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Abstract. – OBJECTIVE: Disulfidptosis is a 
novel mode of cell death, a programmed mode of 
intracellular disulfide accumulation due to solute 
carrier family 7 member 11 (SLC7A11)-mediated 
abnormalities in the cell membrane cystine trans-
port system. Numerous studies have confirmed 
the prominent role played by SLC7A11 in tumors, 
but the involvement of SLC7A11 as an important 
mediator of disulfidptosis in the death process of 
lung adenocarcinoma cells remains unclear.

MATERIALS AND METHODS: We obtained 
4,107 SLC7A11-related genes and analyzed them 
using a total of 1,040 lung adenocarcinoma tran-
scriptome sequencing data from The Cancer 
Genome Atlas (TCGA) cohort and GEO (Gene 
Expression Omnibus) cohort and 991 relevant 
clinical data. First, we screened for differential 
genes and identified molecular subtypes for as-
sessing characteristic differences between lung 
adenocarcinoma subtypes under the influence 
of SLC7A11-associated genes. Then, risk score 
models were constructed to assess the prog-
nosis, immune infiltration, tumor microenviron-
ment, and drug treatment effects in lung ade-
nocarcinoma patients. Finally, we also analyzed 
the distribution of cell types and expression of 
characteristic genes within the tumor using a 
single-cell database. In addition, relevant drug 
sensitivities were predicted.

RESULTS: We screened 956 genes with signif-
icant differences and identified 2 molecular sub-
types and found significant differences in their 
prognosis and that subtype B had a significantly 
better survival prognosis than subtype A. In ad-
dition, we found that pathways associated with 
cell proliferation division and DNA repair were 
enriched in the high-risk type A samples. Final-
ly, we constructed a robust risk-scoring system, 
and our risk analysis revealed a general reduc-
tion of various immune cell components and tu-
mor stromal components in the immune micro-
environment of high-risk lung adenocarcinoma 
and a distinct immune infiltration pattern of im-
mune cells, which was associated with a lower 
survival rate.

CONCLUSIONS: Our comprehensive analy-
sis of SLC7A11-related genes suggests that di-
sulfidptosis has a potential value in the tumor 
microenvironment, immunity, clinical outcome, 
and prognosis of lung adenocarcinoma. These 
findings may increase our understanding of di-
sulfidptosis as a novel cell death paradigm and 
provide ideas for assessing the prognosis of 
lung adenocarcinoma and developing new diag-
nostic and therapeutic strategies.
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Introduction

Disulfidptosis is a novel mode of cell death 
first identified in February 2023 by Liu et al1. 
It is induced by abnormal intracellular disul-
fide accumulation due to abnormal cystine up-
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take mediated by SLC7A11, which belongs to 
the solute carrier family and encodes an ami-
no acid transport system with high specificity 
for cysteine and glutamate, which mediates the 
fine regulation of transmembrane substrates for 
cell metabolism, growth and death. Regulation 
across cell membranes is essential for cell me-
tabolism, growth and death. Previous studies2 
have confirmed that SLC7A11 is overexpressed 
in various cancer diseases, particularly in tumor 
cells resistant to therapies such as chemother-
apy and radiation and is associated with poor 
prognosis. For example, SLC7A11 induces tumor 
formation by regulating oxidative stress in some 
homozygous Kirsten ratsarcoma viral oncogene 
homolog (KRAS) mutant cancers such as pan-
creatic ductal adenocarcinoma (PDAC), colonic 
adenocarcinoma (COAD) and lung adenocar-
cinoma (LUAD)3. In addition, SLC7A11 seems 
to be associated with drug resistance behavior 
during tumor treatment. It has been shown4,5 that 
SLC7A11 contributes to drug-resistant behavior 
during melanoma treatment by promoting intra-
cellular glutathione (GSH) synthesis, and histone 
deacetylase inhibitor dramatically improves this 
feature, leading to easier regression of cancer 
cells. Similar mechanisms have been identi-
fied6-8 in gastric cancer, lung adenocarcinoma, 
and cross-glioma treatment resistance. Thus, 
based on its numerous functions in tumor for-
mation, metastasis and treatment, SLC7A11 will 
provide great value for future disease research.

Various types of human cells self-destruct 
under normal conditions, leading to a stable 
environment in the body, which is particularly 
important to help remove abnormal cells, char-
acterized by controlled signaling pathways9. In 
the case of tumors, many studies10 have demon-
strated that tumor cells evade the controlled cell 
death process through various mechanisms to 
achieve their own survival. Therefore, various 
types of cell death modalities, such as necro-
ptosis, pyroptosis, ferroptosis, and cuproptosis, 
have been the research focus. Various cell death 
pathways have been reported11-13 to be critical 
to the prognosis of cancer patients, cancer pro-
gression and metastasis, and cancer immune 
surveillance. Lung adenocarcinoma is the most 
common type of lung cancer, accounting for 
approximately 40% of all lung cancers, and is 
characterized by a high degree of aggressive-
ness and resistance to conventional radiothera-
py. Despite major advances in basic and clinical 
research on lung adenocarcinoma over the years, 

the overall survival rate of patients remains low, 
with an overall survival of less than 5 years14. 
Treatments targeting cell death signaling path-
ways in patients with lung adenocarcinoma ap-
pear to offer a solution. For example, chemother-
apy with oxaliplatin, gemcitabine or paclitaxel 
may enhance the responsiveness and sensitivity 
of immune cells to tumor cells by inducing im-
munogenic cell death pathways15. In summary, 
evasion of the body’s programmed cell death 
modality appears to be an innate characteristic 
for tumors, and uncovering this characteristic 
would open a new horizon for tumor research. 
However, due to technical limitations, the vari-
ous cell death modalities identified are still rela-
tively poorly understood, and the understanding 
of cell death mechanisms is not yet deep enough. 
Therefore, there is an urgent need for new cell 
death modalities to complement and understand 
the mechanisms of lung adenocarcinoma devel-
opment, which will provide new approaches and 
insights to improve treatment outcomes and in-
crease the overall survival of lung adenocarcino-
ma patients.

This study provides the first bioinformatic 
analysis of disulfidptosis, a novel mode of death 
in lung adenocarcinoma, and reveals the impact 
of SLC7A11 and its related genes mediating disul-
fidptosis on the prognosis of lung adenocarcinoma 
and constructs a risk scoring system to predict fu-
ture survival and treatment outcomes of patients.

Materials and Methods

Data Source
The TCGA (https://portal.gdc.cancer. gov/) 

and the GEO (https://www.ncbi.nlm.nih.gov/
geo/) databases were used to obtain data on gene 
expression and clinically relevant prognosis and 
pathological staging of LUAD, including baseline 
data from the TCGA cohort and the GEO cohort 
(GSE72094) for subsequent analysis. We annotat-
ed and normalized the gene expression data of the 
TCGA and GEO cohorts and used the “ComBat” 
algorithm to eliminate batch effects and merge 
them. We also collated and combined the clinical 
data from the TCGA and GEO cohorts, in which 
we excluded samples without survival time and 
survival status and corrected for uniformity of 
survival time (53 clinical samples were exclud-
ed). The final results were obtained for 1,040 
gene expression data (including 598 TCGA data 
and 442 GEO data) and 991 clinical samples (in-
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cluding 513 TCGA data and 398 GEO data). The 
SLC7A11-related gene set containing 4,107 genes 
was obtained from GeneCards (https://www.gen-
ecards.org/) for subsequent analysis. Single-cell 
analysis of the NSCLC_EMTAB6149 dataset 
(containing 40,218 single-cell sequencing sam-
ples) was performed using the Tumor Immune 
Single-cell Hub (TISCH) (http://tisch.comp-ge-
nomics.org/) database.

Disulfidptosis Analysis
To gain insight into the function of disul-

fidptosis in LUAD, 4,107 disulfidptosis-related 
genes (DRGs) were screened for differences 
between tumor tissues and normal tissues us-
ing the “voom” algorithm. The differentially 
expressed genes (DEGs) were extracted from 
the tumor tissues and normal tissues, and the 
screening conditions: Log2 foldchange (log-
FC)=1, False discovery rate (FDR)=0.05. After 
that, The search tool for recurring instances of 
neighboring genes (STRING) database (https://
cn.string-db.org/) was used to construct protein 
interaction network maps of the screened DEGs, 
which can visually allow us to see the interac-
tions between these genes, which can provide a 
reference for further in-depth study of the func-
tions of DRGs. Finally, the expressions of the ob-
tained DEGs were integrated with clinical prog-
nostic data. After excluding the genes with zero 
expression in all samples, the Prognosis-related 
DRGs (PRGs) affecting LUAD prognosis were 
screened, and gene expression was extracted us-
ing a univariate cox proportional-hazards model 
(COX) analysis (p<0.05).

Clustering and Typing of DRGs
The “ConsensusCluster” algorithm was used 

for cluster typing of PRGs to observe the hetero-
geneity of LUAD samples between different ex-
pressions of disulfidptosis. The maximum num-
ber of clusters was set to K=9, and the hierarchical 
clustering algorithm was the Kaplan-Meier (KM) 
method. After that, the nine clustering effects 
were compared and the optimal K value was se-
lected, and the LUAD samples were typed based 
on the optimal K value. After eliminating invalid 
data, 905 typed samples were finally obtained, 
and finally, KM survival analysis was performed 
on these LUAD samples to observe the prognostic 
differences between different typing. In addition, 
to evaluate and analyze the effect of typing, three 
types of data were analyzed using Principal Com-
ponents Analysis (PCA), t-distributed Stochastic 

Neighbor Embedding (tSNE), Uniform Manifold 
Approximation and Projection (UAMP). Three 
algorithms were used to reduce the dimension-
ality of the typed samples and visualize them to 
observe how well the typing discriminates the 
samples.

DRGs Subtype Analysis
To understand the reasons for the differences 

in DRGs clustering, the subtyped LUAD samples 
were first analyzed for differences to observe the 
expression of DEGs between subtypes and dis-
played as box plots. The analysis of the relation-
ship between genes and clinical traits is a core 
aspect of this study. Therefore, we examined vari-
ances in clinical traits between the typed samples 
and presented the findings through visualization 
techniques. Afterward, single sample Gene Set 
Enrichment Analysis (ssGSEA) was performed 
on the typed samples to observe the immune 
cell infiltration between the typed samples. Fi-
nally, Gene set variation analysis (GSVA) was 
performed on the typed samples to observe the 
pathway enrichment between the different typed 
samples. In addition, pathway enrichment analy-
sis was performed on the typed samples using the 
Gene Set Enrichment Analysis (GSEA) algorithm 
using the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) cell signaling pathway gene set. 
Observation of these pathway enrichments will 
provide guidance for further investigation of the 
specific mechanisms between disulfidptosis and 
LUAD.

Construction of a Risk Scoring 
Model for DRGs

The risk score model was constructed using 
the prognostic data of PRGs. First, the samples 
were randomly averaged into a training group 
(453 samples) and a test group (452 samples) at 
one time, and the Least absolute shrinkage and 
selection operator (LASSO regression) was used 
for the training group using the “glmnet” pack-
age. The regression coefficients of the variables in 
the regression model were compressed using the 
“LASSO regression” package to prevent over-fit-
ting and to solve the problem of severe covari-
ance. Multiple cross-validations were performed 
to find the number of genes with the smallest 
error, and these genes with the smallest errors 
will be involved in subsequent analyses as fea-
ture genes in the LASSO regression screen. Af-
ter that, the expressions of the LASSO regression 
signature genes were extracted, and the signature 
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genes were screened using a multi-factor COX 
regression method and a risk-scoring system was 
constructed. In this risk-scoring system, all sam-
ples had a risk score based on the expression of 
the feature genes. The DRGs risk score (DRGs_
score) was calculated as follows.

where Coefg and Expg represent gene risk 
coefficient and gene expression, respectively, and 
n represents the number of genes. In the training 
group, the samples were classified into high risk 
(DRGs_score is higher than the median value) 
and low risk (DRGs_score below the median val-
ue) according to the median value of risk scores. 
The test group was also classified into high risk 
and low risk according to the classified median 
risk value and the risk results were output for sub-
sequent validation. Finally, KM survival analysis 
was performed, and survival curves were plotted 
for the training group. In addition, receiver op-
erating characteristic (ROC) curves were plotted 
at 1, 3, and 5 years to assess the accuracy of the 
model. The same measures were taken for the test 
group for validation.

Risk Assessment and Nomogram
First, all clinical data were collated, and the 

age, gender and clinical staging characteristics of 
the sample were retained. After that, risk data and 
clinical data were integrated, and independent prog-
nostic analysis was performed using multifactorial 
COX analysis, with the aim of assessing whether 
DRGs_score could be used independently as a fac-
tor affecting LUAD prognosis. We also performed 
a risk analysis on DRGs clustering to observe 
whether DRGs typing differed in the DRGs_score 
system. Finally, a Nomogram was developed using 
clinical characteristics and risk scores. In the No-
mogram scoring system, each clinical characteris-
tic and DRGs_score was matched with a score, and 
a total score was obtained by summing the scores 
of all clinical characteristics for each sample. The 
total score corresponds to the corresponding pre-
dicted values of 1-year, 3-year and 5-year survival 
rates. Also, calibration curves were plotted to ob-
serve the bias between the predicted 1-year, 3-year 
and 5-year survival rates and the actual observed 
results. In addition, cumulative hazard curves were 
used to show the trend of Nomogram scores for 
each sample in the high-risk group (Nomogram 

score is higher than the median value) and low-risk 
group (Nomogram score below the median value) 
with survival time.

Immune and Tumor Microenvironment 
Analysis

The immune and tumor microenvironment 
(TME) is a very important part that affects tumor 
risk behavior. Therefore, LUAD gene expression 
data were analyzed using the Cell-type Identifi-
cation By Estimating Relative Subsets Of RNA 
Transcripts (CIBERSORT) algorithm and immune 
cell gene expression data to obtain sample im-
mune cell content data. This was then integrated 
with the DRGs_score risk data to obtain the results 
of immune cell infiltration in high- and low-risk 
groups. We also analyzed the correlation between 
immune cells and DRGs_score risk scores. Final-
ly, the immune and mesenchymal scores of LUAD 
tumor TME were performed using the Estimation 
of STromal and Immune cells in MAlignant Tumor 
tissues using Expression data (ESTIMATE) meth-
od to reveal the compositional differences within 
the tumors of the high- and low-risk groups. In 
addition, to gain insight into the clinical value of 
DRGs_score, the correlation between DRGs_score 
signature genes and immune checkpoints was an-
alyzed, which will provide a reference to guide the 
immunotherapy of LUAD.

Drug Sensitivity and Single-Cell Analysis
In order to explore drugs that may be thera-

peutically effective in high- and low-risk groups 
of patients, drug sensitivity prediction for LUAD 
was performed using the downloaded Genomics 
of Drug Sensitivity in Cancer (GDSC) database 
(Hinxton, Cambridgeshire, CB10 1SA, UK) using 
the “oncoPredict” package. The drug sensitivity 
index was expressed as a semi-inhibitory con-
centration (IC50) value. Single-cell analysis is be-
coming an increasingly important tool for under-
standing intra-tumor heterogeneity. To this end, 
single-cell analysis of the NSCLC_EMTAB6149 
dataset and single-cell analysis of the screened 
signature genes were performed using the sin-
gle-cell database TISCH. This will help to further 
investigate the intermolecular function of LUAD 
from the single-cell level.

Statistical Analysis
In this study, we used R language software 

(version 4.2.1), STRING (https://cn.string-db.
org/, Version: 12.0), for data statistics and visu-
alization. Data preprocessing, including back-
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ground correction, normalization, and logarith-
mic transformation, was performed on the raw 
gene expression data, mainly using the “limma” 
package, to ensure that the data met the assump-
tions of the analysis of variance. For the screen-
ing of DRGs, multiple comparisons correction 
method and FDR correction were used to con-
trol the false positive rate, and we set the signif-
icance level of logFC=1, FDR=0.05 to determine 
whether the differences were significant or not. 
Correlation analysis was partially performed us-
ing Spearman rank correlation analysis to inves-
tigate the correlation relationship between dif-
ferent variables. Correlation coefficients r and p 
were used to describe the strength and signifi-
cance of the correlation, and p<0.05 was consid-
ered statistically significant. p<0.05 was consid-
ered statistically significant in the KM Survival 
analysis, Cox analysis and other analyses. 

Results

Identification of Differentially Expressed 
Genes in DRGs

Under the screening conditions, logFC=1 and 
FDR=0.05, 956 DEGs (Supplementary Table I) 
with significant differences were screened from 
4,107 DRGs, and these DEGs may play a very im-
portant role in the development of LUAD (Figure 
1A). To understand the characteristics of DRGs, 
we constructed a gene interaction network map 
with the minimum interaction score set to 0.9. 
The evidence of gene interaction in the network 
map was obtained from databases and experi-
mental assays (Figure 1B). In the network, it can 
be seen that most of the DRGs have evidence of 
interactions, and a large number of interactions 
were observed at gene nodes such as TXNRD1, 
JUN, and FOS, which may have their pivotal 
roles in the overall DRGs interaction function. 
Subsequently, a univariate COX analysis of 
DEGs identified 425 PRGs affecting the progno-
sis of LUAD patients (Supplementary Table II). 
Finally, the LUAD samples were clustered based 
on PRGs, and the clustering results showed that 
the samples were best clustered when K=2 (Fig-
ure 1C); other clustering results can be found in 
Supplementary Figure 1. In addition, the cumu-
lative distribution function (CDF) curves of the 8 
clusters can be seen in Figure 2A. Therefore, all 
samples were classified into type 2 (type A and 
type B). The results of the 3 descending analy-
ses of PCA (Figure 3C), tSNE (Supplementary 

Figure 2A) and UAMP (Supplementary Figure 
2B) showed that the typing could distinguish the 
LUAD samples well.

Prognostic and Functional Analysis 
of Fractions

KM survival analysis of the fractions 
showed (Figure 2B) that there was a significant 
prognostic difference between fractions A and 
B (p<0.001). The overall prognosis of subtype B 
was significantly better than that of subtype A. 
In addition, the results of the differential analysis 
between the different fractions are available in 
Supplementary Figure 2C. On the other hand, 
the results of immune cell infiltration between 
different fractions showed (Figure 2C) that 19 
immune cells (activated B cells, activated CD4 T 
cells, activated dendritic cells, CD56 bright nat-
ural killer cell (p<0.05), CD56dim natural kill-
er cell, eosinophil, immature B cell, Immature 
dendritic cell, MDSC, macrophage, mast cell, 
monocyte, and natural killer cell, plasmacyt-
oid dendritic cell, regulatory T cell, T follicular 
helper cell, type 1 T helper cell, type 17 T helper 
cell, type 2 T helper cell) were significantly dif-
ferent between the two typed samples (p<0.001), 
and the B typed Activated B cell, Activated den-
dritic cell, CD56bright natural killer cell eosin-
ophil, immature B cell, immature dendritic cell, 
MDSC, macrophage, mast cell, monocyte, natu-
ral killer cell, plasmacytoid dendritic cell, reg-
ulatory T cell, T follicular helper cell, type 1 T 
helper cell, and type 17 T helper cell were higher 
than in A fraction, indicating that the presence 
of these 16 immune cells may play a positive role 
in the prognosis of LUAD patients. In contrast, 
Activated CD4 T cells, CD56dim natural killer 
cells, and type 2 T helper cells were higher in A 
fraction than in B fraction, suggesting that these 
three immune cells may be associated with poor 
prognosis in LUAD patients. Further pathway 
enrichment analysis seemed to reveal the mech-
anisms behind the different prognostic outcomes 
in patients with type A and type B. The results 
showed that cell proliferation-related pathways 
and DNA repair-related signaling pathways 
were more active in type A fractions. This pre-
dicts that DRGs may be involved in activities 
related to the high proliferative state of LUAD 
cells and that these activities are associated with 
poor prognosis (Figure 3A). However, fatty acid 
metabolic pathways, vascular smooth muscle 
contraction signaling pathways, and hormone 
receptor-related metabolic pathways showed a 

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-3.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Table-II-42.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-1-33.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-26.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-26.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-26.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-26.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-2-26.pdf


M. Luo, R.-Z. Liu, Y.-J. Li, S.-D. Zhang, Z.-Y. Wu

9574

more active status in the B fraction, suggesting 
that these pathways are associated with a better 
prognostic status (Figure 3B).

Construction of Risk Score Model
In the training group (453 samples), LASSO re-

gression analysis was performed to find the best fit 
according to the change in Partial-likelihood devi-
ance in cross-validation, and 28 DRGs were finally 
retained (Figure 4A). After that, multi-factor COX 
regression was used for 28 DRGs, and 15 disease 
characteristic genes were finally screened (Table 
I). the DRGs_score was constructed as follows.

Risk score=(0.2296 * expression of LDHA) 
+ (0.2052 * expression of CBX2) + (0.2491* ex-

pression of NPAS2) + (-0.7423 * expression of 
PNPLA6) + (0.1659 * expression of ANGPTL4) 
+ (0.2501 * expression of AHSG) + (0.2052 * 
expression of MAFF) + (0.1535 * expression 
of CNGA1) + (0.2844 * expression of CDX2) + 
(-0.1808 * expression of DDO) + (-0.4489 * ex-
pression of CASP12) + (0.4108 * expression of 
SNCB) + (-0.4024 * expression of GLS2) + (0.2269 
* expression of SLC6A17) + (0.2116 * expression 
of PHLDA2)

After that, we classified all samples into high-
risk and low-risk according to the median value of 
the sample risk scores (samples included the train-
ing group and test group) and performed KM sur-
vival analysis (Figure 4C-D) on the training group 

Figure 1. The differential analysis of Disulfidptosis gene sets. A, Differential expression of 956 DEGs in 598 TCGA tran-
scriptome data. B, Genetic interaction network of 956 DEGs. Each node represents a protein-coding gene, and the lines rep-
resent evidence of known interactions, and different colors represent different types of evidence. C, Hierarchical clustering 
of PRGs at K=2.
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and test group. The results showed that the prog-
nosis of both high-risk and low-risk groups was 
significantly different (p<0.001), and the prognosis 
of the high-risk group was significantly worse than 
that of the low-risk group. Meanwhile, the ROC 
curves constructed for the training group had ROC 
values of 0.807, 0.789, and 0.820 for 1, 3, and 5 
years, respectively. The ROC curves validated for 
the test group had ROC values of 0.627, 0.667, and 
0.634 for 1, 3, and 5 years, respectively (Figure 4E-
F). In addition, the model could also distinguish 
well between subtype A and subtype B (p<0.001) 
(Figure 4B). Finally, a multifactorial COX analysis 

of DRGs_score showed that the model could inde-
pendently affect the prognosis of LUAD patients 
as well as other clinical traits (HR>1) (Figure 5C).

Characterization of Tumor Components
To further understand the internal character-

istics of the tumor, various aspects of immune as 
well as TME characteristics within LUAD were 
analyzed. The results of the immune response to 
LUAD showed that 11 immune cells differed be-
tween the high-risk and low-risk groups (p<0.05), 
with higher levels of T cells CD4 memory acti-
vated, NK cells resting, and mast cells resting in 

Figure 2. Sample typing analysis from clustering analysis. A, The cumulative distribution function curve (CDF) at K=2-9. 
B, Kaplan-Meier survival analysis of subtype A and subtype B. C, Single Sample Gene Set Enrichment Analysis (ssGSEA) 
immuno-infiltration analysis of subtype A and subtype B.
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the high-risk group than in the low-risk group. 
In contrast, compared to the low-risk group, the 
high-risk group had higher levels of B cell mem-
ory, T cells CD4 memory resting, plasma cells, 
monocytes, macrophages M0, dendritic cells rest-
ing, mast cells activated, and neutrophils were 
much lower (Figure 6D). In addition, there are 

complex interactions between these immune cells 
(Figure 6A). Analysis of immune cell correlations 
showed that 14 immune cells correlated with risk 
scores, with macrophages M0, mast cells activat-
ed, neutrophils, NK cells resting, plasma cells, T 
cells CD4 memory activated, and T cells follic-
ular helper were positively correlated with risk. 

Figure 3. Functional enrichment analysis of subtype A and subtype B. A, Gene set enrichment analysis (GSVA) of subtype 
A and subtype B. B, Gene Set Enrichment Analysis (GSEA) of subtype B. The top 2 curves represent signaling pathways 
that are upregulated in subtype B, and the bottom 3 curves represent signaling pathways that are downregulated. C, Principal 
Components Analysis (PCA) of subtype A and subtype B. The blue dots represent the sample distribution of subtype A, and 
the yellow triangles represent the sample distribution of subtype B.
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Figure 4. Construction of the risk scoring model. A, Partial likelihood deviance was plotted versus log(γ), the dotted 
line corresponds to minimal deviance. B, Analysis of risk differences between subtype A and subtype B. C-D, Ka-
plan-Meier survival analysis for the train and test groups. E-F, Receiver operating characteristic (ROC) curves for the 
train and test groups.
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In contrast, B cell memory, T cells CD4 memory 
resting, monocytes, macrophages M2, dendritic 
cells resting, mast cells resting, and eosinophils 
were negatively associated with risk (p<0.05) 
(Figure 6B-C, Supplementary Figure 3). Final-
ly, TME analysis showed that there was a signifi-
cant difference between the tumor mesenchymal 
component and immune component in the high-
risk and low-risk groups (p<0.05).

Nomogram, Drug Treatment Target 
and Drug Sensitivity Analysis

In order to better apply the DRGs_score sys-
tem to the clinical setting, we constructed a No-
mogram to predict the 1-year, 3-year, and 5-year 
survival rates of patients (Figure 5A), and the No-
moRisk curve showed that the Nomogram score 
increased gradually with time and also the risk 
increased. Also, the risk was higher in the high-
risk group than in the low-risk group. We ana-
lyzed the relationship between DRGs_score and 
these drug-related targets (Figure 7C), and the re-
sults showed that KRAS, ALK, ROS1, BRAF and 
immune checkpoint genes were significantly dif-
ferent between the high-risk and low-risk groups 
(p<0.05). The therapeutic targets of drugs except 
KRAS, TNFSF4, TNFSF9, CD276 were generally 
lower in the high-risk group patients compared to 
the low-risk group, implying that the related im-
mune and target therapies may be less effective in 
these high-risk lung adenocarcinoma patients. In 
addition, we screened 89 drugs with differences in 
drug sensitivity between the high-risk and low-risk 
groups, and only 3 are shown here (Figure 7D-F).

Single-Cell Analysis
The analysis of 40,218 non-small cell lung 

cancer single-cell data showed that the cells with-
in the tumor could be divided into 25 clusters. We 
then performed cellular annotation of the 25 cell 
clusters, and the results showed that there are 12 
cell types (Figure 8A-B), in which immune cells 
(including monocytes, T cells, etc.) still occupy 
the majority of the tumor tissue, while the content 
of CD8 T cells seems to be the highest among T 
cells (Figure 7A). This suggests the presence of a 
strong anti-tumor immune process within the tu-
mor. Furthermore, single-cell analysis of the sig-
nature genes showed that LDHA was widely ex-
pressed in various cells inside the tumor (Figure 
8C-D), CBX2 was significantly expressed only 
inside the tumor tissue, PHLDA2 and ANGPTL4 
were significantly expressed in tumor cells (Figure 
8E-F), monocytes, and fibroblasts, and MAFF and 
PNPLA6 appeared to be significantly expressed in 
monocytes and T cells, while NPAS2 was abun-
dantly expressed in tumor cells, endothelial cells, 
and fibroblasts (Supplementary Figure 4). The 
single-cell distribution of these signature genes 
seems to suggest some kind of cell-to-cell inter-
action mechanism, which will provide a reference 
for further LUAD studies in the future.

Discussion

Many studies16,17 have reported that SLC7A11 
plays an important role in cancers with different 
prognoses. However, most studies only correlat-
ed SLC7A11 as a separate gene pattern, while the 
tumor process in which SLC7A11 is involved as 
a new important molecule of programmed cell 
death, disulfidptosis, has not been revealed yet. In 
this study, we started with SLC7A11, an important 
molecule of disulfidptosis, and screened DRGs 
and identified 2 molecular isoforms based on 
SLC7A11-related genes. Compared with subtype 
B, subtype A had a significantly worse prognosis. 
In the A subtype, we observed more active DNA 
replication and repair-related signaling pathways, 
which represented a high proliferative state with-
in the tumor. In addition, Activated CD4 T cells, 
CD56dim natural killer cells, and Type 2 T help-
er cells were higher in subtype A compared to 
subtype B, suggesting that an increase in these 
immune cells is associated with poor prognosis 
in LUAD patients. Subsequently, we construct-
ed a validated DRGs_score system to assess the 
internal characteristics of LUAD and to guide 

Table I. Characteristic genes involved in model construction.

Id Coef
 
LDHA 0.229627
CBX2 0.205215
NPAS2 0.249076
PNPLA6 -0.74227
ANGPTL4 0.165939
AHSG 0.250082
MAFF 0.205187
CNGA1 0.153546
CDX2 0.284389
DDO -0.18081
CASP12 -0.44886
SNCB 0.410793
GLS2 -0.4024
SLC6A17 0.226878
PHLDA2 0.211569

https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-3-18.pdf
https://www.europeanreview.org/wp/wp-content/uploads/Supplementary-Figure-4-9.pdf
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clinical treatment. In the DRGs_score system, we 
found that compared to low-risk patients, high-
risk patients had lower immune and stromal com-
ponents within the tumor and a worse prognosis. 
Among the immune responses, macrophages M0, 
mast cells activated, neutrophils, NK cells rest-
ing, plasma cells, T cells CD4 memory activat-
ed, T cells follicular helper were positively asso-
ciated with risk, while B cells memory, T cells 

CD4 memory resting, monocytes, macrophages 
M2, dendritic cells resting, mast cells resting, 
and eosinophils were negatively associated with 
risk, suggesting that this involvement and inter-
action of immune cells influenced the prognosis 
of LUAD patients. Drug target analysis showed 
that KRAS, ALK, ROS1, BRAF, and some immune 
checkpoint genes were significantly different be-
tween the high-risk and low-risk groups, suggest-

Figure 5. Nomogram and independent prognostic analysis. A, Predictive nomogram for 1-year, 3-year, and 5-year survival 
in patients with lung adenocarcinoma. B, Cumulative hazard curve of the nomogram risk score. C, Multivariate independent 
prognostic analysis of risk score models.
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ing that our constructed DRGs_score could be 
used as a predictor of the effect of target therapy 
in LUAD patients. Finally, we also constructed a 
Nomogram and predicted the relevant drug sen-
sitivity, which further facilitated the application 
of DRGs_score. Thus, this prediction model can 
be used for prognostic stratification of LUAD pa-

tients and can be used to guide clinical treatment. 
This will provide new ideas to understand the 
mechanism of disulfidptosis further and improve 
the prognosis of LUAD patients.

In general, SLC7A11 is highly expressed in most 
tumors and is associated with poor prognosis18. 
The current study revealed the main functions of 

Figure 6. Immune cell correlation and differential analysis. A, Immunocell correlation analysis, red represents positive cor-
relation, and blue represents negative correlation. B-C, Correlation of Macrophages M0 and Macrophages M2 with risk. R is 
the correlation coefficient, R>0 represents positive correlation and R<0 represents negative correlation. D, Analysis of immune 
cell differences between high-risk and low-risk groups.
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SLC7A11 in tumors, including regulating redox sta-
tus, ferroptosis (a form of programmed cell death) 
and intercellular signaling2. Reactive oxygen species 
(ROS) are a group of highly reactive ions or mole-

cules in the body that are usually highly expressed 
in tumor tissues to stimulate tumor proliferation and 
invasion. However, because of their strong oxidative 
properties, ROS cause cell death processes in both 

Figure 7. Tumor microenvironment, drug target and drug sensitivity analysis. A, Cell-type statistics in the single-cell analy-
sis of non-small cell lung cancer. B, Analysis of the tumor microenvironment in lung adenocarcinoma. The horizontal coordi-
nates represent the tumor microenvironment components, and the vertical coordinates represent the tumor microenvironment 
score. C, Differential analysis of oncology drug therapy targets and immune checkpoint genes between high- and low-risk 
groups. D-F, Drug sensitivity analysis. The horizontal coordinates represent the high-risk and low-risk groups, and the vertical 
coordinates represent the half-maximal inhibitory concentration (IC50) of the drug.
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tumor cells and normal cells, which are resisted by 
the antioxidant system inside the tumor cells. It is 
through supporting cystine transport that SLC7A11 
plays an important antioxidant role by producing 
GSH inside the cell19. It has been shown3 that in tu-
mor cells with KRAS mutations, the transcription 

factor E26 avian leukemia oncogene 1, 5’ domain 
(ETS-1) acts synergistically with the activating tran-
scription factor 4 (ATF4) to promote glutathione 
(GSH) synthesis by activating SLC7A11 transcrip-
tion. In addition, nuclear factor erythroid2-related 
factor 2 (Nrf2) appears to promote SLC7A11 syn-

Figure 8. Single-cell analysis. A-B, Atlas of single cell analysis in non-small cell lung cancer. A, shows 25 single-cell clus-
ters in non-small cell lung cancer, and panel B shows the results of cell annotation of the 25 clusters. C-D, Distribution and 
expression of LDHA in cells. E-F, Distribution and expression of ANGPTL4 in cells.
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thesis by a form independent of ETS-1 with ATF4. 
Thus, this evidence supports the presence of high 
expression of SLC7A11 within the tumor, as cor-
roborated by our findings, where differential anal-
ysis showed that high expression of SLC7A11 in 
LUAD tumor cells was associated with a high risk 
of poor prognosis. Furthermore, the results of sig-
naling pathway analysis showed that tumors with 
high expression of SLC7A11 were associated with a 
high proliferation and hyper differentiation state of 
the cells. On the other hand, inhibition of SLC7A11 
leads to increased intracellular ROS in tumor cells, 
triggering programmed cell death, and this has been 
demonstrated in clinical studies20. For SLC7A11 and 
ferroptosis studies20-22, it seems to be an interesting 
point that SLC7A11 overexpression confers resis-
tance to ferroptosis in cancer cells by synthesizing 
glutathione. This mechanism is currently being in-
vestigated mainly in the field of enhancing the sen-
sitivity to antitumor therapy.

TME is the soil of tumor growth and interacts 
with tumor cells, thus promoting tumor growth 
and invasion. Numerous studies23-25 have demon-
strated that SLC7A11 affects TME by exporting 
glutamate. Under physiological conditions, gluta-
mate promotes neuronal multiplication and migra-
tion and is neurotoxic. In tumor cells, glutamate is 
an important oncogenic factor that promotes ma-
lignant transformation of cells and promotes pro-
liferation, invasion, metastasis and suppression of 
the immune system by acting on both cancer and 
non-cancer cells26. A study on glioma found that 
glioma cells are associated with cancer cell inva-
sion by releasing glutamate, which later acts on 
Ca2+-permeable alpha-amino-3-hydroxy-5-meth-
yl-4-isoxazolepropionic acid (AMPA) receptors 
in glioma cells as well as surrounding cancer 
cells, producing Ca2+ oscillations. Another study27 
confirmed a similar finding that the release of 
glutamate from cancerous breast cells by the 
SLC7A11-mediated XC-system acting on mGluR3 
promotes extracellular matrix lysis and thus en-
hances the migration of cancer cells. The correla-
tion between SLC7A11 and immunity is also strik-
ing, as Long et al28 showed that after anti-VEGF 
treatment in glioblastoma, SLC7A11 levels in 
cells were elevated to increase glutamate release, 
which then acted on mGluR1 on Tregs to pro-
mote the immunosuppressive function of Tregs. 
In a study29 on lung cancer, researchers observed 
the inhibition of the AKT/STAT6 signaling path-
way and activation of the JAK/STAT1 signaling 
pathway by knocking down macrophage-specific 
SLC7A11 in mice, which led to the activation and 

enhancement of tumor-associated immune cells. 
Also, combining the xCT (SLC7A11) inhibitor 
erastin with anti-PDL1 antibodies, according to 
this mechanism, increased the effect of antitumor 
immunotherapy. In another study30, tumor-re-
leased glutamate inhibited SLC7A11 activity by 
paracrine means and ultimately promoted tumor 
proliferation through a complex mechanism. 
This would seem to be contrary to the ability of 
SLC7A11 to promote tumor proliferation and mi-
gration. In fact, this just illustrates the complex 
role of SLC7A11 for different types of tumors and 
between different cells in the tumor environment, 
and relevant studies targeting SLC7A11 will be 
a hot spot to reveal new therapeutic potential of 
the disease and to uncover unknown mechanistic 
events from known studies.

Limitations
This study uses data from multiple public da-

tabases for statistical analysis of a large sample. 
This inevitably has some limitations, such as batch 
effects between samples from different databas-
es. Therefore, in the statistical analysis, we used 
various algorithms to pre-process to remove batch 
effects between different data sources in order to 
ensure the scientific nature of the data analysis to 
the maximum extent possible. Second, the samples 
we used are retrospective and human data selection 
may lead to selection errors. This requires large-
scale prospective studies and experiments to vali-
date our findings. In addition, many factors influ-
ence patient prognosis, such as diet, psychological 
life status, genetic specificity, and different levels 
of medical care. Therefore, these unanalyzed clin-
ical characteristics may also have influenced the 
analysis results to some extent.

Conclusions

Our analysis of DRGs revealed a wide range 
of regulatory mechanisms by which disulfidpto-
sis may affect LUAD prognosis, and tumor mi-
croscopic context. In addition, we identified the 
clinical value of DRGs in predicting tumor target 
therapy and immunotherapy. These new findings 
on disulfidptosis will provide new ideas for ex-
panded research on programmed cell death mo-
dalities and for the treatment of lung cancer.
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