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Abstract. – OBJECTIVE: This work aimed to 
explore the key targets and intervention mecha-
nisms of Huangqi (Astragalus membranaceus) in 
diabetic nephropathy using weighted gene co-ex-
pression network analysis (WGCNA). The find-
ings will provide references for identifying criti-
cal therapeutic targets for diabetic nephropathy.  

MATERIALS AND METHODS: The GSE1009 
dataset was selected from the Gene Expression 
Omnibus (GEO) database of the National Center 
for Biotechnology Information (NCBI) for analy-
sis. WGCNA network was constructed to identi-
fy differentially expressed genes (DEGs). Gene 
ontology (GO) and pathway enrichment analysis 
were performed on the DEGs. 

RESULTS: There were 752 downregulated 
DEGs and 1,547 upregulated DEGs in the diabet-
ic nephropathy samples. Genes such as PLCE1, 
CLIC5, PTPRO, HSPA12A, AIF1, GMDS, and SE-
MA5A were significantly suppressed in the dia-
betic nephropathy samples, while genes such as 
CEP152, LUNAR1, and SLC9A1 were significant-
ly upregulated. The optimal soft threshold for the 
WGCNA network was determined as 12. Hierar-
chical clustering analysis was conducted to de-
tect co-expression modules with corresponding 
color assignments, and a total of 9 modules were 
identified. Clinical characteristics showed a high 
correlation with the gray, blue, green, and brown 
modules of the WGCNA. GO analysis and KEGG 
pathway enrichment analysis revealed that the 
blue module DEGs were mainly enriched in im-
mune response, inflammatory response, signal 
transduction, plasma membrane, extracellular re-
gion, cell surface, extracellular matrix, and pro-
teinaceous extracellular matrix. The green mod-
ule DEGs were mainly enriched in mitochondrial 
elongation, mitochondrial mutation termination, 
translation, mitochondrial inner membrane, mito-
chondrion, ATP biosynthetic process, mitochon-
drial large ribosomal subunit, mitochondrial in-
termembrane space, nucleolus, and ribosome. 
Visualization analysis of the bioactive compo-
nents of Huangqi showed compounds such as 
quercetin, resveratrol, 7-O-methylisomucronula-
tol, and isoquercetin, which had more targets. 

CONCLUSIONS: Differentially expressed genes 
in diabetic nephropathy were mainly enriched in 
immune response and inflammatory response. Var-
ious components of Huangqi have positive applica-
tion value in the treatment of diabetic nephropathy 
and can be considered for clinical promotion.
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Introduction

Diabetic nephropathy (DN) is a common com-
plication among patients with diabetes that seriou-
sly affects quality of life1. Proteinuria, hematuria, 
hypertension, and renal function impairment usual-
ly occur among DN patients. The above symp-
toms have adverse effects on their physiological 
functions2,3. DN patients suffer from albuminuria 
and gradual loss of renal function in clinical treat-
ment. Patients with advanced DN suffer from renal 
failure, which greatly increases the mortality4. At 
present, the prevalence of diabetes among global 
patients is rapidly growing, especially in developing 
countries. With the rise in the prevalence of dia-
betes, the complications of DN should be actively 
prevented and treated. If clinical strategies are not 
improved and prevention and treatment effects are 
poor, the prevalence of DN will still continuously 
increase5,6. DN is the severest complication caused 
by diabetes and poses a serious threat to patients’ 
lives. The mortality of diabetes patients with com-
plicated DN is approximately 30 times higher than 
that of patients without complicated DN7,8. DN is 
closely associated with cardiovascular diseases. DN 
causes hyperglycemia, further leads to vascular dy-
sfunction and complicated cardiovascular diseases, 
and aggravates the disease and its severity. As a re-
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sult, mortality increases9,10. Besides, oxidative stress 
often occurs among DN patients, which results in 
inflammatory cell infiltration. Even worse, fibrosis 
comes into being11. Understanding the key characte-
ristics of inflammation mechanisms related to the 
occurrence and development of DN has positive cli-
nical significance in identifying new potential inter-
vention targets and formulating and implementing 
more advantageous and targeted anti-inflammation 
strategies12. During the occurrence and develop-
ment of DN, the molecular level changes abnormal-
ly. Therefore, it is necessary to detect the changes of 
abnormal molecular markers to provide a reference 
for the diagnosis and treatment of disease13,14. The 
combined application of multi-omics data further 
improves the diagnostic and prognostic indicators 
for DN and predicts the treatment mechanism of 
disease15. It has positive clinical values.

Deficiency of both qi and yin is the main symp-
tom of DN. When disease is aggravated, deficiency 
of both yin and yang occurs and develops into defi-
ciency of qi and blood, as well as yin and yang16,17. 
During the treatment of DN, benefiting qi and nou-
rishing yin are frequently applied. As a traditional 
Chinese drug used for benefiting qi and nourishing 
yin, milkvetch root possesses positive application 
values in the prevention and treatment of DN18,19. 
During traditional biological research, a single gene 
or transcriptome is selected as the research object 
for analysis. The mechanism of life is revealed at 
a molecular level, and local characteristics of bio-
logical systems are analyzed and explained. Howe-
ver, the overall behaviors and characteristics of 
biological systems can hardly be comprehensively 
and systematically investigated and analyzed. The 
interaction between different biomolecules can be 
reflected at the system level based on the analysis of 
biological networks. Nonetheless, complex biologi-
cal phenomena cannot be analyzed20,21. A biological 
network is a systematic and intuitive connection 
network that links the relationship between diffe-
rent body positions and physiological functions. In 
addition, it can perform an overall study on organi-
sms from the macroscopic and systematic points of 
view22. The similarity of gene expressions can be 
overall investigated by weighted gene co-expres-
sion network analysis (WGCNA). Moreover, gene 
modules are collated and identified. According to 
the correlation among different gene expression 
profiles, the co-expression modules in multiple bio-
logical samples are identified, and the co-expression 
modules with high correlation are searched after 
phenotypic correlation23. Unlike other co-expres-
sion analysis methods, soft threshold is employed 

by WGCNA network to provide the sensitivity of 
network for module identification and it is widely 
applied in the analysis of biological co-expression 
mode. Besides, soft threshold can extract and inte-
grate complex contents in data and compare them 
with sample characteristics. After that, it integrates 
relevant genes to form co-expression modules for 
corresponding investigation and analysis24,25.

In the research, the key targets and interventio-
nal mechanism of milkvetch root in DN were in-
vestigated. WGCNA was employed to explore the 
gene expressions of DN samples and normal con-
trol samples to search for the key genes that caused 
the occurrence of DN and explain the molecular 
network mechanism of DN progression and the 
drug targets of the treatment of DN with milkvetch 
root. Besides, the research was implemented to 
provide theoretical basis for the clinical discovery 
of therapeutic targets for DN at molecular level.

Materials and Methods

Source of Research Data
Gene expression analysis data were obtained 

from the high-throughput gene expression omni-
bus (GEO) database. DN-related chip data were 
selected, and the GSE1009 dataset was finally 
selected as the research objects, according to 
research objects and sample size. There were 3 
DN samples and 2 normal control human body 
samples in the database. The samples consisted 
of 3 females and 2 males with an average age of 
43.67±6.54. The course of diabetes was 8.32±2.17 
years. The samples in the dataset were from DN 
patients. After that, a high-throughput chip was 
employed for detection and analysis. The dataset 
was divided into the DN group (accession num-
ber: GSM15968, GSM15969, and GSM15970) and 
the control group (accession number: GSM15965 
and GSM15966). Relevant gene records with 
p<0.05 were selected and included in WGCNA.

Data Pre-Processing
After gene data were obtained, they needed to 

be pre-processed. Besides, abnormal expression 
data caused by experimental techniques should 
be eliminated to ensure that all selected gene data 
had biological significance.

Data Filtering
Gene expression yielded negative data values or 

zero, while negative numbers and zero could not be 
logarithmized. Hence, these unusable data needed to 
be filtered out.
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Data Logarithm
After the corresponding research data were se-

lected, a logarithm was taken to analyze whether 
gene expressions changed.

Estimation of Missing Values
Missing values were imputed by the k-nearest 

neighbor value weighting method. The method 
was employed to process large data. Inference 
and analysis were carried out to impute missing 
data based on established data.

Selection of Differentially Expressed 
Genes (DEGs)

In the research, gene expression profile data 
at the genome level were obtained from the da-
tabase for the background correction of original 
data. In addition, an independent sample t-test 
and multiple methods were adopted to obtain 
DEGs. The analysis tool of the gene database 
was employed to compare and analyze the DEGs 
of DN samples and normal control samples. The 
screening conditions were set as the corrected 
p-value lower than 0.05 and the absolute value 
of the multiple of log gene expression differen-
tiation. To investigate the internal correlation 
and interaction between genes, DEGs should be 
screened first. In the research, DEGs of DN and 
control samples were selected. 

Limma method was commonly used for the 
screening of DEGs from small samples. It posses-
sed great advantages in data statistics and analysis 
and data analysis time and was not affected by 
genes with small variations and limited by sample 
size. Hence, it was widely applied and adopted in 
the research. “Flash Clust” in R language pack 
(Macromedia., San Francisco, California, USA) 
was utilized for the clustering analysis of inclu-
ded samples. The “Pick Soft Threshold” function 
was employed to adjust the weight of weighted 
coefficient β. The matrices that were correlated 
and adjacent to each other were calculated as 
topological overlap matrices (TOM) by WGCNA 
(Shanghai Bohao Biotechnology Co., Ltd., Shan-
ghai, China). After that, dissimilarity – set as a 
distance measurement criterion for gene hierar-
chical clustering – was calculated. Consequent-
ly, identification modules were obtained. Highly 
similar modules were marked and merged by 
clusters. Next, “Plot Dendro and Color” function 
was employed to visualize gene module and the 
target genes in the module were selected to draw 
heat map. Finally, the genes in the modules closely 
correlated with severe burn were searched and the 

clustering analysis was performed on relationship 
heat map based on clinical characteristics.

Basis of WGCNA Algorithm
Gene co-expression network was constructed 

by WGCNA method, and the similarity of gene 
expression characteristics was used to construct 
Pearson’s correlation coefficient matrix-based si-
milarity matrix. After that, it was transformed into 
adjacency matrix to calculate soft threshold, which 
was more authentic and applicable. The process of 
WGCNA analysis is displayed in Figure 1.

At first, the similarity matrix of gene co-expres-
sion was defined. Then, the co-expression network 
was utilized to construct samples and matrix Z of 
relevant gene expressions (Figure 2). It was as-
sumed that a referred to gene and b represented 
the detected sample size value. The matrix was 
expressed as equation (1) below.

Z = {zab} = {z1,z2,…,zn}                                        (1)

The similarity coefficient of gene co-expres-
sion was shown in equation (2) and the correla-
tion matrix was denoted by equation (3) below.

Sab
unsigned = |cor(a,b)|                                             (2)

Sab
unsigned = (1+|cor(a,b)|) / 2                                              (3)

Adjacency function was defined. Power-expo-
nential adjacency function was used in the rese-
arch. β referred to soft threshold. The adjacency 
coefficient was Kab [equation (4)].

Kab = power(Sab, β) ≡ |Sab |
β                                                                 (4)

Correlation matrix was transformed into adja-
cency matrix [equation (5)].

W = [wab]                                                            (5)

The dissimilarity between nodes was deter-
mined. The correlation between genes could 
be calculated by TOM, which had positive 
biological significance. The calculation method 
for unweighted network by TOM zab was pre-
sented in equation (6). xab referred to the sum 
of products of adjacency coefficients of nodes 
jointly connected genes a and b [equation (7)]. 
ka represented the sum of adjacency coeffi-
cients of all nodes connected by single gene 
[equation (8)]. The equation was extended to 
weighted network to form topological matrix. 



Weighted gene co-expression network analysis of Astragalus on key targets of DN

9617

In this case, the degree of the dissimilarity 
between nodes was more practical.

zab = xab+sab / (min{ka,kb}+1-sab)                             (6)

xab = ∑ usau sub                                                         (7)

ka = ∑ usau                                                             (8)

The similarity of co-expression of the definition 
of the absoluteness of correlation coefficient was 
shown in equation (9). The similarity values of gene 
a and b expression profiles ranged between 0 and 1.

Similarityab = |cor(na,nb)|                                           (9)

Based on WGCNA, TOM was used to calcu-
late the obtained dissimilarity for hierarchical 
clustering to obtain different gene modules of 
different branches. Highly correlated modules 

were searched by gene co-expression network 
based on systematic biological method. The 
weighted approach could be employed to con-
struct co-expression network and search for 
hub genes in the modules of interest. Hub genes 
could be set by threshold or searched with the 
function called network screening.

Analysis of Gene Ontology (GO) and 
Pathway Enrichment of DEGs

GO could be adopted for the functional an-
notation of genes. The analysis of GO fun-
ctional enrichment included molecular function 
(MF), biological process (BP), and cell compo-
nent (CC). In the research, gene set enrichment 
analysis software (Beijing Zhongkangbo Biote-
chnology Co., Ltd., Beijing, China) and profiler 
online tool (Shenzhen Miluo Technology Co., 
Ltd., Shenzhen, China) were employed for the 

Figure 1. Process of WGCNA analysis.

Figure 2. Basic procedures for constructing weighted gene co-expression network.
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analysis and annotation of GO and Kyoto en-
cyclopedia of genes and genomes (KEGG) enri-
chment of the genes in modules.

Statistical Analysis
SPSS 22.0 (IBM Corp., Armonk, NY, USA) 

was used for experimental data processing and 
statistical analysis. The differences in gene 
expressions between groups were compared by 
independent sample t-test  and denoted by me-
an±standard deviation. p<0.05 indicated that the 
difference revealed statistical significance.

Results

Analysis of DEGs
12,622 DEGs were selected from the databa-

se, and the volcano plot of DEGs is shown in 
Figure 3. It was demonstrated there were no out-
lier samples in the clustering results of the genes 
screened from the dataset. 

Hence, they could be included in the subse-
quent WGCAN analysis. Unlike those in con-
trol samples, there were 752 down-regulated 
DEGs and 1,547 up-regulated DEGs in DN 
samples. PLCE1, CLIC5, PTPRO, HSPA12A, 

AIF1, GMDS, and SEMA5A were significantly 
inhibited, while CEP152, LUNAR1, and SL-
C9A1 were remarkably up-regulated. The num-
ber of up-regulated and down-regulated DEGs 
is displayed in Figure 4.

Figure 3. Volcano plot of 
DEGs. Gray, blue, and red 
areas represented the genes 
without statistical significance, 
low-expressed genes with a 
statistical difference, and high-
expressed genes with statistical 
significance, respectively.

Figure 4. Statistical analysis of the number of DEGs.
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WGCNA
Figures 5 and 6 represent the box plots of the 

analysis of the difference values of log2fc and 
p-value, respectively. It was suggested that no ab-
normal values existed, and all sample data could 
be included in the scope of the research. Besides, 
the determination of soft thresholds of the WGC-
NA network is illustrated in Figures 7 and 8.

WGCNA Network-Based Clinical 
Correlation Analysis

The correlation between external information 
and network modules was searched in the gene 
co-expression network. Furthermore, highly si-
milar network modules were searched. It was as-
sumed that the squared value of the relevant coef-
ficient between log (k) and log [p(k)] was greater 

Figure 6. Box plot of the analysis of 
the difference values of the p-value.

Figure 5. Box plot of the analysis of the 
difference values of log2fc.
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than 0.9 when β=12 in the WGCNA network. The 
constructed WGCNA network is shown in Figure 
9. In addition, hierarchical clustering analysis 
was carried out to detect the co-expression clu-
sters with corresponding color assignments. A 
total of 9 modules were identified, and each of 
them was represented by one color.

After that, the correlation heat map and clu-
stering analysis of WGCNA network modules 
were constructed (Figure 10). Apparently, 9 cor-

responding modules were screened and obtai-
ned, and clinical characteristics were closely 
associated with gray, blue, green, and brown 
modules in WGCNA modules.

WGCNA Network-Based Analysis of 
DEGs in DN

Hub DEGs were selected based on the WGC-
NA network. GO and KEGG were adopted to 
perform the functional annotation of DEGs 

Figure 7. Determination of soft thresholds of WGCNA network.
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and enrichment analysis of signal pathways 
(Figures 10 and 11). As indicated in Figure 10, 
DEGs in blue modules were mainly enriched 

in immunological reaction, inflammatory re-
action, signal transduction, plasmalemma, in-
tegral components of plasmalemma, extracel-

Figure 9. Analysis of WGCNA network modules and the interaction with clinical characteristics.

Figure 8. WGCNA network modules of DEGs in DN and normal samples.
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lular region, extracellular space, cell surface, 
extracellular matrix, and protein extracellular 
matrix. As illustrated in Figure 11, DEGs in 
green modules were mainly enriched in exces-
sive elongation of the mitochondrion, mutation 
termination of mitochondrion, translation, mi-
tochondrial inner membrane, mitochondrion, 
adenosine triphosphate (ATP) biosynthesis, 
mitoribosome subunit, intermembrane space, 
nucleosome, and ribosome.

Analysis of Target Prediction by 
Milkvetch Root

According to the analysis of visualized 
predictive targets by main biological compo-
nents of milkvetch root, quercetin, kaempfe-
rol, 7-O-methyl group-isomucronulatol, and 
isorhamnetin were the compounds with more 
targets. The above components had 133, 54, 47, 
28, and 22 targets, which possessed positive si-
gnificance in the treatment of DN.

Figure 10. Main enrichment of 
DEGs in blue modules.

Figure 11. Main enrichment of 
DEGs in green modules.
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Discussion

Diabetes is a very common disease with hi-
gh morbidity and complexity, showing various 
complications at a later stage26. DN is one of the 
frequently occurring complications among pa-
tients with advanced diabetes, which seriously 
affects rehabilitation effect and quality of life 
among patients27. Moreover, DN exerts signi-
ficant impacts on renal functions. At present, 
the main control and treatment methods for DN 
include a change in living habits, regulation of 
diet, strict control of blood glucose, blood pres-
sure, and blood fat, and drug therapy for lipid 
abnormalities such as angiotensin-converting 
enzyme inhibitor (ACEI) and angiotensin re-
ceptor blocker (ARB)28,29. 

Milkvetch root is a commonly used Chinese 
drug for invigorating qi for consolidating superfi-
cies and is widely applied in the treatment of DN 
with high clinical values30. The investigation into 
the key targets and interventional mechanisms 
of milkvetch root in DN can more effectively 
exert its therapeutic effect. As a result, the tre-
atment becomes more targeted and shows more 
significant efficacy31,32. Milkvetch root possesses 
remarkable clinical efficacy in DN. However, the 
overall molecular mechanism of the therapeutic 
effect has not been fully elucidated. Based on 
WGCNA, the correlation between genes and the 
relationship with disease could be analyzed.

Shen et al33 used WGCNA to predict the cen-
tral genes that influenced the relapse of lung 
adenocarcinoma (LUAD) and selected the modules 
with the highest correlation with tumor relapse 
for functional enrichment analysis. They found 
that a total of 8 hub genes (ACTR3, ARPC5, 
RAB13, HNRNPK, PA2G4, WDR12, SRSF1, and 
NOP58) were closely correlated with LUAD 
relapse. The research was conducive to the in-
vention of targeted therapeutic drugs and the un-
derstanding of the mechanism of LUAD relapse. 
Liang and Sun34 revealed specific central genes 
associated with diabetic heart failure and the si-
gnificant pathways for central gene localization. 
Besides, they adopted WGCNA to analyze cen-
tral modules for the identification of key genes. 
Based on the KEGG pathway and GO enrich-
ment, they34 analyzed the functions of genes in 
the modules of clinical interest. In addition, it 
was related to the construction of a protein-pro-
tein interaction (PPI) network in sequence. 

Finally, the key genes were determined. 20 
gene co-expression modules were detected by 

WGCNA, and the modules marked in light yel-
low were most significantly correlated with dia-
betes (p=0.08). The genes involved in the module 
were mainly located in immunological reaction, 
plasmalemma, and receptor binding and were 
mainly assembled in endocytosis and phagosome 
of KEGG pathway enrichment. Besides, three 
key genes (STK39, HLA-DPB1, and RAB5C) were 
identified and might be the key genes that caused 
diabetic heart failure. DN was the main complica-
tion of diabetes and the main cause of end-stage 
nephrosis, but its potential molecular mechanism 
is still unclear35. Gholaminejad et al36 employed 
the WGCNA algorithm to analyze the micro-
array dataset of DN for a better understanding 
of the pathogenesis of DN and the exploration 
of key genes in disease progression. Moreover, 
they introduced identified DEGs in the DN da-
taset GSE47183 into the WGCNA for the con-
struction of co-expression modules. After that, 
GO and Reactome pathway enrichment analysis 
were performed on each module to understand 
the involvement of the co-expression modules in 
biological processes and pathways. It was found 
that 2,475 important DEGs were identified throu-
gh the WGCNA algorithm, and then they were 
clustered into 6 different co-expression modules. 
Metabolic process, cell cycle control, and cell 
apoptosis were the most abundant terms. In the 
genes module, 23 hub genes were identified, and 
5 out of them were verified in another DN data-
set, including FN1, SLC2A2, FABP1, EHHADH, 
and PIPOX. In the research, multiple DEGs were 
obtained based on WGCNA and performed with 
GO functional annotation and KEGG signal pa-
thway enrichment analysis. It was revealed that 
there were 752 down-regulated DEGs and 1,547 
up-regulated DEGs in DN samples compared to 
those in control samples. PLCE1, CLIC5, PTPRO, 
HSPA12A, AIF1, GMDS, and SEMA5A were si-
gnificantly inhibited, while CEP152, LUNAR1, 
and SLC9A1 were remarkably up-regulated in 
DN samples. Hierarchical clustering analysis was 
performed to detect the co-expression clusters 
with corresponding color assignments. A total 
of 9 modules were identified, and clinical cha-
racteristics were closely correlated with gray, 
blue, green, and brown modules in WGCNA 
modules. According to the results of GO analysis 
and KEGG pathway enrichment analysis, DEGs 
in blue modules were mainly enriched in immu-
nological reaction, inflammatory reaction, signal 
transduction, plasmalemma, integral components 
of plasmalemma, extracellular region, extracel-
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lular space, cell surface, extracellular matrix, 
and protein extracellular matrix. DEGs in green 
modules were mainly enriched in excessive elon-
gation of mitochondrion, mutation termination of 
mitochondrion, translation, mitochondrial inner 
membrane, mitochondrion, ATP biosynthesis, 
mitoribosome subunit, intermembrane space, nu-
cleosome, and ribosome.

Milkvetch root was a common traditional 
Chinese drug widely applied in the treatment 
of multiple diseases37. The mechanism of the 
treatment of laryngeal cancer with milkvetch 
root was investigated based on gene co-expres-
sion network and molecular docking in some 
research. Key modules were screened to obtain 
the important therapeutic targets for laryngeal 
cancer. Besides, external dataset was utilized for 
differentially expressed analysis and survival 
analysis. The pathways through which impor-
tant targets were involved in were revealed by 
gene set enrichment analysis (GSEA) enrich-
ment analysis. It was demonstrated that some 
components of milkvetch root could effectively 
bind to important targets, including quercetin, 
rutin, and chlorogenic acid, which might be the 
main mechanism of the anti-cancer effects of 
milkvetch root38. Guo et al39 obtained the che-
mical components of milkvetch root from Tradi-
tional Chinese Medicine Systems Pharmacology 
Database (TCMSP) and determined the poten-
tial targets by therapeutic target database (TTD). 
DisGeNET and GeneCards databases were 
adopted to collect DN-related target genes. Be-
sides, STRING database was utilized to establi-
sh DN-milkvetch root common target protein 
interaction network. Based on GO analysis and 
KEGG pathway enrichment analysis, the action 
mechanism and therapeutic effects of DN-milk-
vetch root were further explored. Eventually, 
a total of 16 active ingredients and 78 putative 
target genes were screened from milkvetch root, 
including 42 overlapping with DN targets. They 
were considered potential therapeutic targets. 
According to the results of network analysis, the 
activity of milkvetch root containing quercetin, 
formononetin, verbascoside, and 7-O-methyl 
group-isomucronulatol methyl isobutyl fenchyl 
alcohol was correlated with top 10 screened tar-
gets, such as vascular endothelial growth factor 
A (VEGFA), tumor necrosis factor (TNF), inter-
leukin-6 (IL-6), mitogen-activated protein kina-
se (MAPK), chemotactic factor 3 (CCL3), nitric 
oxide synthase 3 (NOS3), post-transcriptional 
gene silencing 2 (PTGS2), IL-1 β, JUN, and 

epidermal growth factor receptor (EGFR). Ac-
cording to GO and KEGG analysis, these targets 
were associated with inflammatory reaction, an-
giogenesis, oxidative stress reaction, rheumatoid 
arthritis, and other biological processes. Dai et 
al40 investigated the key active ingredients and 
potential pharmacological action mechanism of 
the treatment of DN with milkvetch root ba-
sed on network pharmacology, which provided 
scientific evidence for clinical efficacy. The acti-
ve ingredients of milkvetch root were obtained 
from TCMSP. A treatment goal database was 
used to determine potential targets of milkvetch 
root. Besides, relevant target genes of milkvetch 
root were acquired from the GEO microarray 
dataset GSE1009 and three widely used databa-
ses (DisGeNET, GeneCards, and Comparative 
Toxicogenomics Database). STRING database 
was employed to establish a DN-AM common 
target protein interaction network. In addition, 
Cytoscape was utilized to construct an active 
ingredient candidate target protein network for 
visualization. GO and KEGG gene and genome 
pathway analysis were performed. Eventually, 
17 active ingredients and 214 target proteins 
were screened from milkvetch root, and 61 
candidate co-expression genes that had thera-
peutic effects on DN were obtained and viewed 
as potential therapeutic targets. The analysis of 
GO and KEGG and genome enrichment analysis 
demonstrated that three genes mainly got invol-
ved in the inflammatory reaction, angiogenesis, 
oxidative stress reaction, hypoxia-inducible fac-
tor (HIF) signal pathway, TNF signal pathway, 
and VEGF signal pathway. The above research 
findings suggested that milkvetch root played a 
positive role in the treatment of DN. In the rese-
arch, the bioactive ingredients of milkvetch root 
were performed with visualization analysis, and 
the prediction targets were investigated. It was 
found that quercetin, kaempferol, 7-O-methyl 
group-isomucronulatol, and isorhamnetin were 
the compounds with more targets. The above 
components had 133, 54, 47, 28, and 22 targets. 
To sum up, milkvetch root possessed remarkable 
efficacy and high application values in DN and 
played an important role in the clinical preven-
tion and control of DN.

Strengths and Limitations
The limitations of this research lie in gene 

co-expression network analysis only by publi-
shed data and the small sample size. In follow-up 
research, more clinical cases should be included 
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as the samples for transcriptome analysis. Fur-
thermore, reconstruction was implemented, and 
then WGCNA analysis was conducted to provide 
a reference for the diagnosis and treatment for 
DN patients.

Conclusions

In the research, WGCNA and pharmacolo-
gy networks were employed to investigate the 
changes of DEGs in DN samples and perform 
correlation analysis and drug target investigation. 
It was demonstrated that 9 network modules were 
closely associated with DN. The number of DEGs 
in gray, blue, green, and brown modules of WGC-
NA modules was the greatest. According to GO 
and KEGG analysis of DEGs, the main functions 
of these genes were annotated as immunologi-
cal reaction, inflammatory reaction, and signal 
transduction. Quercetin, kaempferol, 7-O-methyl 
group-isomucronulatol, and isorhamnetin were 
the compounds with more targets. 

Ethics Approval
Not applicable.

Informed Consent
Not applicable.

ORCID ID
Ying Li: 0009-0005-5746-3537.

Data Availability 
All data are available upon request by contact with the cor-
responding author.

Funding
None.

Conflicts of Interest
The authors have no conflicts of interest to declare.

Authors’ Contributions 
Sheng Nan Zeng: Conceptualization, validation, formal anal-
ysis, investigation, resources, writing-original draft. Yang 
Meng, Qi Li: Validation, formal analysis, investigation, re-
sources. Shu Rong Wang: Conceptualization, resources. Ying 
Li: Visualization, supervision, project administration, and 
funding acquisition, writting-review and editing.

References

  1)	 Thipsawat S. Early detection of diabetic ne-
phropathy in patient with type 2 diabetes melli-
tus: A review of the literature. Diab Vasc Dis Res 
2021; 18: 14791641211058856.

  2)	 Wheeler DC, Stefansson BV, Batiushin M, 
Bilchenko O, Cherney D, Chertow GM, Douthat 
W, Dwyer JP, Escudero E, Pecoits-Filho R, Fu-
ruland H, Górriz JL, Greene T, Haller H, Hou 
FF, Kang SW, Isidto R, Khullar D, Mark PB, Mc-
Murray J, Kashihara N, Nowicki M, Persson F, 
Correa-Rotter R, Rossing P, Toto RD, Umanath 
K, Van Bui P, Wittmann I, Lindberg M, Sjöström 
CD, Langkilde AM, Heerspink H. The dapagli-
flozin and prevention of adverse outcomes in 
chronic kidney disease (DAPA-CKD) trial: base-
line characteristics. Nephrol Dial Transplant 
2020; 35: 1700-1711.

  3)	 Tuttle KR, Brosius FC 3rd, Cavender MA, Fio-
retto P, Fowler KJ, Heerspink H, Manley T, Mc-
Guire DK, Molitch ME, Mottl AK, Perreault L, Ro-
sas SE, Rossing P, Sola L, Vallon V, Wanner C, 
Perkovic V. SGLT2 Inhibition for CKD and Car-
diovascular Disease in Type 2 Diabetes: Report 
of a Scientific Workshop Sponsored by the Na-
tional Kidney Foundation. Am J Kidney Dis 2021; 
77: 94-109.

  4)	 de Zeeuw D, Heerspink H. Time for clinical deci-
sion support systems tailoring individual patient 
therapy to improve renal and cardiovascular out-
comes in diabetes and nephropathy. Nephrol Dial 
Transplant 2020; 35: ii38-ii42.

  5)	 Bille N, Byberg S, Gishoma C, Buch Kristensen 
K, Lund Christensen D. HbA(1c) variability and 
the development of nephropathy in individuals 
with type 1 diabetes mellitus from Rwanda. Dia-
betes Res Clin Pract 2021; 178: 108929.

  6)	 Cerbone M, Visser J, Bulwer C, Ederies A, 
Vallabhaneni K, Ball S, Kamaly-Asl I, Gross-
man A, Gleeson H, Korbonits M, Nanduri V, 
Tziaferi V, Jacques T, Spoudeas HA. Manage-
ment of children and young people with idio-
pathic pituitary stalk thickening, central diabe-
tes insipidus, or both: a national clinical prac-
tice consensus guideline. Lancet Child Ado-
lesc Health 2021; 5: 662-676.

  7)	 Çetin M, Acehan F, Kundi H, Yakıcı IE, Katipog-
lu B, Duran G, Yazıcı B, Cetin ZG, Ates I. A novel 
risk prediction tool for contrast-induced nephrop-
athy in patients with chronic kidney disease who 
underwent diagnostic coronary angiography. Eur 
Rev Med Pharmacol Sci 2023; 27: 3430-3437.

  8)	 Cundy T, Holden A, Stallworthy E. Early Worsen-
ing of Diabetic Nephropathy in Type 2 Diabetes 
After Rapid Improvement in Chronic Severe Hy-
perglycemia. Diabetes Care 2021; 44: e55-e56.

  9)	 Larroumet A, Molina O, Foussard N, Monlun M, 
Blanco L, Mohammedi K, Rigalleau V. Early Wors-
ening of Diabetic Nephropathy in Type 2 Diabetes 
After Rapid Improvement in Chronic Severe Hy-
perglycemia. Diabetes Care 2021; 44: e55-e56. 



S.-N. Zeng, Y. Li, Y.-M.-Q. Li, S.-R. Wang

9626

10)	 Pugliese G, Penno G, Natali A, Barutta F, Di 
Paolo S, Reboldi G, Gesualdo L, De Nicola L. Di-
abetic kidney disease: new clinical and therapeu-
tic issues. Joint position statement of the Italian 
Diabetes Society and the Italian Society of Ne-
phrology on “The natural history of diabetic kid-
ney disease and treatment of hyperglycemia in 
patients with type 2 diabetes and impaired renal 
function”. J Nephrol 2020; 33: 9-35.

11)	 Wahba EN, Elsharkawy A, Awad MH, Abdel Rah-
man A, Sarhan A. Role of magnetic resonance 
diffusion weighted imaging in diagnosis of dia-
betic nephropathy in children living with type 1 
diabetes mellitus. J Pediatr Endocrinol Metab 
2021; 34: 1585-1591.

12)	 Zhang X, Bai R, Zou L, Zong J, Qin Y, Wang Y. 
Brachial-Ankle Pulse Wave Velocity as a Novel 
Modality for Detecting Early Diabetic Nephropa-
thy in Type 2 Diabetes Patients. J Diabetes Res 
2021; 2021: 8862573.

13)	 Ono S, Ono Y, Koide D, Yasunaga H. Associa-
tion Between Routine Nephropathy Monitoring 
and Subsequent Change in Estimated Glomeru-
lar Filtration Rate in Patients With Diabetes Mel-
litus: A Japanese Non-Elderly Cohort Study. J 
Epidemiol 2020; 30: 326-331.

14)	 Darmayanti S, Lesmana R, Meiliana A, Abdulah 
R. Genomics, Proteomics and Metabolomics Ap-
proaches for Predicting Diabetic Nephropathy in 
Type 2 Diabetes Mellitus Patients. Curr Diabetes 
Rev 2021; 17: e123120189796.

15)	 Gao X, Hou R, Li X, Qiu XH, Luo HH, Liu SL, 
Fang ZZ. The Association Between Leucine 
and Diabetic Nephropathy in Different Gender: 
A Cross-Sectional Study in Chinese Patients 
With Type 2 Diabetes. Front Endocrinol (Laus-
anne) 2020; 11: 619422.

16)	 Fotso Soh J, Beaulieu S, Trepiccione F, Linnaran-
ta O, Torres-Platas G, Platt RW, Renaud S, Su 
CL, Mucsi I, D’Apolito L, Mulsant BH, Levinson 
A, Saury S, Müller D, Schaffer A, Dols A, Low 
N, Cervantes P, Christensen BM, Herrmann N, 
Rajji T, Rej S. A double-blind, randomized, place-
bo-controlled pilot trial of atorvastatin for nephro-
genic diabetes insipidus in lithium users. Bipolar 
Disord 2021; 23: 66-75.

17)	 Matboli M, Ibrahim D, Hasanin AH, Hassan MK, 
Habib EK, Bekhet MM, Afifi AM, Eissa S. Epi-
genetic modulation of autophagy genes linked to 
diabetic nephropathy by administration of isor-
hamnetin in Type 2 diabetes mellitus rats. Epig-
enomics 2021; 13: 187-202.

18)	 Dai Y, Guo M, Jiang L, Gao J. Network pharma-
cology-based identification of miRNA expres-
sion of Astragalus membranaceus in the treat-
ment of diabetic nephropathy. Medicine (Balti-
more) 2022; 101: e28747.

19)	 Wang E, Wang L, Ding R, Zhai M, Ge R, Zhou P, 
Wang T, Fang H, Wang J, Huang J. Astragaloside 
IV acts through multi-scale mechanisms to effec-
tively reduce diabetic nephropathy. Pharmacol 
Res 2020; 157: 104831.

20)	 Zhang Y, Tao C, Xuan C, Jiang J, Cao W. Tran-
scriptomic Analysis Reveals the Protection of As-
tragaloside IV against Diabetic Nephropathy by 
Modulating Inflammation. Oxid Med Cell Longev 
2020; 2020: 9542165.

21)	 Zhang Y, Luo J, Liu Z, Liu X, Ma Y, Zhang B, 
Chen Y, Li X, Feng Z, Yang N, Feng D, Wang L, 
Song X. Identification of hub genes in colorectal 
cancer based on weighted gene co-expression 
network analysis and clinical data from The Can-
cer Genome Atlas. Biosci Rep 2021; 41.

22)	 Zheng H, Liu H, Li H, Dou W, Wang X. Weight-
ed Gene Co-expression Network Analysis 
Identifies a Cancer-Associated Fibroblast Sig-
nature for Predicting Prognosis and Therapeu-
tic Responses in Gastric Cancer. Front Mol 
Biosci 2021; 8: 744677.

23)	 Li W, Wang L, Wu Y, Yuan Z, Zhou J. Weighted 
gene co‑expression network analysis to identify 
key modules and hub genes associated with atri-
al fibrillation. Int J Mol Med 2020; 45: 401-416.

24)	 Wang Q, Liu L, Cao J, Abula M, Yimingjiang Y, 
Feng S. Weighted gene co-expression network 
analysis reveals that CXCL10, IRF7, MX1, RSAD2, 
and STAT1 are related to the chronic stage of spi-
nal cord injury. Ann Transl Med 2021; 9: 1248.

25)	 Yang L, Li X, Luo Y, Yang T, Wang H, Shi L, Feng 
M, Xie W. Weighted gene co-expression network 
analysis of the association between upregulated 
AMD1, EN1 and VGLL1 and the progression and 
poor prognosis of breast cancer. Exp Ther Med 
2021; 22: 1030.

26)	 Fayed A, Rabiee A, El-Saadany O, Shaban M, 
Hesham D, Elghobary H, Hammad H, Fatthy M. 
Urinary pigment epithelium-derived factor as a 
marker of diabetic nephropathy in Egyptian pa-
tients with type 2 diabetes mellitus. Saudi J Kid-
ney Dis Transpl 2021; 32: 1340-1347.

27)	 Shimizu M, Furuichi K, Kitajima S, Toyama T, 
Oshima M, Ogura H, Sato K, Nakagawa S, Ya-
mamura Y, Miyagawa T, Hara A, Iwata Y, Sakai 
N, Kitagawa K, Yoshimura M, Yokoyama H, 
Wada T. Impact of the relationship between 
hemoglobin levels and renal interstitial fibro-
sis on long-term outcomes in type 2 diabetes 
with biopsy-proven diabetic nephropathy. BMC 
Nephrol 2021; 22: 319.

28)	 Kim K, Lee SH, Lee SW, Lee JP, Chin HJ. Current 
findings of kidney biopsy including nephropathy as-
sociated with hypertension and diabetes mellitus in 
Korea. Korean J Intern Med 2020; 35: 1173-1187.

29)	 Bell D. Combine and Conquer: With Type 2 Di-
abetes Polypharmacy Is Essential Not Only to 
Achieve Glycemic Control but Also to Treat the 
Comorbidities and Stabilize or Slow the Advance-
ment of Diabetic Nephropathy. J Diabetes Res 
2022; 2022: 7787732.

30)	 Bayoumy N, El-Shabrawi MM, Leheta OF, Abo 
El-Ela A, Omar HH. Association of ELMO1 gene 
polymorphism and diabetic nephropathy among 
Egyptian patients with type 2 diabetes mellitus. 
Diabetes Metab Res Rev 2020; 36: e3299.



Weighted gene co-expression network analysis of Astragalus on key targets of DN

9627

31)	 Guo MF, Dai YJ, Gao JR, Chen PJ. Uncover-
ing the Mechanism of Astragalus membrana-
ceus in the Treatment of Diabetic Nephropathy 
Based on Network Pharmacology. J Diabetes 
Res 2020; 2020: 5947304.

32)	 Li X, Zhao T, Gu J, Wang Z, Lin J, Wang R, Duan 
T, Li Z, Dong R, Wang W, Hong KF, Liu Z, Huang 
W, Gui D, Zhou H, Xu Y. Intake of flavonoids from 
Astragalus membranaceus ameliorated brain im-
pairment in diabetic mice via modulating brain-
gut axis. Chin Med 2022; 17: 22.

33)	 Shen Z, Liu S, Liu J, Liu J, Yao C. Weight-
ed Gene Co-Expression Network Analysis and 
Treatment Strategies of Tumor Recurrence-As-
sociated Hub Genes in Lung Adenocarcinoma. 
Front Genet 2021; 12: 756235.

34)	 Liang W, Sun F. Weighted gene co-expression net-
work analysis to define pivotal modules and genes 
in diabetic heart failure. Biosci Rep 2020; 40.

35)	 Yin S, Li W, Wang J, Wu H, Hu J, Feng Y. 
Screening of key genes associated with m6A 
methylation in diabetic nephropathy patients by 
CIBERSORT and weighted gene coexpression 
network analysis. Am J Transl Res 2022; 14: 
2280-2290.

36)	 Gholaminejad A, Fathalipour M, Roointan A. 
Comprehensive analysis of diabetic nephropa-
thy expression profile based on weighted gene 
co-expression network analysis algorithm. BMC 
Nephrol 2021; 22: 245.

37)	 Chen XY, Han HF, He ZY, Xu XG. Immune Mech-
anism, Gene Module, and Molecular Subtype 
Identification of Astragalus Membranaceus in the 
Treatment of Dilated Cardiomyopathy: An Inte-
grated Bioinformatics Study. Evid Based Comple-
ment Alternat Med 2021; 2021: 2252832.

38)	 Dong KF, Huo MQ, Sun HY, Li TK, Li D. Mechanism 
of Astragalus membranaceus in the treatment of la-
ryngeal cancer based on gene co-expression network 
and molecular docking. Sci Rep 2020; 10: 11184.

39)	 Guo MF, Dai YJ, Gao JR, Chen PJ. Uncover-
ing the Mechanism of Astragalus membrana-
ceus in the Treatment of Diabetic Nephropathy 
Based on Network Pharmacology. J Diabetes 
Res 2020; 2020: 5947304.

40)	 Dai Y, Guo M, Jiang L, Gao J. Network pharma-
cology-based identification of miRNA expres-
sion of Astragalus membranaceus in the treat-
ment of diabetic nephropathy. Medicine (Balti-
more) 2022; 101: e28747.


