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Neonatal sevoflurane anesthesia induces
long-term memory impairment and
decreases hippocampal PSD-95 expression

without neuronal loss
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Abstract. - AIM: Volatile anesthetics are
widely used in the clinic, and sevoflurane is the
most prevalent volatile anesthetic in pediatric
anesthesia. Recent findings question the poten-
tial risks of volatile anesthetics on brain devel-
opment. Evidence suggests that sevoflurane
may cause neuronal deficiency. This study inves-
tigates the long-term effect of sevoflurane in the
developing brain.

MATERIALS AND METHODS: We anes-
thetized 7 day-old rats for 4 h with 2.5% sevoflu-
rane. A Morris water maze was used to evaluate
hippocampal function 7 weeks after sevoflurane
exposure. Nissl staining was performed to ana-
lyze neuronal loss. PSD-95 (postsynaptic density
protein-95) expression in the hippocampus was
measured using a western blot.

RESULTS: The exposure to 2.5% sevoflurane
caused long-term deficits in hippocampal func-
tion and decreased hippocampal PSD-95 expres-
sion without neuronal loss. This study demon-
strates that P7 rats exposed for 4 h to 2.5%
sevoflurane have significant spatial learning and
memory impairment 7 weeks after anesthesia. In
addition, PSD-95 expression in the hippocampus
decreased at P56 without neuronal loss.

CONCLUSIONS: These data suggest that
sevoflurane causes neurotoxicity in the develop-
ing brain, which may be attributed to decreased
PSD-95 in the hippocampus.
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Introduction

Volatile anesthetics are widely used in the
clinic, and sevoflurane is the most prevalent
volatile anesthetic in pediatric anesthesia. It is
suitable for infants and children due to its low

blood/gas partition coefficient, rapid onset and
offset, aromatic odor, and low airway irritation.
However, recent findings question the potential
risks of volatile anesthetics on brain develop-
ment. Exposure of newborn animals to a variety
of anesthetics increases neural stem cells and
neuronal apoptosis, causing prolonged neurode-
generation in the developing brain'"!!. Jevtovic-
Todorovic et al” and others®!>!3 observed that
isoflurane causes widespread apoptotic neurode-
generation in the developing brain, hippocampal
synaptic function deficits, and persistent memory
impairments. Similar findings were detected in
sevoflurane-exposed rat pups!*!®. Satomoto et
al" found that exposing neonatal mice to sevoflu-
rane caused learning deficits as well as abnormal
social behaviors that resemble autism spectrum
disorder. Moreover, a study in human volunteers
suggested that 0.25% sevoflurane blocks emo-
tional memory?.

Postsynaptic density protein-95 (PSD-95) is
a membrane-associated guanylate kinase
(MAGUK) that is concentrated at glutamatergic
synapses?!2*, It regulates adhesion and receptor
function as well as controls N-methyl-D-aspartate
glutamate (NMDA) and a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) re-
ceptor clustering®32. PSD-95 enhances matura-
tion of the presynaptic terminal, increases the
number and size of dendritic spines®, and con-
tributes to synaptic organization* after neuronal
damage from cerebral ischemia®-*, These results
demonstrate that PSD-95 can orchestrate synap-
tic development and plays an important role in
synapse stabilization and plasticity.

To explore the molecular mechanisms of pro-
longed neurotoxicity induced by sevoflurane, we
examined neuronal number and PSD-95 expres-
sion in the hippocampus of 7 day-old rats after
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sevoflurane exposure. We also examined their
neurobehavioral performance to determine
whether a single exposure of sevoflurane can
cause long-term cognitive disorders.

Materials and Methods

Animals and General Anesthesia

Male Sprague-Dawley rats (n = 120) at post-
natal day 7 (P7) were randomly assigned to
sevoflurane anesthesia or mock anesthesia
groups. Anesthesia was performed by placing the
animal in a plastic chamber flushed continuously
for 4 h with 2.5% sevoflurane (Maruishi Pharma-
ceutical Co. Ltd., Osaka, Japan) in air or air
alone at identical flow rates. The temperature of
the chamber floor was maintained at 37°C using
a heating pad under the chamber. After exposure
to sevoflurane or air, rats were housed in stan-
dard cages with 4 animals/cage for the duration
of the experiment. Ethical approval was obtained
from the Zhong Shan Hospital Research Ethics
Committee (Shanghai, China).

Arterial Blood Gas Analyses

The pups underwent arterial blood sampling
from the left cardiac ventricle, and the samples
were transferred to heparinized glass capillary
tubes. Blood pH, PaCO,, PaO,, lactate (Lac), and
bicarbonate (HCO;) were analyzed immediately
after blood collection using a GEM Premier 3000
(Instrumentation Laboratory; Lexington, MA,
USA). Samples were obtained immediately upon
completion of anesthesia.

Morris Water Maze

We followed the procedure established by
Morris et al*’. Briefly, the Morris water maze
(MWM), a circular pool (2 m diameter; 0.6 m
depth), was filled with water (19-21°C). A trans-
parent platform (15 cm diameter) was placed in a
constant position (in the middle of one of the
pool’s quadrants, 1-2 cm below the water surface
to render it invisible) for each set of trials. Rats
were subjected to 3 consecutive training days (3
series of 8 trials) to familiarize them with finding
and perching on the hidden platform that was
maintained in the fixed location. At the start of
each trial, rats were placed in the pool facing the
wall and were allowed to swim for 60 s or until
the platform was found. If the rat did not find the
platform during the trial, it was guided to the
platform and remained on it for 15 s. On the test
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day (day 4), rats were given one 60-s probe trial
in which the platform was removed from the pool
to evaluate the number of times the animal
crossed the previous location of the platform,
time spent in the target quadrant, swimming
speed in the target quadrant, and overall swim-
ming speed.

Nissl Staining

After 8 weeks, rats from each experimental
group were perfused transcardially after anes-
thetizing with 40 ml of normal saline, followed
by 30 ml of 4% paraformaldehyde (PFA). The
brains were fixed in 4% PFA overnight at 4°C.
Coronal sections (20 m in thickness) were cut
using a vibratome (VT1200; Leica, Wetzlar, Ger-
many). Sections were mounted on microscope
slides (Fisher, Fair Lawn, NJ, USA) and air-
dried. The slides were soaked for 3 min in cresyl
violet working solution (0.02% buffer solution,
0.2% sodium acetate, and 0.3% acetic acid), de-
hydrated with alcohol and xylene, and
mounted®®. All images were acquired using an
Olympus IX71 microscope (Tokyo, Japan) and
displayed as maximum-intensity projections of
Z-stack images created using Image-Pro software
(Media Cybernetics, Silver Spring, MD, USA).
Cell counts were performed without knowledge
of the experimental conditions. Nissl-positive
neuronal cells were manually and blind-test
counted within the hippocampal dorsal ganglia,
CA1l (cornu ammonis 1), and CA3 regions. Total
cell counts were averaged from at least 3 sections
of each hippocampal region per animal.

Western Blot Analyses

On P7 and P56, rats were decapitated and the
hippocampi were homogenized and sonicated in
2% SDS (sodium dodecyl sulfate) buffer contain-
ing 50 mM Tris (pH 6.8), | mM EDTA, 1 mM
sodium fluoride, 1 mM sodium orthovanadate,
and complete protease inhibitor mixture (Sigma
P8340; Sigma Aldrich Co., St. Louis, MO, USA;
1:100 dilution). The homogenates were cen-
trifuged at 15,000 x g for 20 min at 4°C. Protein
concentrations were estimated using a Bradford
assay (Bio-Rad, Hercules, CA, USA). Samples
were treated for 5 min with Sodium Dodecyl Sul-
phate (SDS) buffer at 95°C, electrophoresed on a
10% SDS polyacrylamide gel, and blotted to a
PVDF membrane (Millipore, Bedford, MA,
USA). Blots were incubated overnight at 4°C
with the rabbit PSD-95 antibody (Cell Signaling
Technology, Danvers, MA, USA; 1:1000 dilution)
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or a monoclonal -actin antibody (Cell Signaling
Technology, Danvers, MA, USA; 1:4000 dilu-
tion). Blots were incubated for 1 h at room tem-
perature with HRP-conjugated secondary goat an-
ti-rabbit immunoglobulin G (IgG; Cell Signaling
Technology, Danvers, MA, USA; 1:4000 dilu-
tion). Immunoreactive bands were visualized us-
ing Bio-Rad Universal Hood 76S/08298 (Bio-
Rad, Hercules, CA, USA). PSD95 immunoreac-
tivity was normalized to that of -actin. Each ex-
periment was repeated at least 5 times.

Statistical Analysis

All data are expressed as the mean + SEM.
Data were analyzed using unpaired Student’s f-
tests using Origin 7.5. p < 0.05 was considered
statistically significant.

Results

Sevoflurane Does Not Induce Metabolic
or Respiratory Impairment

The pups appeared pink throughout the 4 h
sevoflurane exposure, suggesting no impairment
in respiration or metabolism. Animals recovered
rapidly from anesthesia and displayed no neuro-
logic symptoms or signs of discomfort. There was
no mortality during or after anesthesia. Further-
more, to assess the ventilation and oxygenation ef-
ficiency, we performed blood gas analyses at the
end of anesthesia (n = 9). Control samples were
obtained from rats exposed to air-oxygen mixture
alone during the same period. Blood gas analyses
indicated no signs of metabolic or respiratory im-
pairment. All parameters tested, including pH, ar-
terial oxygen tension, and arterial carbon dioxide
tension, did not differ significantly from the con-
trol (z-test, all p values > 0.05; Table I).

Table I. Arterial blood gas analyses.

Arterial
blood gas Control Sevoflurane
pH 7.4 +0.05 7.38 £0.04
PaCO, (mmHg) 28.4+3.0 30.1+4.0
PaO, (mmHg) 91.0+£6.8 88.8 +5.6
Sa0, (%) 93.6+2.6 92.7+2.5

Exposure to sevoflurane does not induce significant meta-
bolic or respiratory dysfunction. Arterial blood gas analyses
revealed no significant differences in any of the measured
parameters between the sevoflurane-exposure group and
controls (z-test, p values > 0.05).

Neonatal Sevoflurane Exposure
Results in Late-Onset Learning and
Memory Deficits

After exposure to 2.5% sevoflurane or air at
P7, rats were tested in the Morris water maze at
P56 to evaluate spatial learning and reference
memory.

Rat spatial memory was impaired 7 weeks
(P56) after sevoflurane exposure (Figure 1).
Both anesthesia groups successfully learned the
task, but the sevoflurane-exposure group had a
higher escape latency (n = 15, p < 0.05) (Figure
1 A). During the probe trial, sevoflurane-ex-
posed rats spent less time in the target quadrant
searching for the missing platform than did the
control rats (n = 15, p < 0.05) (Figure 1 B). The
decreased number of times the sevoflurane-ex-
posed rats crossed the former location of the
platform reflected impairment in special memo-
ry (n = 15, p < 0.05) (Figure 1 C). However,
sevoflurane-exposed rats had the same swim-
ming speed compared with to control rats (n =
15, p > 0.05) (Figure 1 D), indicating that motor
deficits did not contribute to differences in es-
cape latencies, number of times of crossing the
platform location, or time spent in the target
quadrant.

Sevoflurane Does Not Reduce the
Number of Healthy Pyramidal Neurons
in the Hippocampus

Using Nissl staining, we investigated whether
sevoflurane increased hippocampal neuronal loss
49 days after exposure. As shown in Figure 2,
compared with pyramidal neurons in the hip-
pocampus of the control group, there were no re-
markable neuropathological changes, including
neuronal loss and nucleus shrinkage, in each re-
gion of the hippocampus (n = 12, p > 0.05).

Sevoflurane Time-Dependently Decreases
PSD-95 Expression in the Hippocampus

Western blot analyses of hippocampal PSD-95
in the sevoflurane-exposure group and control
group were performed immediately after the rats
recovered from anesthesia, and 49 days after
anesthesia (P56). The results showed that, com-
pared with control rats, sevoflurane-treated rats
exhibited a time-dependent decrease in hip-
pocampal PSD-95. PSD-95 expression was sig-
nificantly different between the sevoflurane and
control groups (n = 12, p < 0.05) in the hip-
pocampus of rats at P56, but not at P7 (n =12, p
> 0.05) (Figure 3).
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Figure 1. Effect of neonatal sevoflurane exposure on spatial learning. A, Rats were evaluated at P56 for their ability to deter-
mine the location of a hidden platform. A #-test of escape latency (the time to find the hidden platform) indicated that the per-
formance of sevoflurane-exposed rats was significantly inferior to that of control rats during place training. B, Probe trial per-
formance of sevoflurane-exposed and control rats during testing. During the probe trial, sevoflurane-exposed rats spent less
time in the target quadrant searching for the missing platform than did the controls (p < 0.05). C, During the probe trial,
sevoflurane-exposed rats spent less time crossing the former location of the platform than did the controls (p < 0.05). D, Swim-
ming speed during the probe trial. Sevoflurane-exposed rats had a similar swimming speed to the control rats (p > 0.05). E-a,
Typical swimming pattern in the probe trial for control rats. E-b, Typical swimming pattern in the probe trial for sevoflurane-
exposed rats.
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Figure 2. Neonatal sevoflurane exposure did not cause significant neuronal loss. Sections of CA1l, CA3, and DG were Nissl
stained (x40): X. No remarkable neuropathological changes, including neuronal loss and nucleus shrinkage, in each hippocam-

pal region were observed.
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Figure 3. Compared with control rats, sevoflurane-treated rats exhibited a time-dependent decrease in hippocampal PSD-95
expression. A significant difference in PSD-95 expression was detected in the hippocampi of rats in the sevoflurane group and

control group (p < 0.05) at P56, but not at P7 (p > 0.05).

Discussion

This study demonstrates that P7 rats exposed
for 4 h to 2.5% sevoflurane have significant spa-
tial learning and memory impairment 7 weeks af-
ter anesthesia. In addition, PSD-95 expression in
the hippocampus decreased at P56 without neu-
ronal loss.

Behavioral impairment was observed in rats af-
ter sevoflurane exposure on P56. The poor perfor-
mance of sevoflurane-exposed rats in the Morris
water maze was manifested as higher escape la-
tency, less time spent in the target quadrant, and
fewer number of times the platform was crossed.
It is widely accepted that spatial learning and ref-
erence memory detected by the Morris water
maze represent hippocampal function3”-3%:40,
Therefore, we conclude that neonatal sevoflurane
exposure causes long-term hippocampal impair-
ment. This is consistent with data from other
labs'*#!. In this study, we used 2.5% sevoflurane
that did not inhibit respiration and circulation in
rat pups. Arterial blood analyses confirmed that
none of the rats experienced hypoxemia or hyper-
capnia during the 4-h sevoflurane exposure. In
addition, no differences in the arterial blood gas
analyses between sevoflurane-exposed and con-
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trol rats were detected. These results exclude the
contribution of hypoxemia or hypercapnia to be-
havioral impairment. The similar swimming
speeds of sevoflurane-exposed and control rats
suggest that learning and memory deficits in
anesthetized rats do not result from poor locomo-
tor performance. From these data we hypothesize
that sevoflurane itself triggers neurodegeneration.
Brain growth spurts in prenatal and postnatal
stages*?. In humans, the largest increase in brain
weight in both sexes occurs during the first 3 years
of life®. In rats, brain growth is most rapid during
the first 2 weeks of postnatal life**. Any influence
imposed during the period of brain growth affects
brain development>*-4%. In the present study we
used rats at P7 as immature animals to study
sevoflurane-induced neuronal impairment.
Although the exact mechanism of action of
sevoflurane remains unknown, alteration of
synaptic transmission involving the y-aminobu-
tyric acid type A (GABA) and NMDA receptors
seems to play an important role*-3. The GABA
and NMDA receptors are essential for develop-
ment of an ordered neural map>**’. Neurotrans-
mitters or compounds that act on NMDA or GA-
BA receptors may contribute to the impairment
of brain development and synaptogenesis!>!3-3-62,
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We hypothesized that sevoflurane impairs hip-
pocampal function via the GABA receptor and/or
NMDA receptor.

We observed no increased neuron loss 7 weeks
after sevoflurane exposure. Similarly, Loepke et
al' found increased rates of brain cell death in the
hours after neonatal isoflurane exposure without
a detectable reduction in neuronal density in
adulthood. Bercker et al'® revealed that sevoflu-
rane did not cause increased cell death although
the animals were deeply anesthetized. In addi-
tion, we detected a time-dependent reduction of
PSD-95 expression in the hippocampus after
neonatal sevoflurane exposure. Hippocampal
PSD-95 expression did not decrease immediately
after sevoflurane exposure, but occurred 7 weeks
later. The decrease in PSD-95 may be due to dys-
plasia of the glutamatergic synapse or a lower
density of PSD-95 on excitatory postsynaptic
membranes.

Recent investigations revealed some mecha-
nisms may be involved in the cognitive impair-
ment. Xie Z7* found nitrous oxide plus isoflurane
can promote neurotoxicity by inducing apoptosis
and increasing -amyloid protein (A ) levels”.
Law A’s finding suggested a correlation between
aged cognitive impairment and change in mes-
senger RNA expression for the neuronal nitric
oxide synthase and haem oxygenase-2 systems in
hippocampus. Our study may provide another
possible explanation for neuron degeneration.
PSD-95 may play an important role in neuronal
degeneration after neonatal sevoflurane exposure.

PSD-95 is a membrane-associated guanylate ki-
nase (MAGUK) that is concentrated at glutamater-
gic synapses®!*, It regulates NMDA and AMPA
receptor clustering®*%3-% and plays an important
role in the transport, localization, and assembly of
supramolecular signaling complexes®®®’. PSD-95
may recruit ion channels and neurotransmitter re-
ceptors to intercellular junctions formed between
neurons®®. It also enhances maturation of the
presynaptic terminal, increases the number and
size of dendritic spines*, and contributes to synap-
tic organization*®. PSD-95 interacts with neu-
ronal nitric oxide synthase (nNOS)%. Overexpres-
sion of PSD-95 in hippocampal neurons can drive
maturation of glutamatergic synapses®. Mice
lacking PSD-95 have severely impaired spatial
learning®. Feng Tao’ has demonstrated that PSD-
95 PDZ domain-mediated protein-protein intera-
tions are disrupted by clinically relevant concen-
trations of inhaled anesthetics. It is in good agree-
ment with our result.

Xie Z7 found sevoflurane can elevate levels of
beta-site amyloid precursor protein-cleaving en-
zyme and A beta in vitro and in vivo. A 42 could in-
duce decreases in PSD-957. So, A may has a role in
the decreases in PSD-95. Neonatal exposure to
sevoflurane causes neurohistopathological changes
and decreases nNOS protein levels in the rat hip-
pocampus’’. Early exposure to sevoflurane decreas-
es nNOS in the neonatal hippocampus'®. This
change of nNOS may disrupt nNOS-PSD protein
interaction, resulting in the decreases of PSD-95.

Conclusions

In the present study, decreased PSD-95 ex-
pression may contribute to the impairment of
hippocampal function. The lack of the PSD-95
bond to the NMDA receptor allows aCaMKII
(a-calcium calmomodulin kinase II) to find free
binding sites on NR2A (the NMDA receptor:
NR2A) subunits that are no longer occupied by
PSD-95. PSD deficiency leads to increased levels
of CaMKII bound to the NR2 subunits of NM-
DA receptor’®’!. These molecular events are as-
sociated with increased neuronal impairment.
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