 
and accurate subtype identification and individu-
alized prognosis are essential in preventing DKD 
from developing into end-stage kidney disease. 
Therefore, the “ConsensusClusterPlus” software 
package was used to perform unsupervised clus-
tering for typing patients diagnosed with DKD 
based on the second step of obtaining DEGs in 
glucose and lipid metabolism. An ensemble clus-
tering method was utilized, involving repeated 
subsampling of the dataset, application of the 
optimal clustering algorithm, and aggregation 
of results to identify consensus across iterations. 
Clustering analysis revealed that when samples 
were divided into two clusters, the samples with-
in each cluster were relatively homogenous, lead-
ing to the formation of new molecular subtypes. 
To further assess the relationship between mo-
lecular subtypes and microenvironment, we used 
the ESTIMATE algorithm to calculate matrix 
scores, immune scores, and ESTIMATE scores, 
and to compare the differences among subtypes. 
Support vector regression analysis of gene ex-
pression data from mixed tissue samples was 
employed to estimate the relative abundance of 
various immune cell types, with the statistical 
significance of the estimates for each sample 
assessed using 1,000 permutation tests. DKD 
occurs in a microenvironment with a complex 
load system. We used the CIBERSORT algorithm 
to characterize immune cell composition based 
on gene expression profiles, and we used the 
Wilcoxon test to compare immune cell infiltra-
tion scores and tumor microenvironment (TME) 

scores across different subtypes. To examine the 
biological functional differences between sub-
types, we used the Kyoto Encyclopedia of Genes 
and Genomes (KEGG, available at: https://www.
genome.jp/kegg/) enrichment analysis to identify 
and analyze the biological functions of DEGs be-
tween the two subgroups, as well as the metabolic 
pathways and gene relationships.

Gene Subtypes and Immune Checkpoint 
Genes and Human Leukocyte Antigen 
Family Genes

Using the “ConsensusClusterPlus” software 
package, cluster searches were conducted for 
gene subtypes between the differential genes in 
the two subgroups, based on the subtypes of the 
patients. Human leukocyte antigen (HLA) is a 
gene family that regulates cell recognition and 
immune responses. Many studies have demon-
strated that the HLA gene locus may interact ge-
netically with the Type 1 and Type 2 diabetes reg-
ulatory genes. Immune checkpoints play crucial 
roles in regulating the expression of immune cells 
and immune activation. We used the Wilcoxon 
test to assess the expression differences between 
immune checkpoint genes and HLA family genes 
in glucose and lipid metabolism DEGs between 
subtypes.

Weighted Gene Co-Expression 
Network Analysis

We used the “WGCNA” software package 
to identify and cluster gene modules with high 
co-expression between subgroups. WGCNA 
analysis was performed between two gene sub-
groups, and the module genes were enriched with 
KEGG. The protein–protein interaction network 
was visualized using Cytoscape software (version 
3.7.2, available at: https://cytoscape.org/index.ht-
ml), and 10 hub genes were identified using the 
cytoHubba plugin.

Statistical Analysis
All statistical analyses and data processing 

were performed using R software (version 4.2.3, 
available at: https://www.r-project.org, The R 
Foundation for Statistical Computing, Vienna, 
Austria). The packages (available at: http://bio-
conductor.org/). A highly significant result, de-
noted by “***,” indicates a p-value lower than 
0.001 between the two groups. A result denoted 
by “**” signifies a p-value between 0.001 and 
0.01, while “*” corresponds to a p-value between 
0.01 and 0.05. These thresholds represent levels 
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of statistical significance, conferring a reasonable 
degree of confidence in the observed differenc-
es between groups. Significant differential gene 
expression in this study is defined by a corrected 
p-value (p-adjust) below 0.05 and an absolute log 
fold change (|logFC|) exceeding 1. Expression 
directionality, classified as upregulated or down-
regulated, is assigned for |logFC| values greater 
than 1 and lower than -1, respectively.

Results

Identification and Screening of DEGs
We used the merged datasets GSE96804 and 

GSE104948 and the COMBAT function in the 
sva package to eliminate batch effects, and prin-
cipal component analysis (PCA) was performed 
to reduce compositional differences resulting 
from objective factors. Based on the significance 
criteria, as detailed in the volcanic and thermal 
maps, 148 DKD-DEGs were finally identified 
in this study (Figure 1). The genes associated 
with glucose and lipid metabolism were inter-
sected with DKD-DEGs to obtain 20 genes for 
constructing the model. Box plots depicted the 
differential expression of related genes between 
patients diagnosed with DKD and non-DKD pa-
tients (Figure 2).

Machine Learning Construction of the 
DKD Predictive Diagnosis Model

To further narrow down the range of key 
immune cell-related genes, we used LASSO re-
gression (Figure 3A1) to constrain the model by 
introducing penalty coefficients, and a 10-fold 
cross-validation was conducted. Eight candidate 
genes with a lamda coefficient of one standard 
error (lamada.1se) were selected (Figure 3A2). 
An RF model and an RF graph were constructed 
based on candidate genes (Figure 3B1). The fea-
ture significance of genes was assessed, and the 
top five genes were selected as candidate genes 
for the RF method, and a significant graph (Fig-
ure 3B2) was created. In binary classification 
problems, the SVM model is commonly used 
to convert low-dimensional linearly separable 
spaces into high-dimensional linearly separable 
spaces. We used the SVM recursive feature 
elimination algorithm (Figure 3C1) to assess 
gene significance. The 5 genes with the highest 
significance score were selected, 20 iterations of 
cross-validation were performed to obtain the 
corresponding errors, and graphs of cross-val-

idation errors and cross-validation accuracy 
(Figure 3C2) were created. Finally, the candi-
date genes were intersected, and we screened 
out three genes (Figure 4A1). After stepwise 
regression, a logistic regression model was es-
tablished with HSD17B14 and G6PC as factors, 
and a column chart was drawn (Figure 4A2). 
Figure 4B1-3 demonstrates the corresponding 
receiver operating characteristic (ROC) curves, 
calibration curves, and clinical decision curves 
used to assess the discrimination, calibration, 
and clinical impact of the model. Figure 4C1-3 
displays the good discrimination, calibration, 
and clinical validity of the model based on an 
external dataset.

Distinguishing Patient Subgroups from 
Immune and Stromal Cell Analysis

Unsupervised clustering was performed on 
patients diagnosed with DKD using the “Consen-
susClusterPlus” software package, with a max-
imum clustering frequency of 10. Two subtypes 
were determined based on the consistency score 
and clustering results (Figure 5). Simultaneous-
ly, differential expression of genes involved in 
glucose and lipid metabolism was observed in 
the two subtypes (Figure 6A). Next, the immune 
cell composition of patients diagnosed with DKD 
was then analyzed using “CIBERSORT”, and we 
used the “ESTIMATE” package to calculate the 
immune score and matrix score (Figure 6B1-3). 
We used the Wilcoxon test to examine the differ-
ences between the two subgroups. According to 
the results, there were significant differences in 
the composition of seven types of immune cells 
in the two subtypes of DKD, including macro-
phages M2, γδ T cells, regulatory T cells (Tregs), 
and other groups that can suppress immune re-
sponses. There were differences in stromal cells, 
immune cells, and overall scores between the two 
subgroups. We used secondary clustering to sep-
arate them into two new subtypes and conduct-
ed an immune infiltration analysis (Figure 7A). 
Based on the genes that distinguish the two sub-
types (Figure 8), analyses were conducted on the 
expression differences between immune check-
point genes and HLA family genes in DEGS 
subtypes (Figure 7B/C).

Co-Expression Analysis and 
Screening of Hub Genes

WGCNA analysis was conducted between 
two subgroups of DEGs with the aim of identi-
fying gene modules with synergistic expression. 
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Figure 1. A, Differential genes with p-adjust < 0.05 and |logFC| > 1 were selected through the limma package, with red dots representing upregulated differential genes, green 
dots representing downregulated differential genes, and gray dots representing genes with no significant differences. B, DEGs heat maps of GSE104948 and GSE96804.
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Figure 2. A, Differential expression heatmap of genes involved in glucose and lipid metabolism in the training set. B, Differential boxplot of gene expression. Significance of 
differences: ***represents p < 0.001, **represents p < 0.01, and *represents p < 0.05.
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Based on the correlation coefficient of genes, it 
was determined whether two genes had similar 
expression patterns, and a hierarchical cluster-
ing tree was established to represent different 
gene modules. After calculating and investi-
gating the interaction between modules, it was 
determined that the expression significance of 
the MEblue module was relatively high (Figure 
9A). Then, additional research was conducted on 

the MEblue key module and its subgroups, and 
enrichment analysis was performed on the 597 
genes comprising the module (Figure 9B/C). A 
key module network was built with the Maximal 
Clique Centrality (MCC) algorithm for topol-
ogy analysis in Cytoscape to identify 10 key 
genes (EHHADH, ACOX1, ECH1, ECI2, ACOX2, 
CRAT, CAT, SLC27A2, PECR, and HAO2) (Fig-
ure 10).

Figure 3. A1, LASSO regression model diagram to perform variable screening while fitting the generalized linear model. 
A2, LASSO regression 10-fold cross-validation, dashed lines are lambda.min and lambda.1se; the best λ was selected based 
on this graph. B1, The number of branches with the smallest error from the model graph was determined to establish an RF 
model. B2, A lollipop chart was created based on the significance of genes; as revealed in the figure, CYP27B1, HSD17B14, 
G6PC, TGFBI, and FABP1 were the top five significant genes. C1, SVM machine learning accuracy curve. C2, SVM machine 
learning cross-validation error curve; the point with the smallest error and the highest accuracy was selected as the feature 
gene for SVM model screening.
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Discussion

The pathogenesis of DKD is unclear, and its 
mechanism has not been fully elucidated. At 
present, there are no highly sensitive and specific 
biomarkers for early diagnosis of DKD. The de-
termination of urine albumin and microalbumin-
uria can result in delayed diagnosis and treatment 
of the disease, which negatively impacts the prog-
nosis of DKD and the quality of life of patients 
with DKD. Existing biomarkers like albuminuria 

and Glomerular Filtration Rate (GFR) no lon-
ger suffice for nuanced disease stratification and 
prognosis. Emerging markers like miRNAs, spe-
cifically miRNA-125b-5p and miRNA-181b-5p, 
have shown12,13 promise as novel biomarkers and 
therapeutic targets in diseases such as Diabetic 
Kidney Disease and obesity, highlighting their 
critical role in metabolic regulation. We conduct-
ed this study to identify the potential changes in 
glucose metabolism and lipid metabolism in DKD 
and to identify reliable biomarkers. Two import-

Figure 4. A1, Intersection of three machine learning screened genes, screening out three genes; (A2) A column chart with 
HSD17B14 and G6PC as characteristic genes was finally established using the backward stepwise regression method. The 
ROC curves of the DKD column graph prediction model were compared in the training set (B1) and validation set (C1). The 
y-axis represents the true positive rate of risk prediction, whereas the x-axis represents the false positive rate of risk prediction. 
Analysis of the DKD patient decision curve using the training set (B2) and validation set (C2). B3, The training set and (C3) 
validation set. According to the calibration curve, the predicted probability of the model in the training and validation sets 
closely matches the actual probability.
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ant genes, HSD17B14 and G6PC, were identified 
by comprehensively analyzing the GEO database 
and by developing a logistic regression model 
using DKD-DEGs. Among them, HSD17B14 was 
responsible for the metabolism of steroids and 
other substrates, including fatty acids, prosta-
glandins, and antibiotics. The gene and protein 
expression of 17-β dehydrogenase 14 (HSD17B14) 
of hydroxysteroids was diminished in proximal 
tubules of human diabetes and kidney-injured 
mice models despite HSD17B14 being primarily 
a member of the enzyme family that regulates 

the relative balance of estrogen and androgen 
substrates, with secondary functions, such as 
fatty acid metabolism14. Studies15 have revealed 
that the upregulation of HSD17B14 expression 
increases intracellular estrogen levels to drive 
inflammation, causing an increase in ROS pro-
duction and affecting steroid synthesis and me-
tabolism. G6PC is one of the genes that mediates 
the encoding of glucose-6 phosphatase and is a 
key enzyme in maintaining glucose homeostasis, 
playing a crucial role in gluconeogenesis and gly-
cogen breakdown. The expression of G6PC had 

Figure 5. A, Consensus matrix for k=2 clusters, showing grouping consistency. B, Delta area plot with an elbow at k=2, 
indicating the optimal cluster count. C, CDF plot of clustering stability, plateauing at k=2. D, Tracking plot demonstrating 
sample assignment stability across varying k values.
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an immediate impact on the expression level of 
glucose-6-phosphatase, thereby restricting glu-
cose metabolism. Studies16,17 suggest that down-
regulation of G6PC expression increases glyco-
gen storage, which leads to significant kidney 
enlargement and progressive glomerular hyper-
perfusion and ultrafiltration, followed by microal-
buminuria. G6PC is predominantly expressed in 
the liver, but studies18 have suggested its involve-
ment in the immune infiltration of the microen-
vironment of clear kidney cell carcinoma. G6PC 
mutation causes glycogen storage disease type 1a, 
and G6PC overexpression affects glucose metab-
olism19. KEGG pathway analysis revealed that the 
differences between the two gene subgroups were 
closely associated with fatty acid metabolism and 
the degradation of branched-chain amino acids 
(BCAAs) such as valine, leucine, and isoleucine. 
Clinical trials20 have demonstrated that serum 

BCAA levels gradually decrease as diabetic kid-
ney disease (DKD) progresses in patients with 
Type 2 Diabetes Mellitus (T2DM).

Increasing evidence suggests that the occur-
rence of DKD may be associated with genetic, 
immune, and metabolic factors. Some evidence21 

suggests that abnormal immune response and 
cellular immune dysfunction in the kidneys are 
important factors promoting kidney function and 
structural enhancement. Mesenchymal stem cell 
(MSC) treatment in early diabetic nephropathy 
shows potential in preventing renal injury and 
restoring immune balance via modulation of in-
flammation and macrophage activity. It is nec-
essary to investigate the pathogenesis from the 
perspective of the immune microenvironment 
and metabolic reprogramming.

Despite the fact that DKD is not typically 
classified as an inflammatory glomerular disease, 

Figure 6. A, Immune cell distribution across clusters C1 and C2, highlighting significant differences in CD8 T cells, follicular 
helper T cells, Tregs, and M0 macrophages, reflecting immune heterogeneity. B1, Epidemic cell score; (B2) Stromal cell score; 
(B3) Comprehensive scoring.



873

Development of a clinical prediction model for diabetic kidney disease

Figure 7. A, Differences in immune infiltrating cells between the two gene subtypes. B, Differential expression of HLA family genes among gene subtypes. C, Differential 
expression of immune checkpoint genes between the two gene subtypes.
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increasing evidence22 suggests that kidney in-
flammation is a crucial factor in the pathogenesis 
of DKD. Chronic, low-grade inflammation is one 
of the characteristic features of DKD. Chronic 
inflammation and chronic fibrosis are the primary 
causes of kidney function loss. Numerous stud-
ies23,24 indicate that hyperglycemia significantly 
impairs the viability of human renal mesangial 

cells as well as the proliferation of pancreatic 
β-cells and insulin secretion, highlighting the 
detrimental effects of high glucose levels on re-
nal and pancreatic function. Macrophages, which 
serve as antigen-presenting cells, interact with 
adaptive immune cells (such as T cells) during the 
inflammatory response, thereby shaping T cell 
responses and disrupting immune metabolism 

Figure 8. Gene subtype clustering post-patient subtyping: analysis indicates k=2 as the optimal gene subtype partitioning. 
A, Heatmap showcasing a strong consensus for bifurcating genetic subgroups, evidenced by the homogenous color density. 
B, The delta area plot, with a pronounced elbow at k=2 delineating the optimal bifurcation of the dataset into two discrete 
clusters. C, Array of cumulative distribution function curves for cluster counts one through ten, converging into a plateau 
at k=2, which substantiates the stability of the binary clustering solution. D, Tracking plot that delineates patient sample 
distributions across varying cluster counts, with consistent coloration within the bars underscoring the dependability of the 
dual-cluster.configuration.
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homeostasis, leading to a pro-inflammatory en-
vironment25. In this study, we found that immune 
abnormalities can serve as an upstream mediator 
of inflammation and exacerbate metabolic im-
balances. The condition and output of immune 
cells play a crucial role in the occurrence and 
development of DKD. The differences of im-
mune cells between subgroups were compared, 
and six differential immune cells were obtained, 
namely, regulatory T cells (Tregs), γδT cells, M1 
macrophages, M2 macrophages, resting dendritic 
cells, and neutrophils. High glucose-mediated 
metabolic disorders may interfere with macro-
phage and T-cell interactions26. In this condi-
tion, the composition of adaptive immune cells, 
including CD4+T, CD8+, and regulatory T cells 
(Tregs) changes27. The differential expression of 
regulatory T cells and γδT cells may result from 
the distinct protective mechanisms of gene sub-

Figure 9. A, WGCNA analysis identified co-expressed modules; the heat map reveals that MEblue is the most significant 
co-expressed module. B-C, KEGG enrichment analysis was performed in the two gene subgroups, indicating a significant 
correlation between glucose metabolism (including TCA cycle) and lipid metabolism pathways in enrichment analysis.

Figure 10. 10 Hub genes were identified using the cytoHub 
plugin.
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groups against inflammatory responses. Multiple 
signaling pathways and local microenvironments 
can induce kidney macrophages to differentiate 
into M1 pro-inflammatory phenotype and M2 
anti-inflammatory phenotypes28. In this study, 
the differential expression of M1 and M2 macro-
phages between the two subgroups suggests that 
differences in gene expression regulate macro-
phage polarization. The epigenetic phenomenon 
has been identified29 as a risk factor for DKD, 
but its function and the consequences of epigen-
etic alterations are still unknown. Studies30 have 
demonstrated that metabolic reprogramming is 
involved in innate and adaptive immune respons-
es to regulate immune cell function, thereby 
establishing a connection between immune re-
sponse and metabolic reprogramming.

Cellular fate decisions made by immune cells, 
including activation, proliferation, differentiation, 
and polarization, are influenced by alterations in 
cellular metabolism, according to cellular immu-
nometabolism31. We discovered that immune cell 
subpopulations in disease states exhibit different 
metabolic pathways to promote cell survival and 
the formation of cell lineages. Due to the forma-
tion of numerous branches by intermediates in 
biochemical reactions, the presence of numerous 
enzyme subtypes, the reversibility of metabolic 
processes, the presence of numerous complement 
inputs into metabolic cycles, and the presence of 
numerous material sources, a complex metabolic 
network is formed32-34. The integration and re-
construction of biochemical reactions in material 
metabolism give the microenvironment of the 
body a great deal of vitality, which is also the 
physiological basis for the complex immune mi-
croenvironment of DKD. As the second-highest 
energy-consuming organ after the heart, the kid-
ney must maintain homeostasis in energy metab-
olism, as abnormal energy metabolism can result 
in cell dysfunction and even death. In a study35 

involving 522 diabetic patients with concomi-
tant hypertension, the importance of stable lipid 
levels in preventing poor glycemic control was 
particularly emphasized. Genome-wide associa-
tion studies (GWAS) can be employed to identify 
genetic links associated with the accumulation of 
adipose tissue36.

Studies37 have revealed that pathological met-
abolic disturbances and gene reprogramming are 
frequently crucial to the occurrence and develop-
ment of diseases, affecting not only the molecular 
pathways of kidney cells but also the immune 
system. Thus, we constructed a time-space line 

comprising of chronic low-grade inflammation, 
an abnormal immune microenvironment, and 
metabolic reprogramming of DKD progression.

Firstly, in this study, two diagnostic biomarkers 
of DKD were identified. Then, a diagnostic mod-
el was constructed, and the roles and mechanisms 
of related metabolic abnormal genes and immune 
microenvironments in DKD were investigated. 
There are limitations to this study, including its 
small sample size, and both the training set and 
the validation set should be expanded to increase 
the size of the data to achieve universality with 
a large sample size. Although the diagnostic 
prediction model performed well in this study, 
the relevant results were not further experimen-
tally validated. Additionally, the study’s reliance 
on retrospective data may introduce biases that 
could affect the findings. Prospective studies are 
needed to confirm these results and understand 
the model’s real-world applicability and perfor-
mance.

Conclusions

We screened two key genes and developed a 
highly accurate predictive model, providing novel 
references for the diagnosis, mechanism research, 
and treatment of this disease.
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