MiR-299-3p inhibits proliferation and invasion of cervical cancer cell via targeting TCF4

Y. YU¹, J.-D. ZHAO², H. YANG³

Ying Yu and Junda Zhao contributed equally to this work

Abstract. – OBJECTIVE: Many studies have demonstrated that the abnormal microRNAs (miRNAs) expression plays crucial roles in the development of human cancers including cervical cancer (CC). However, the expression and the underlying mechanism of miR-299-3p in CC remain unclear.

MATERIALS AND METHODS: In this the quantitative Real Time-Polymeras niR-Reaction (qRT-PCR) was used to dete 299-3p expression level in CC cell lines. proliferation assay, colony formation assay transwell invasion assay were conducted to vestigate the biological functions of miR-299-Followingly, the Luciferase ag rter an to valithe Western blot assays we ona (TCF4) a direct date the transcription fact target of miR-299-3p.

RESULTS: MiR-299-3p reduced in CC cell li con ith the normal cell line. The expression R-299-3p inhibits CC cell vth and invaurthermore, TCF4 wa ed as a direc rget of adan CF4 overexpression miR-299-3p. reversed the imibitory of miR-299-3p on CC cell bg viors.

CONC 31ONS: Taken toge 7, our results illustrate that miR-299-3p acts as a tumor suppressor to hibit CO III behaviors by targeting TCF4.

Key We

Cervica MiR-7 3p, TCF4, Cell growth, Cell

Introduction

agree cancer (CC) is the most commonly diagree cancer type in women, especially in undeve. Ed countries¹. The overall survival rate for

combined canger therapies and early cancer eening methods. Therefore, there is a need new biomark identification with the aim to a diagnos

RNAs that can regulate target gene expression riply via 3'-untranslated region (3'-UTR) bind-NAs have been recognized as regulational roles in cancer progression. It was reported that miRNAs can function as either tumor promoter or tumor suppressor. To date, there are still many obstacles to put miRNA-based treatment methods into clinical including off-target effects, and many failures to deliver miRNA. However, targeting miRNAs remain promising therapeutic measures for cancer treatment.

MiR-299-3p is reported to function as tumor suppressor in several cancer types. In thyroid cancer, miR-299-3p expression was significantly downregulated in both cancer tissues and cell lines⁸. The overexpression of miR-299-3p could inhibit cancer cell growth but promote cell apoptosis, while the knockdown of miR-299-3p caused the opposite effects on cancer cell behaviors⁸. Dang et al⁹ reported that the low miR-299-3p expression in hepatocellular carcinoma was closely associated with large tumor size, advanced tumor stage, poor overall survival, and disease-free survival of cancer patients. Another study¹⁰ confirmed that miR-299-3p was able to inhibit colon carcinoma progression in vitro and in vivo via targeting Vascular Endothelial Growth Factor A expression. However, it was not reported whether miR-299-3p has a role in regulating the CC progression.

¹Perinatal Care Division, Beijing Obstetrics and Gynecology Hospital, Capital Medical University Beijing Maternal and Child Health Care Hospital, Beijing, P.R. China

²The Outpatient Department of Gynaecology, The First Teaching Hosp Xinjing Medical University, Urumchi, P.R. China

³Department of Gynaecology and Obstetrics, Huaian Maternal and hild Health are Huaifan, P.R. China

Transcription factor 4 (TCF4) is a key player in the Wnt signaling pathway and could interact with β -catenin¹¹. High TCF4 expression was found associated with FIGO stage, lymph node metastasis, disease-free survival, and overall survival of epithelial ovarian cancer patients¹².

In this study, the biological roles of miR-299-3p and TCF4 were investigated using CC cell lines. Furthermore, the association of miR-299-3p and TCF4 was explored using Luciferase activity reporter assay and Western blot assay.

Materials and Methods

Cell Line and Cell Culture

The CC cell lines (SiHa and C33A) obtained from ATCC (Manassas, VA, USA) were incubated at Dulbecco's Modified Eagle's Medium (DMEM; Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA, USA) supplemented with 10% fetal bovine serum. Human cervical epithelial cell line End1 obtained from ATCC was grown at keratinocyte serum-free medium (K-SFM; Invitrogen, Thermo Fisher Scientific Inc., Waltham, USA). The incubation atmosph maintained at 37°C with 5% of CO₂.

Cell Transfection

MiR-299-3p mimic and negative content (NC-mimic) were synthesized RiboBh (Guangzhou, China). TCF nones to pcD-NA3.1 by GenScript (Nania, China) is named as pTCF4. The cell transfer was a using Lipofectamine 2000 (CA, USA).

Ouantitative me-Polymers Chain Reaction (q. PCI)

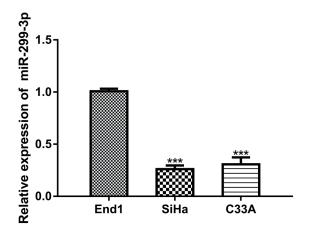
The total RNA was d from the cultured cell using TRIZOL t (Invitrogen, Carlsb CA, USA) and then quantified using p-1000 Thermo Fisher Scientific Inc., Nang SA) according to the provided Wa everse t scription was conductprotoc T reagent kit (TaKaRa, ed using Scrip KT-PCR was conducted at Shiga, ng SYBR Green Mix (TaKa-Ab00 system u, Shiga, China) with the following prim-Ra, Forward sequence: 5'-ACACTC-TATGTGGGATGGTAAAC-3', se sequence: 5'-GTGCAGGGTCCGAG-6 snRNA: Forward sequence: 5'-CTC-GGCAGCACA-3', Reverse sequence:

5'-AACGCTTCACGAATTTGCGT-3'. The following procedures were employed: 9's, followed by 40 cycles of 95 °C for s, and °C for 30 s. The relative miR-29' p expression level was calculated using the threshold (CT) method with U6.

Western Blot

The total protein from cultured s isolat ffBeyotin Haicells using RIPA men, Jiangsu, Q na) a tified v BCA Ch kit (Beyotime aimen, Ja according to the pr ed protocols. A amount of eparated at 10 SDS-PAGE, protein sa polyvinylidene difluoride and ther ansfer (PVDF) membrane ime, Haimen, Jiangsu, fter being blo with fat-free milk, membranes were incubated with primary ibodies (rabbit anti-TCF4: ab217668, rabbit i-N-cadherin 76011, rabbit anti-vimentin: nti-GAPDH: ab181602; Ab-3555, rabbit mbridge A, USA) at 4°C for overnight. anes were washed three times with TBS1. The membranes were incubated with anti-rabbit secondary antibody (ab6721, Abbridge, MA, USA) at 37 °C for 4 h. a signal was developed using BeyoECL kit (Beyotime, Haimen, Jiangsu, China) and analyzed with Image 1.42 software (NIH, Bethesda, MD, USA).

Cell Proliferation Assay


The cell viability was investigated using the Cell Counting Kit-8 (CCK-8; Beyotime, Haimen, Jiangsu, China) assay. In brief, 2,000 cells/well were seeded into 96-well plate and growth at the above-mentioned conditions. At the indicated time, CCK-8 reagent was added to each well. After further incubation for 4 h, the optical density at 450 nm was measured using a microplate reader.

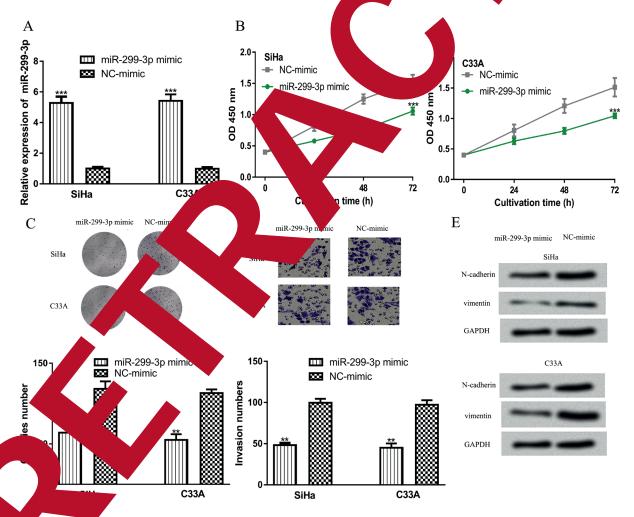
Colony Formation Assay

The cells were seeded into 6-well plate at the density of 500 cells/well and incubation for 2 weeks. Then, the cells were fixed with 4 % paraformaldehyde, stained with 0.1% crystal violet, and counted under a microscope.

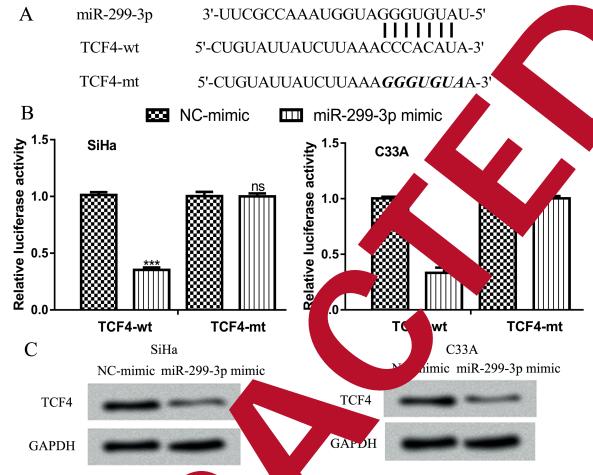
Transwell Invasion Assay

2 × 10⁴ cells in serum-free medium were seeded in the upper chamber precoated with Matrigel (BD Biosciences, San Jose, CA, USA), while the lower chamber was filled with medium contain-

Figure 1. Downregulation of miR-299-3p in CC cell lines (SiHa and C33A) compared with the normal cell line End1. MiR-299-3p: microRNA-299-3p; CC: cervical cancer.


ing FBS. After 48 h of incubation, non-invasive cells were removed, while the invasive stained with 0.1 % crystal violet are sounted and der a microscope.

Target Predictions


Two miRNA target prediction algorithms and miRDB, we used to an potential target of miR 3-3p.

Dual-Luciferase Namer says

(TCF4 The wild-type or mufting the tant (TCF4-m ere consti (Promega, es into pGL3 3'-UTR seq Madison, The cells were o-transfected with Luc vectors or synthetic miRrase a NAs using Lipofecta 2000. After incubation e cells were c d to analyze the rel-

(C) colony formation (200× magnification), (D) cell invasion (200× magnification), and (E) N-cadherin and vimention in CC cell lines transfected with synthetic miRNAs. MiR-299-3p: microRNA-299-3p; CC: cervical cancer; NC-in.

Figure 3. TCF4 was a target of miP search activity in CC cells transfected with synthetic miRNAs. MiR-299-3p and 3'-UTR of TCF4. **B,** Relative luciferase NAs and has sevectors. **C,** TCF4 expression in CC cells transfected with synthetic miRNAs. MiR-299-3p are roomally sevectors. C, TCF4 expression in CC cells transfected with p; CC: cerv of cancer; NC-mimic: negative control for miR-299-3p mimic; UTR: untranslated region; wty type; mt; and type in the control of th

ative luciferase activity assay keeping aga, Madison, (USA) with Renilla Lecrase ty as control.

Statistic Analysis

The distical analysis was onducted using the Schent's t-test or One-way analysis of variance. Tuke cost-hoc test on SPSS (Chicago, IL, US) that were essented as means \pm SD from three cent engineers. p < 0.05 was reasonable as starting annificant.

Results

wnreg Ition of MiR-299-3p

und that miR-299-3p level was significantly reduce in CC cell lines compared with the normal

cell line (Figure 1). Our results indicated that miR-299-3p may play a crucial role in the CC progression.

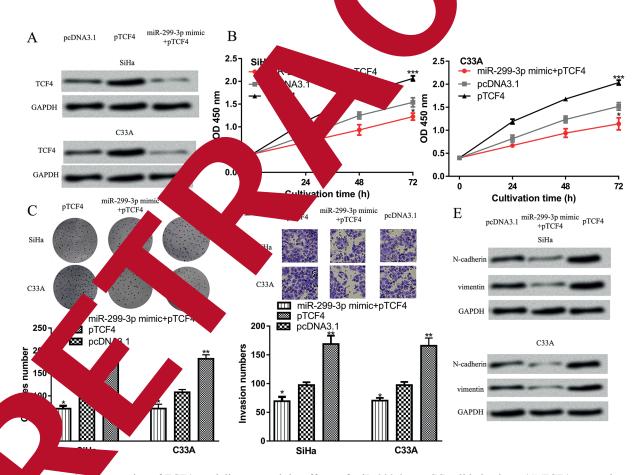
Overexpression of MiR-299-3p Inhibits CC Cell Growth and Invasion

To investigate the role of miR-299-3p in CC, the gain-of-function experiments were performed. qRT-PCR results revealed that the introduction of miR-299-3p mimic significantly increased the expression of miR-299-3p (Figure 2A). CCK-8 assay demonstrated that the overexpression of miR-299-3p inhibits CC cell proliferation compared with NC-mimic transfected cells (Figure 2B). Similarly, the colony formation assays revealed that the cells transfected with miR-299-3p mimic displayed fewer colonies compared with those transfected with NC-mimic (Figure 2C). We next examined the effects of miR-299-3p on CC cell

invasion using the transwell invasion assay. As presented in Figure 2D, the overexpression of miR-299-3p led to cell invasion suppression compared with NC-mimic. Western blot showed that miR-299-3p overexpression repressed N-cadherin and vimentin expression in CC cells (Figure 2E).

MiR-299-3p Directly Targeted TCF4 in CC

Bioinformatic analyses methods revealed that TCF4 was a potential target of miR-299-3p (Figure 3A). The Luciferase activity reporter assay revealed that the overexpression of miR-299-3p inhibited the Luciferase activity in the cells transfected with TCF4-wt (Figure 3B). Further, the Western blot showed that the TCF4 expression level could be repressed by miR-299-3p mimic transfection (Figure 3C).


MiR-299-3p Exerts its Regulatory Roles on CC Cell Behaviors Via Targeting TCF4

We next wondered whether TCF4 was a function target for miR-299-3p. Hence, the pTCF4 and miR-

299-3p mimic was co-transfected into the CC cells. Western blot showed that pTCF4 trans nificantly increased the expression a of To (Figure 4A). CCK-8 assay reve that TCF4 Ceration (Figoverexpression increased cell, ure 4B). Besides, colony formation v indicated that pTCF4 introduction lonies generated (Figure 4C). M over, the tra at TCF4 overexp vasion assay suggested increased cell invasion ility in CC cells (Ngure 4D). In addition, nd vime tin expression level wa eleva TCF4 (P re 4E). that the CF4 re-Notably, we for on d the effects of 9-3p mimmarkably re ic on CC ors (Figures 41

Discum

To date, multiple miRNAs have been reportto function rucial roles in CC¹³. For ex-

(re 4. Overexpression of TCF4 partially reversed the effects of miR-299-3p on CC cell behaviors. (A) TCF4 expression, proliferation, (C) colony formation (200× magnification), (D) cell invasion (200× magnification), and (E) N-cadherin tin expression in CC cell lines transfected with pTCF4, pcDNA3.1 or pTCF4 and miR-299-3p mimic. MiR-299-3p: micro 4-299-3p; CC: cervical cancer; TCF4: transcription factor 4.

ample, miR-944 was found elevated expressed in advanced CC and could be regarded as a biomarker to predict the prognosis of cancer patients 14 . MiR-4524b-5p expression was upregulated in relapsed CC tissues, and was able to regulate CC cell migration and invasion by regulating WTX and β -catenin expression 15 . These results indicated an oncogenic role of miR-944 and miR-4524b-5p in CC. On the contrary, miR-374b was found downregulated in CC and correlated with advanced FIGO stage 16 . They also found that the overexpression of miR-374b could regulate cell proliferation and invasion via targeting FOXM1, indicating the tumor suppressive role of miR-374b in CC 16 .

In this report, we first reported that miR-299-3p expression was significantly decreased in CC cell lines compared with the normal cell line. We further overexpressed miR-299-3p expression level in CC cells to explore the biological roles of miR-299-3p. We found that miR-299-3p expression inhibits CC cell proliferation, colony formation, and cell invasion. Western blot assay was used to measure the protein levels of two epithelial to mesenchymal trav (EMT) associated molecules, N-cadhe vimentin¹⁷. We found that miR-299-3p pression inhibited the expression of N-cad and vimentin.

Previous investigations⁸⁻¹⁰ have identifi several downstream targets -299-3 a puta-Hence, we demonstrated the CF4 bioinfor tive target of miR-299-3p tic analyses algorithms. A pr stud that TCF4 could be 591 to play an once t cancer¹⁸. ic role Here, we demon ted that mik could bind with the of TCF4 usin he Lurepe say. Also, we found ciferase activ that the expression of To uld be downregulated by <-299-3p. More tantly, rescue its showed that the overexpression of experi TCF artially exersed the effects of miR-299ents. Thus, miR-299-3p regu-3p4 lates chavior rough TCF4.

nclusions

we demonstrated that miR-299the expression in CC cell lines pared with the normal cell line. Overall, we and that the overexpression of miR-299-3p has sits CC cell behaviors by targeting the expression of TCF4. Our investigation provided novel insight into the role of miR-290 man cancer.

Conflict of interest

The authors declare no conflicts interest.

Rnce

- 1) Bray F, Ferland Soerjoin, Siegel F, Forre LA, Jemal A. C. al Cancer S. GLOBO-CAN Estates of Incidence and Indian Worldwide for the Source of Source S. CA Cancer J Climates (18): 424.
- 2) Seppa K, Pitkaniem S, N, Hakama M. Age-related insidence of cervice cer supports two aetical components: a culation-based register study. BJOG 2016; 123: 772-778.
- FOROUZANFAR L., FOREMAN KJ, DELOSSANTOS AM, LOZANO R, LOI D, MURRAY CJ, NAGHAVI M. Breast and cervical licer in 187 countries between a systematic analysis. Lancet 1484.
- 4) Lee 15, Botta A. MicroRNAs in cancer. Annu Rev Pathol 2009: 4: 199-227.
- M, SLACK FJ. MicroRNAs: small molecules of roles C. elegans to human cancer. Biol Cell 2008; 100: 71-81.
- ZHANG B, PAN X, COBB GP, ANDERSON TA. MicroRNAs as oncogenes and tumor suppressors. Dev Biol 2007; 302: 1-12.
- 7) Wang V, Wu W. MicroRNA-based therapeutics for cancer. BioDrugs 2009; 23: 15-23.
- CHEN X, QI M, YANG Q, LI JY. MiR-299-3p functions as a tumor suppressor in thyroid cancer by regulating SHOC2. Eur Rev Med Pharmacol Sci 2019; 23: 232-240.
- DANG S, ZHOU J, WANG Z, WANG K, DAI S, HE S. MiR-299-3p functions as a tumor suppressor via targeting Sirtuin 5 in hepatocellular carcinoma. Biomed Pharmacother 2018; 106: 966-975.
- 10) WANG JY, JIANG JB, LI Y, WANG YL, DAI Y. MicroR-NA-299-3p suppresses proliferation and invasion by targeting VEGFA in human colon carcinoma. Biomed Pharmacother 2017; 93: 1047-1054.
- SAADEDDIN A, BABAEI-JADIDI R, SPENCER-DENE B, NATERI AS. The links between transcription, beta-catenin/ JNK signaling, and carcinogenesis. Mol Cancer Res 2009; 7: 1189-1196.
- 12) LIU L, ZENG Z, YI J, ZUO L, LV J, YUAN J, LIN Z, LUO R, FENG X. Expression and clinical significance of transcription factor 4 (TCF4) in epithelial ovarian cancer. Cancer Biomark 2019; 24: 213-221.
- WANG F, LI B, XIE X. The roles and clinical significance of microRNAs in cervical cancer. Histol Histopathol 2016; 31: 131-139.

- 14) PARK S, KIM J, EOM K, OH S, KIM S, KIM G, AHN S, PARK KH, CHUNG D, LEE H. MicroRNA-944 overexpression is a biomarker for poor prognosis of advanced cervical cancer. BMC Cancer 2019; 19: 419.
- 15) Li T, Zhou W, Li Y, Gan Y, Peng Y, Xiao Q, Ouyang C, Wu A, Zhang S, Liu J, Fan L, Han D, Wei Y, Shu G, Yin G. MiR-4524b-5p/WTX/β-catenin axis functions as a regulator of metastasis in cervical cancer. PLoS One 2019; 14: e0214822.
- 16) XIA N, TAN WF, PENG OZ, CAI HN. MiR-374b reduces cell proliferation and cell invasion cancer through regulating FOXM1
 Pharmacol Sci 2019; 23: 513-521
- 17) DERYNCK R, WEINBERG RA. EMT cancer: more than meets the eye. Dev Cell 2: 313-316.
- 18) Huang X, Tang F, Weng Z, Zhou M. O. MiR-591 functions as tumor pressor a cancer by targeting TCF4 inhibits Hipper signaling pathway. Control of Cell Int 2019; 19.