The inhibitory effect of miR-375 targeting sp1 in colorectal cancer cell proliferation

X.-H. LIU, J. WANG, Y.-H. DONG

Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Micine, Hubei, China

Abstract. – **OBJECTIVE**: Sp1 is a member of super zinc finger structure family that participates in cancer cells' apoptosis, proliferation, survival, and differentiation. This study detected the expressions of miR-375 and sp1 in colorectal cancer tissue and cells to analyze their impact on cell proliferation.

PATIENTS AND METHODS: Colorectal cancer patients in our hospital were enrolled. HCT-116 cell was transfected with miR-375 mimics, mimics control, and miR-375 + sp1, respectively. RT-PCR and Western blot were applied to detect expressions of miR-375 and sp1 at mRNA and rotein level in colorectal cancer tissue, paranoma tissue, and normal colorectal tissue. PCR and Western blot were used to test of miR-375 and sp1 in HCT-116 cells after the fection. MTT assay was performed to detern HCT-116 cell proliferation.

RESULTS: Our data showed 375 wa downregulated, while sp1 pressed OV vith that in colorectal cancer tiss ompare in para-carcinoma tissu norm < 0.05). MiR-375 level was nimic transmRNA was decline ter mit mpared wit fection (p < 0.05)375 mimmiR-375 and ic group, the le howed no difference + sp1 group **>** 0.05). Of note, the increase 2-375 and reduction of sp1 wg in a time-d ent manner (p < ell proliferation miR-375 mim-0.05). T was significantly deckeased compared ic gro with t in mir control and blank group (p <cel oliferation rate in miR-375 + sp1 0.0 ificantly group her than that miR-375 In the control (p < 0.05). lower up, bi rolife gradually declined in a penden ner (p < 0.05).

spiral was enhanced in colorectal cancer.

esses the proliferation of colorectancer cells via the inhibition of sp1 expresat posttranscriptional level.

Key rds.

mik-375, Sp1, Colorectal Cancer, Proliferation.

ntroduct

Colore a type of con mon gastrointestinal mangnant to with increasing morbidity year by year. There a re than 140,000 new ry year¹. MicroRNA e United States RNA) is a kind of single noncoding RNA that haracterized 2 he length of about 22 nt. After g transcripte RNA polymerase II, mature As form u r the effect of RNA enzymes osha and Dicer enzyme². It was III RNA-375 widely existed in various reported sues or organs, and was downregulated in a variors, especially in the digestive system tuh as liver cancer, esophageal cancer, gastric cancer, and pancreatic cancer^{3,4}. Transcription factor specific protein (SP) family is highly related to transcription, which includes eight important members Sp1-Sp8 with homologous sequence of three series of zinc finger structures on the c-terminal. Each family member recognizes GC box and GT box to regulate gene transcription⁵. Spl, as a basic transcription factor, has strong affinity to GC box to participate in cell proliferation, apoptosis, differentiation, and transformation⁶. This article enrolled colorectal cancer patients in our hospital to test miR-375 and sp1 expression in cancer tissue, para-carcinoma tissue, and normal control, to investigate the targeting effect of miR-375 on sp1 in colorectal cancer cell proliferation.

Patients and Methods

Patients

A total of 20 cases of colorectal cancer patients who received surgery in Xiangyang Hospital between January 2014 and January 2016 and that were diagnosed by pathology test, were enrolled, including 11 males and 9 females. There were 5 cases in stage I, 9 cases in stage II, 5 cases in stage III, and 1 case

in stage IV. 11 cases were well differentiated, 7 cases were moderately differentiated, and 2 cases were poorly differentiated. The mean age of enrolled patients was 43.1 ± 6.2 (19-62) years old. All the cancer samples were preserved at -70°C. No patients received chemotherapy or radiotherapy before surgery. Another 20 cases of patients with benign colorectal disease that received surgery or biopsy were selected as normal control with mean age at 40.8 ± 5.3 (28-55) years old. No significant difference about gender and age was observed between two groups (p > 0.05). The study protocol was approved by the Research Ethics Committee of Xiangyang Hospital, and all patients gave their informed consent before study commencement.

Cells and Reagents

Human colorectal cancer HCT-116 cell line was offered by Department of Cell Biology, China Medical University (Beijing, China). MiR-375 mimics and inhibitor were from GenePharma (Shanghai, China). Lipofectamine® 200 was purchased from Invitrogen (Carlsbad, CA, USA). RT-PCR kit for miR-375, spl, and β-actin was from TaKaRa (Otsu, Shiga, Japan). PCR amplification ABI (Vernon, CA, USA). TRIzol reaction Invitrogen (Carlsbad, CA, USA). It well Park Memorial Institute (RPMI)-1640 mand MTT were from Gibco (Rockville, MD, U

Experimental Method

Routine Cell Cultivation

Human colorectal of the cultured in RPMI and medium paintained at 37°C and 5%

Cell Transfection

HCT-1 cells were se in culture plate overnig MiR-375 mimics, K-375 inhibitor, ontrol, and miR-375 + sp1 were transfectmim sing lipofectamine[®] 2000. After ed were cultured for 72 h 4-6 h n, the c Untransfected HCT-116 char er med nank control. rere ch

RT R Detection of miR-375 and sp1 F HCT-116

was extracted by TRIzol according manual and qualified. A total of 200 ng RNA was rese-transcripted to cDNA after poly A tail synth, sis. The cDNA was used as template for PCR amplification. The primer sequences used in the

experiments were listed as follows: miR-375, forward, 5'-AGCCGTCAAGAGCAATAACGAA-3', reverse, 5'-GTGCAGGGTCCGAGGT-3' ward, 5'-TGGTGGGCAGTATGTTG 5'-GCTATTGGCATTGGTGAA-3' forward, 5'-CTCGCTTCGGCAGCACA-3' rse, 5'-AAC-GCTTCACGAATTTGCGT-3'. PC tion was consisted by 95°C for 30 s, for wed by cles of 95°C for 5 s and 60°C for s. U6 was internal reference.

Western blot Determines sp1 in HCT-11 Fells

Total protei vas extract mmunoprecipitation (RIPA) and ted by 8% te polyacryla nide gel elecsodium d trophoresis (SDS-After the membrane was blocked at room rature for 1 h, it was with diluted pracry antibody (1:200, ctin 1:500) at 4°C overnight. After the memne was wash by Tris-buffered saline and en 20 (TBS it was further incubated in lary antib (1:2000) for 1 h (Abcam, JSA). Next, the membrane was added w. veloping solution A and B for 2 ml, expectively. At last, the membrane was scanned sed by Quantity One software.

MTT Assay

The cells transfected with miR-375 mimics, miR-375 inhibitor, mimic control, or miR-375 mimic + sp1 in logarithm phase were seeded in 12-well plate at 8×10⁴/well and culture at 37°C and 5% CO₂. Cell viability was determined at 24 h, 48 h, and 72 h by 20 μl MTT (5 mg/ml). After 4 h incubation, the cell reaction was stopped by 150 μl dimethyl sulfoxide (DMSO) for 10 min. At last, the plate was read at 570 nm for OD value to draw the proliferation curve.

Luciferase Assay

Sp1 3'-UTR in genome DNA was amplified by PCR and inserted to pGL3 control vector. Mutated sp1 3'-UTR vector was selected as control. MiR-375 was co-transfected to the cells by lipofectamine® 2000. After 24 h, the transfected HCT-116 was detected by luciferase assay according to the manual.

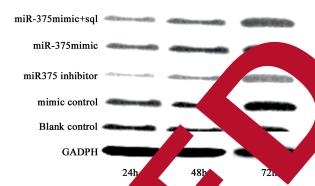
RT-PCR Detection of miR-375 and sp1 mRNA expression in Colorectal Cancer Tissue, Para-carcinoma Tissue, and Normal Colorectal Tissue

Total RNA was extracted by TRIzol according to the manual and qualified. A total of 200 ng

RNA was reversing transcripted to cDNA after poly A tail synthesis. The primer sequences used in the experiments were listed in Table I. Reverse transcription system contained 2 µl RNA and 1 µl primer. A total of 3 µl cDNA together with 1 µl primers and 0.2 µl Taq DNA polymerase were applied for PCR amplification. PCR reaction was consisted by 94°C for 3 min, followed by 30 cycles of 94°C for 40 s, 56°C for 1 min, and 72°C for 1 min. The PCR product was scanned on gel imaging system and analyzed by Quantity One software.

Western Blot Detection of sp1 in Colorectal Cancer Tissue, Para-carcinoma Tissue, and Normal Colorectal Tissue

Total protein was treated with radioimmunoprecipitation assay buffer (RIPA) and the supernatant was moved to new Ep tubes after it was centrifuged at 300 g for 20 min. A total of 40 μ g protein was separated by 8% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). After blocked at room temperature for 1 h, the membrane was incubated with diluted primary antibody (1:200, β -actin 1:500) at 4°C overnight washed by Tris-buffered saline Tween 20 the membrane was further incubated in section ary antibody (1:2000) for 1 h. Next, the membrane was added with developing solution A and B for 2 respectively. At last, the membrane was scannand analyzed by Quantity One


Statistical Analysis

SPSS 17.0 software (St. C. USA) was applied for ata an All data was presented as mean at andard de Enumeration data was c d by chi-squared, while measurement at which is a manner of the squared by a test. p < 0.05 was considered as a migal significance.

Results

RT Det lon of miR-375 and sp1 mRN. ssion i ICT-116 Cells

A expl app to test miR-375 and spl HCT-116 cells. The results

Figure 1. MiR-375 pro tres in HCT-116 after transfection.

gnificantly showed that 2-375 level expression was reduced increased in miR-3 mim up compared with that in mip 375 inhibitor, c control, and blank loup (p < 0.6)The expression of -375 showed no difference between miRmimic grow nd miR-375 + sp1 group (p >tistically lower level of miR-). However, d higher el of sp1 mRNA were found or group (p < 0.05) (Table II). in i

Yestern Blot Detection of miR-375 and ression in HCT-116 Cells

expression in HCT-116 cells. It was revealed that miR-375 level was upregulated, while spl level was declined in miR-375 mimic group compared with that in miR-375 inhibitor, mimic control, and blank control group (p < 0.05). No difference of miR-375 expression was shown between miR-375 mimic group, miR-375 + spl group showed (p > 0.05). Of note, the miR-375 was increased and spl protein was reduced in miR-375 + spl group and miR-375 mimic group in a time dependent manner (p < 0.05). Nevertheless, the miR-375 was declined, and spl mRNA was enhanced in miR-375 inhibitor group (p < 0.05) (Table III, Figures 1 and 2).

MTT Assay Determination of HCT-116 Cell Proliferative Ability

MTT assay was performed to determine cell viability. It demonstrated that significantly de-

Ta quence.

•	ene	Sense	Anti-sense
sp: β-a		5'-AAATCACCACCTTCACAGCC-3' 5'-ATGGCAGCCGGG AGCATCACC-3' 5'-GAAACTACCTTCAACTCCATC-3'	5'-GTTGTAATGGTTCTCCTCCAGC-3' 5'-CACACACTCCTTTGATAGACACAA-3' 5'-CTAGAAGCATTTGCGGTGGACGAT GGAGGGGCC-3'

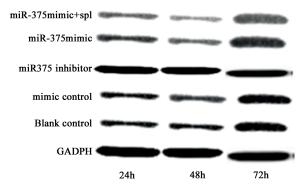


Figure 2. Sp1 protein expression in HCT-116 after transfection.

creased proliferation rate in miR-375 mimic group was presented compared with that in mimic control and blank group (p < 0.05). However, markedly higher proliferation rate in miR-375 + sp1 group was exhibited than that in miR-375 group, but it was still lower than the control (p < 0.05). The proliferation rate was gradually declined in a time dependent manner (p < 0.05) (Table IV).

MiR-375 Targeting sp1 3'-UTR

Luciferase assay demonstrated that its was statistically declined in HCT-116 cell ter

sp1 3'-UTR and miR-375 mimic co-transfection (p < 0.05). Sp1 3'-UTR co-transfected with miR-375 obviously elevated luciferase action suppressed miR-375 binding with sp1 p = 0.05.

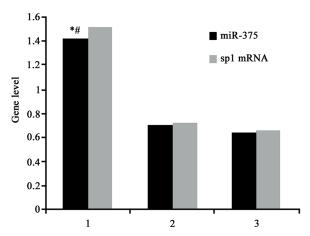
RT-PCR Detection of miR-37 and sp1 mRNA Expression in Colore Tancer Tissue, Para-carcinoma Sissue, Normal Colorectal Tissue

RT-PCR was perform to test miR-375 a mRNA expression in rectal cer tissue, ra-carcinoma tissue, a olorecta tissue. tissue a Compared with ormal -carc gn colorectal tiss miR-375 antly declined, while a colorectal RNA was ele cancer tis Additional, miR-375 and spl expression leve ved no statistical difference between para-ca a tissue and normal CQ lissue (p > 0.05)able V, Figure 3).

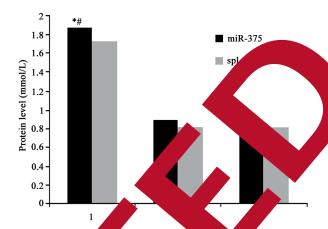
Protein E. ession in Colorectal er Tissue ara-Carcinoma tissue, and lorectal Tissue

Wester was performed to detect miR-375 d sp1 protein expression in colorectal cancer ra-carcinoma tissue, and normal col-

Table II. MiR-375 and sp1 expression in HCT-116 cell.


Item	miR-375 mimic+s	375 min	miR375 inhibitor	Mimic control	Blank control
miR-375 24 h	1.321 ± 0.029^{12}	1.3 0.03812	0.282 ± 0.008^{1236}	0.701±0.021	0.634±0.017
48 h	1.471±0.037 ¹²	1	0.201 ± 0.005^{12346}	0.713 ± 0.019	0.651±0.015
72 h spl mRNA	1.098±0	05=0.00	0.137 ± 0.002^{123456}	0.721±0.022	0.647±0.019
24 h 48 h	1.18 31 ¹² 1 31 ²⁴	$0.027^{12} \\ 1. 014^{124}$	$1.895 \pm 0.087^{1236} 1.921 \pm 0.091^{12346}$	1.831±0.081 1.782±0.075	1.876±0.092 1.801±0.087
72 h	,5±c	0.925.20.0081245	1.983±0.096 ¹²³⁴⁵⁶	1.801±0.078	1.785±0.079

1, p < 0.05, compared with min. 201; 2, p < 0.05, compared with blank control; 3, p < 0.05, compared with miR-375 mimic group; 4, 2005, compared with miR-375, compared with miR-375 mimic group; 4, 2005, compared with miR-375 mimic group.


Tab MiR-37 and sp1 protein expression in HCT-116 after transfection.

Item	miR-3 mimic+sp	o1 miR-375 mimic	miR375 inhibitor	Mimic control	Blank control
375 pro	2 ± 0.018^{123} 1.866 ± 0.057^{1234} 1.866 ± 0.057^{12345}	$\begin{array}{c} 1.514 \pm 0.012^{12} \\ 1.682 \pm 0.021^{124} \\ 1.912 \pm 0.042^{1245} \end{array}$	$\begin{array}{c} 0.233 \pm 0.008^{1236} \\ 0.189 \pm 0.005^{12346} \\ 0.124 \pm 0.002^{123456} \end{array}$	0.689±0.021 0.724±0.019 0.733±0.022	0.634±0.017 0.651±0.015 0.647±0.019
4 h	$\begin{array}{c} 1.672 \pm 0.093^{123} \\ 1.481 \pm 0.081^{1234} \\ 1.143 \pm 0.046^{12345} \end{array}$	$\begin{array}{c} 1.181 \pm 0.023^{12} \\ 1.093 \pm 0.012^{124} \\ 0.812 \pm 0.006^{1245} \end{array}$	$\begin{array}{c} 1.905 \pm 0.085^{1236} \\ 1.932 \pm 0.087^{12346} \\ 1.991 \pm 0.095^{123456} \end{array}$	1.742±0.079 1.773±0.064 1.794±0.051	1.767±0.081 1.782±0.076 1.796±0.068

1, p < 0.05, compared with mimic control; 2, p < 0.05, compared with blank control; 3, p < 0.05, compared with miR-375 mimic group; 4, p < 0.05, compared with 24 h; 5, p < 0.05, compared with 48 h; 6, p < 0.05, compared with miR-375 + spl group.

Figure 3. miR-375 and sp1 mRNA expression in colorectal cancer tissue, para-carcinoma tissue, and normal colorectal tissue. 1, Colorectal cancer tissue; 2, Para-carcinoma tissue; 3, Normal colorectal tissue. *p < 0.05, compared with para-carcinoma tissue; *p < 0.05, compared with normal colorectal tissue.

Figure 4. milk and spl protein expansion colorectal cancer tissure and proma tissue, and armal colorectal tissue. 1, Concetal consissue; 2, Para-carcinoma tissue; 3, Normal colorectal tissue, < 0.05, compared with para-carcinoma tissue; *p < 0.05, compared with normal colorectal colorectal tissue.

Table IV. MTT assay detection of cell proliferation rate after transformation

Item	miR-375 mimic+sp1	miR-375 mimic	miR ₂ hibitor	imic control	Blank control
OD value					
24 h	0.875 ± 0.016^{123}	0.792±0	$20+0.018^{1236}$	1.021 ± 0.012	1.012 ± 0.017
48 h	0.801 ± 0.013^{1234}	0.724 ± 0	~ 12346	1.084 ± 0.031^4	1.133 ± 0.026^4
72 h	0.068 ± 0.013^{12345}	0.403±0.0	1 56	1.131 ± 0.042^{45}	1.294±0.041 ⁴⁵
Proliferation rate (%)					
24 h	114 ¹²³	212	1291236	124	121
48 h	981234		4212346	1324	1384
72 h	9212345	84.	1123456	15845	16945

1, p < 0.05, compared with mix p < 0.05, compared with blank control; 3, p < 0.05, compared with miR-375 mimic group; 4, p < 0.05, compared with miR-375 + sp1 group.

Table V. MiR-375 MRNA expression and lorectal cancer tissue, para-carcinoma tissue, and normal colorectal tissue.

Group	Cases	miR-375	sp1
Colorect meer Para-colorectal tissue	20 20 10	1.425±0.059*# 0.707±0.023 0.643±0.026	1.521±0.086*# 0.709±0.026 0.656±0.024

^{*}p < 0.05, compared with normal colorectal tissue.

ore tissue. It esults showed that, compared with ara-carcinoma tissue and normal colorectal time was decreased, while spl protein s enhanced in colorectal cancer tissue (p < MiR-375 and spl expression level showed in the difference between para-carcinoma the sue and normal colorectal tissue (p > 0.05) (Table VI, Figure 4).

Discussion

Colorectal cancer is a kind of common digestive tract malignant tumor that accounts for the fourth of cancer death⁷. At present, the incidence of colorectal cancer increase with the change of living inhabits. Compared with 1970s, the current prevalence of colorectal cancer rises to

Table VI. MiR-375 and sp1 protein expression in colorectal cancer tissue, para-carcinoma tissue, and normal colorectal tissue.

Group	Cases	miR-375	sp1
Colorectal cancer Para-carcinoma	20 20	1.878±0.069*# 0.892±0.037	1.732 0.8 .027
Normal colorectal tissue	10	0.854 ± 0.032	€0.021

*p < 0.05, compared with para-carcinoma tissue; *p < 0.05, compared with normal colorectal tissue.

32.0% in city and 8.5% in rural areas^{8,9}. Early detection and treatment can improve the 5-year survival rate of patients with colorectal cancer, especially for tumor confined to the intestinal wall, up to 90%¹⁰. MiRNA is a kind of important gene regulating factor that has many important roles in regulating cell growth, proliferation, differentiation, and apoptosis. It participates in malignant tumor occurrence and development¹¹. The expressional change of miRNA has effect on the development of carcinogenesis¹². A previous study¹³ found that miR-375 can inhibit tumor cell proliferation, invasion, metastasis, and induce apoptosis. Sp1 is a specific DNA binding protein which is abnormally expressed in tiple tumors. It is involved in various bi process, including cell proliferation, in and angiogenesis¹⁴. Sp1 was reported to be itively correlated with cancer and impacted posttranscriptional modification¹⁵

In this study, we enrolled o ncer pa and p tients as experimental gro nts with benign colorectal disease e set as trol. RT-PCR was applied to test in expression in color e, para-carcant cinoma tissue, and rmal color ssue. The results showed **P-375** was de while in colorectal cancer sp1 mRNA tissue compared with control. Western blot also covered that make was decreased otein was enhance a cancer tissue. and sp sted that miR-375 was reduced and spl It su in colorectal cancer. Dai et al¹⁶ wa level y found significantly declined ra-carcinoma tissue, huolore ncer er cell line, and human nucous tissue, which was in colorect noi ance with our results. To explore miR-375 Sion changes in colorectal cancer related mechanism, we transfected miR-375 cs, miR-375 inhibitor, mimic control, and mimic + sp1 to HCT-116 cells. RT-PCR revealed that miR-375 level was elevated, while sp1 mRNA was declined after miR-375 mimic

transfection. Wester t demo rated that. protein was reduced splogroup following time dicate ensio mRNA show no signifi sp1 protein gulated afcantly was a ction in concectal cancer ter miR-2 tissue. It suggeste miR-375 can suppress spl expression at po. scriptional level¹⁷. It that miR-375 L sfection may inhibit 1-116 cell viability through suppressing spl vious study¹⁸ reported that ression. A 🖊 -375 downr lated in gastric cancer cells a cancer ppressor gene function. Mahat elevating miR-375 expresress melanoma cell proliferation. vasion, and migration. Wang et al²⁰ reported 75 plays a cancer suppressor gene role ous carcinoma of the cervix through targeting spl. Accumulative evidence showed that microRNAs such as miR-143 and miR-874, were associated with colorectal cancer progression^{21,22}. In this paper, we demonstrated that another miR-NA, miR-375, also participated in the regulation of the development of colorectal cancer.

Conclusions

miR-375 decreased and sp1 level enhanced in colorectal cancer. MiR-375 can inhibit sp1 expression at posttranscriptional level to suppress colorectal cancer proliferation. MiR-375 may play an important role in colorectal cancer occurrence and development, and it may be a new biomarker for colorectal cancer treatment in clinic.

Acknowledgements

This work was supported by Science and Technology Research Project of Hubei Provincial Department of Education (B2017119 and B2014059).

Conflict of Interest

The Authors declare that they have no conflict of interests.

References

- KOELZER VH, LUGLI A. The tumor border configuration of colorectal cancer as a histomorphological prognostic indicator. Front Oncol 2014; 4: 29.
- WINTER J, JUNG S, KELLER S, GREGORY RI, DIEDERICHS S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 2009; 11: 228-234.
- LOVAT F, VALERI N, CROCE CM. MicroRNAs in the pathogenesis of cancer. Semin Oncol 2011; 38: 724-733
- BARANWAL S, ALAHARI SK. miRNA control of tumor cell invasion and metastasis. Int J Cancer 2010; 126: 1283-1290.
- Yu B, Datta PK, Bagchi S. Stability of the Sp3-D-NA complex is promoter-specific: Sp3 efficiently competes with Sp1 for binding to promoters containing multiple Sp-sites. Nucleic Acids Res 2003; 31: 5368-5376.
- SANKPAL UT, GOODISON S, ABDELRAHIM M, BASHA R. Targeting Sp1 transcription factors in prostate cancer therapy. Med Chem 2011; 7: 518-525.
- GNOSA S, SHEN YM, WANG CJ, ZHANG H, STRATMANN J, ARBMAN G, SUN XF. Expression of AEG-1 mRNA and protein in colorectal cancer patients and colon cancer cell lines. J Transl Med 2012; 10:109.
- 8) TARRAGA LOPEZ PJ, ALBERO JS, RODRIGUEZ-MOPRIMARY and secondary prevention of cancer. Clin Med Insights Gastroenterol 33-46.
- 9) Muto M, Minashi K, Yano T, Saito Y, Oda I, No S, Omori T, Sugiura H, Goda K, Kaise M, Inoue Ishikawa H, Ochiai A, Shimoda T, Be H, Ta H, Saito D. Early detection sell carcinoma in the lead and like region and esophagus by national limit of a multicenter randomized control trial 2010; 28: 1566-157
- 10) TANTAMANGO YM AUTSEN SF, WL, FRASER G, SABATE J. For and food group sociated with the interpretable of colorectal pps: the Adventist alth Nutr Cancer 2011; 63: 565-572
- 11) FARAY J., SPITZER JI, MORO. TUSCHL T. miRNAs in an cancer. J Pathol 2. , 223: 102-115.

- 12) FARH KK, GRIMSON A, JAN C, LEWIS BP, JOHNSTON WK, LIM LP, BURGE CB, BARTEL DP. The widespread impact of mammalian MicroRNAs on mRNA sion and evolution. Science 2005; 310
- AMBROS V. The functions of animal microRNAs Nature 2004; 431: 350-355.
- 14) CHU S. Transcriptional regular post-transcriptional modification--role of horylation in Sp1 transcriptional activity. Gen. 3: 508: 1-8.
- 15) KASAAI B, GAUMOND M. MOFFATT P. Regulative bone-restricted (TM-like Bril) gene in description by Sp. Line (TM-like
- 16) DALX, CHI WANG Z, SON AO P, Xu H. Express S of microRN In colorectal carcing at 1, 100 d Rep 2012; 5, 1299-1304.
- 17) DING L, Xu Y, Zhang Y, DENG Y, SI M, Du Y, YAO H, Lin X, Ke Y, Si J, T. MiR-375 frequently egulated in gash, incer inhibits cell proliferation by targeting JAX2. Cell Res 2010; 20: 784-793.
- TSUKAMOTO Y, KADA C, NOGUCHI T, TANIGAWA M, NGUYEN LT, UKA T, HIJIYA N, MATSUURA K, FUJIOKA AMA M. MicroRNA-375 is down-astric carcinomas and regulates central by targeting PDK1 and 14-3-3zeta. Cancer Res 2010; 70: 2339-2349.
- RJ, DeBLASIO D, GOVINDARAJAN SS, ZHANG S, RJ. Epigenetic regulation of microRNA-375 and its role in melanoma development in humans. FEBS Lett 2011; 585: 2467-2476.
- WANG F, LI Y, ZHOU J, XU J, PENG C, YE F, SHEN Y, LU W, WAN X, XIE X. miR-375 is down-regulated in squamous cervical cancer and inhibits cell migration and invasion via targeting transcription factor SP1. Am J Pathol 2011; 179: 2580-2588.
- BAI JW, XUE HZ, ZHANG C. Down-regulation of microRNA-143 is associated with colorectal cancer progression. Eur Rev Med Pharmacol Sci 2016; 20: 4682-4687.
- 22) ZHAO B, DONG AS. MiR-874 inhibits cell growth and induces apoptosis by targeting STAT3 in human colorectal cancer cells. Eur Rev Med Pharmacol Sci 2016; 20: 269-277.