Aldose reductase inhibitor Epalrestat alleviates high glucose-induced cardiomyocyte apoptosis *via* ROS

X. WANG¹, F. YU², W.-Q. ZHENG³

Abstract. - OBJECTIVE: To clarify the role of aldose reductase inhibitor (ARI) in the high glucose-induced cardiomyocyte apoptosis and its mechanism

MATERIALS AND METHODS: In this study, H9c2 cardiomyocytes were employed as objects, high-glucose medium as stimulus, and ARI Epalrestat as a therapeutic drug. The cell apoptosis and activity changes of nitric synthase (NOS), NO, and reactive oxygcies (ROS) were evaluated via Hoechst seenzyme-linked immunosorbent assay (Logy), polymerase chain reaction (PCR), and We blotting. In addition, the mitochondrial mediane potential was measured via thorescencounting.

RESULTS: Epairestat inh ed th tivity of AR to improve high glug -induce xidative stress in cardiomyocyt aken ity, relieve the inhibition of ate mitochondrial m brane ial damage, reduce the level nigh gluco. ced cardiomyocyte ap and supp he expression and aspase-3, th eby preventing high Jlucos ced cardiomyocyte apoptosis

CONC SIONS: ARI program against high glucog anduced cardiomyocy apoptosis.

Key

Aldo Lase inhi Ir, High blood glucose, Apoptosis,

Introduction

With the aging of the population, as well as ges in people's lifestyle, the incidence rate of tes is increasing year by year in China, which has become a major public health issue. A survey revealed that over 70% of diabetic patients

die of cardiovascular es and that the mors 2-4 times the 7 non-diabetic popuon¹. Therefore, diabetes-related cardiovascular nplications ar leading cause of death in diic patients. rently, scholars in China and ere have sidered diabetes as an inder for cardiovascular diseases². exicity is the main factor damag-High-gra the heart and vessels, and the degree of such closely correlated with the duration of cemia and level of blood glucose

Reports³⁻⁵ have manifested that long-term high-glucose cannot only activate the renin-angiotensin-aldosterone system (RAAS), produce reactive oxygen species (ROS), and increase the advanced glycation end products (AGEs), as well as their receptors (RAGEs), but also activate inflammatory response and endoplasmic reticulum stress response, thereby promoting the damage and death of cardiomyocytes and vascular endothelial cells through various pathways. Hence, the current research hotspot is to explore the new mechanism of high glucose-induced damage to cardiomyocytes and vessels, and provide novel targets and measures for the prevention and treatment of diabetes-related cardiovascular complications.

The pathogenesis of diabetes is that glucose fails to be normally transformed into glycogen stores for a long time in the body of patients, thereby triggering the abnormally active reduction pathway of aldose. As a key enzyme in the polyol metabolism pathway, aldose reductase (AR) can reduce glucose into sorbitol which, with strong polarity, does not easily pass through cell membranes, but rather it accumulates in cells to alter the permeability of cells and weaken the

¹Department of Pharmacy, Weihai Central Hospital, Weihai, China

²Department of Dermatology, Weihai Central Hospital, Weihai, China

³Department of Cardiology, Weihai Central Hospital, Weihai, China

Na⁺-K⁺-ATPase activity. This resulting in inositol loss and cell metabolism, as well as function impairment⁶. Since the drugs that block or attenuate AR activity can be used to prevent or delay the occurrence of diabetic complications, AR inhibitors (ARIs) have become therapeutic factors in the treatment of diabetes⁷.

Thus, it was wondered whether high glucose-induced myocardial injury mechanism in diabetes involves aberrantly active aldose reduction pathways and whether ARIs are capable of improving high glucose-induced myocardial injury. Based on this hypothesis, this work aims to investigate the influence of ARIs on cardiomyocyte apoptosis and the regulatory mechanism of ROS therein, by establishing the high glucose-induced cardiomyocyte apoptosis model using ARIs and detecting AR activity, cell survival rate, ROS level, and changes in apoptosis-related indicators.

Materials and Methods

Culture of Cardiomyocytes

H9c2 cells were purchased from the Sha Institute of Biochemistry and Cell Biolog Chinese Academy of Sciences (Shanghai, The cell suspension was transferred into a centrifuge tube and added with 5 mL of Dul co's Modified Eagle Medium (PMFM; Gib Rockville, MD, USA) contain fetal bo ville, vine serum (FBS; Gibco, F USA). om for After centrifugation at 1. hin, with the supernatant discarded ell with an appropriate me or 1 contaming nd mixed 10% FBS, pipette and their concentration y usted to 1x lls/mL. Next, the cell ated into a 2. mL culture flask and cultured incubator with 5% and 24 h late CO, at 37 medium was replaced

Cemuntin Kit (CCK)-8 Assay

the logar nic growth phase were The prepared into the suspenested, ted. non of 1×10⁵cells/mL. Subthe c e seeded into a 96-well plate tly, they L/well). In the experiment, triplicate wells Trols were set. After inoculation rnight, the cells were observed under a microto verify whether they adhered well. After nt, each well of cells was cultured with 20 μL δ. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; Sigma-Aldrich, St.

Louis, MO, USA) at 37°C for 4 h. Next, with the supernatant sucked away carefully, each well of cells was added with 150 µL of dimethyl (DMSO; Sigma-Aldrich, St. Louis, Shaken, and mixed evenly. Finally the optical density (OD) of each well was a sured at the wavelength of 570 nm using a many terreader. The experiment was repeated for this see.

Determination of Langue Dehydrogenase (Contact

The cells in the log wth pha e were digested, harves red into e susand pension at the ells/mL. oncentration Then, they plate (100 eeded into a riment, triph ate wells and μL/well) the a control group w After cell attachment, the culture plates were ed in the incubator at 5% CO, and corred for 24 h. A total 0 μL of the supernatant was obtained from h well, group added with the corresponding to the kit instructions, mixed ents accordi and let d at room temperature for 3 , a 1 cm light path cuvette was min zeroea . wavelength of 440 nm using doudistilled water, and the OD was determined of the microplate reader. The unit is as follows: 1,000 mL of culture solution reacts with matrices at 37°C for 15 min and 1 g/ mol pyruvic acid produced in the reaction system is regarded as 1 unit. Finally, the content of LDH in the medium was calculated using the formula.

Hoechst Staining

All groups of cells cultured were inoculated into coverslips and treated in different groups, and once the supernatant was removed, they were washed using phosphate-buffered saline (PBS), fixed in Carnoy's solution and rinsed using PBS for 5 min. Then, the cells were stained with Hoechst 33258 working solution, let stand at room temperature for 15 min, rinsed with PBS again and sealed in the mixture of glycerin and PBS (1:1) or water-soluble mounting medium. Finally, the cells were observed under a fluorescence microscope. It was found that the cell nuclei displayed the blue fluorescence spots because the Hoechst stains are the specific fluorescence probe of deoxyribonucleic acid (DNA).

Polymerase Chain Reaction (PCR)

The cells treated were collected from each group to extract total ribonucleic acids (RNAs) using TRIzol (Invitrogen, Carlsbad, CA, USA).

After the concentration of samples was measured, RNAs were reversely transcribed into cDNAs in the first 40 cycles using the reverse transcription system according to the concentration. Then, PCR amplification was performed with the reverse transcription reaction conditions set. After each cycle, the fluorescence signals were collected in a real-time way, while the amplification and dissolution curves were plotted. Primer sequences used in this study were as follows: caspase 3, F: 5'-GTCCGGTACTCTCACTATACAC-3', R: 5'-CGGTAAGGTTGTCACTTGGA-3'; NOS, F: 5'-GCCTGACACGGATACTACGGCAG-3', 5'-GGATTACAGTCATGGCGCCAAG-3'; R: GAPDH: F: 5'- CGCTCTCTGCTCCTCTGTTC -3', R: 5'-ATCCGTTGACTCCGACCTTCAC-3'.

Detection of Caspase-3 Activity

After all groups of cells were collected, washed in PBS, and lysed with trypsin *via* an ice bath, the cell lysates were extracted to absorb cell medium for later use. Then, the adherent cells were digested using trypsin, transferred into the cell culture solution stored, mixed evenly with 2 mM Ac-DE-VD-pNA, and incubated at 37°C for 60-120 The absorbance (A value) was measured relatively obvious color changes were found

Western Blotting (WB)

The cells were taken from group a washed using D-Hank's for en, wit the D-Hank's blotted up u absol t paper, each group of cells was ed with ωL of pre-cooled lysis buffer a min. Subsequently, group oteins were collected using a n Eppenscraper, p C and dorf (EP) tube centrifuged etant was sucked and 12,000 rpm. transferred into new 1 es. After the protein con cration was a ined by the biic acid (BCA) meth. (Pierce, Rockcincho , USA) the proteins were mixed evenly ford buffer and heated at 100°C wit total of for 6 μL of proteins were ded in well 1th prepared separation e electrophoresis was peracer 🛭 per voltage in the buffer. Afunder a for t, with the gel clinging to polyvinylidene DF) membranes (Roche, Basel, itzeriana, the proteins were transferred onmembranes in the transferring solution at a constant voltage of 100 V for 60 min. After that, the PVDF membranes were sealed in 5% skim milk powder at room temperature for

1 h, while the protein bands were cut according to molecular weight and incubated with primary antibodies in a refrigerator at 4°C of On the second day, the PVDF mem taken out, rinsed using Tris-By red Saline and Tween-20 (TBST), and in ted with the secondary antibody IgG (1:5,00 om temperature for 1 h. After inc ducts were rinsed again using ST, follow velopment and measur ent of grayscale Tannon 5200 fluores immy development system.

Measureme of Inhibit.

Als in each After bei ed in an ice t ged at 4°C. he colorless group w and transparent matant was absorbed. Then the supernatan. added into a 96-well was initiated with pl a reaction who addition of reductive coenzyme II (0.16 nol/L) and \mathbf{D}' glyceraldehyde substrate (10 A value at 340 nm was read ol/L), while yously us the microplate reader within y of the inhibitory coenzyme 40 metabo her the action of the enzyme and bstrate represented the activity of AR. Fiinhibition curve was plotted with the concentration as X-axis and inhibition rate as Y-axis.

Determination of ROS Concentration

The cells at the culture concentration of 6-8×10⁴ cells/mL were taken from each group, sub-cultured in the medium for 24 h, and stimulated with stimuli at different concentrations for 8 h. After the culture solution was discarded, the cells were added with the intracellular total ROS probe CM-H2DCFDA at the final concentration of 5 pmol/L and incubated at 37°C in the dark for 30 min. After that, the probe was cleaned using PBS, the products were observed under a confocal laser scanning microscope at the excitation wavelength of 488 nm and an emission wavelength of 515 nm. and green fluorescence was seen. The screenshots of 8-10 cells were acquired in the field of view under a high-power microscope (600×). Finally, the fluorescence intensity was analyzed *via* software.

Determination of Nitric Oxide (NO) Concentration

The NO concentration was determined using the NO detection kit (Applygen Technologies, Beijing, China). After drug pretreatment or uric acid stimulation, the Roswell Park Memorial Institute-1640 (RPMI-1640) medium was replaced with DMEM, and the supernatant of the cell medium was taken, centrifuged, and used for measurement of NO content. All the operations were performed strictly according to the methods in the kit instructions.

Detection of Mitochondrial Membrane Potential

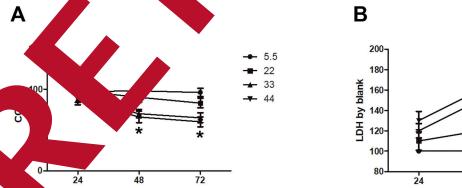
The cells treated were collected and re-suspended in 0.5 mL of cell medium containing serum. Then, they were added with 0.5 mL of JC-1 staining working solution, bottomed up for several times, mixed evenly, and incubated in the incubator at 37°C in the dark for 30 min. The resulting cells were centrifuged at 600 g/min and 4°C, and once the supernatant was discarded, they were washed using 1× JC-1 staining buffer for 2 times, re-suspended in 1× JC-1 staining buffer, and centrifuged as above-mentioned for deposition. The supernatant was removed and the above washing step was repeated once. Finally, the fluorescence intensity was measured using a flow cytometer.

Statistical Analysis

Data were expressed as mean \pm SD (deviation) and the percentage of those in rol group, and analyzed using Statistical Produ Service Solutions (SPSS) 13.0 software (S Inc., Chicago, IL, USA). The tween the two groups were m indeper dent samples t-test. Compa multiple n amo groups was made using -way A VA followed by Post-Hoc Test (L ence). p < 0.05 sugge that difference was statistically si ncant.

Results

Action Time Curve in High Glucose-Induced Cardiomyocyt

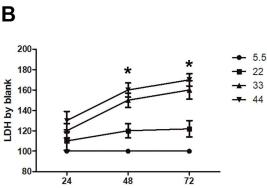
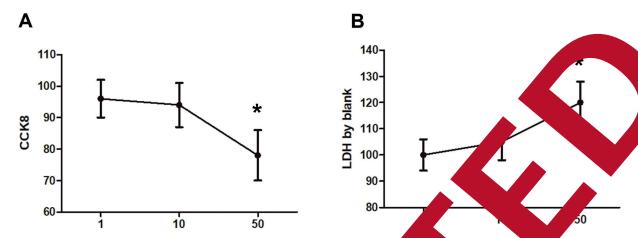

The cardiomyocytes were treated the DMEM medium containing 5.5, 22, 33, ap mmol/L glucose for 24, 48, and 72 h, respecti he CCK-8 assay results showed that in the of cardiomyocytes was lowered a concentra time-dependent manner gure 1A), and L say results revealed the he same ld true for he degree of cardiomyoc showing statisgure 1P tically significan <0.05). ffere ol/L glu-Moreover, aft reatment cose for 48 omyocytes urvival rate o 33 mmol/L and 48 h were reached (taken as the expericonditions.

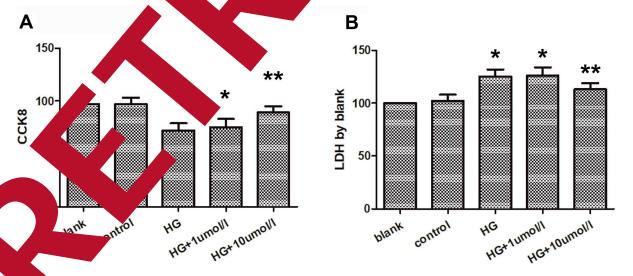
Property of Epalrestat Cardiomyocytes Cultured in High ucose

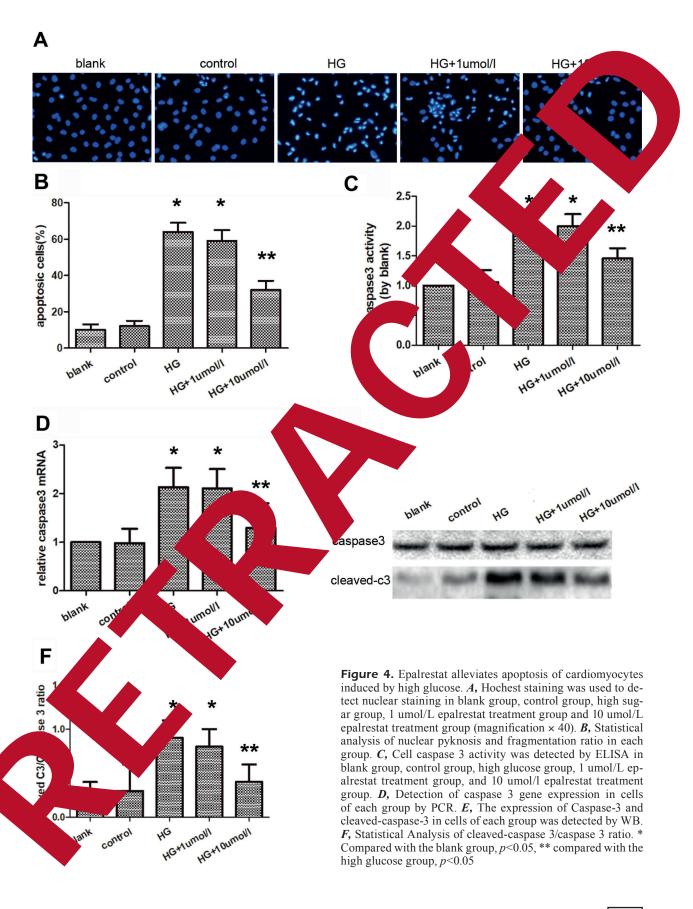
fter being ted using Epalrestat at the constrations of 10 and 50 μ mol/L for 48 h, the color and injury degree of the cardiomyoe, were detected *via* CCK-8 and LDH cays, respectively. It was found that Epalrestat ignificant damage to cardiomyocytes at μ . /L, and the difference was statistically significant (Figure 2, p<0.05). Subsequently, the experiment was conducted under the following conditions: Epalrestat at 1 and 10 μ mol/L for 48 h.

Epalrestat Protected Cardiomyocytes from High Glucose-Induced Damage

According to the CCK-8 assay results, there was no statistical difference in the survival rate


Fig. 2. Effects of Glucose on Myocardial Cell Activity. *A*, CCK8 detects cell viability after 24h, 48h, and 72h of 5.5, 22, 33, 44 mmol/L glucose treatment. *B*, LDH detects cytotoxicity after 24h, 48h, and 72h of 5.5, 22, 33, 44 mmol/L glucose treatment. *compared with 5.5mmol/L glucose, p < 0.05.


Figure 2. Effect of epalrestat on myocardial cell activity. *A*, CCK8 detects a spatial after 48 h after 10, 50 umol/L epalrestat treatment. *B*, LDH detects cytotoxicity after 48 h after 1, 10, 50 col/L epalrestat, p<0.05.

of cardiomyocytes between normal control group and mannitol group (Figure 3A, p>0.05, n=6), and compared with that in normal control group, the survival rate of cardiomyocytes was notably decreased in high glucose group, showing a statistically significant difference (p<0.05). Indition, no difference was found in the rate of cardiomyocytes between high glucose p=0.05, while it was substantially raised in high glucos

ay results reversed that there was no statistical erence in the diomyocyte toxicity between not a control sup and mannitol group (Figure 2005). 6), and compared with that in normal control sup and compared with that in normal control sup and compared with that in normal control sup and compared with that in normal control group, the cardiomyocyte toxicity was notably increased in high glucose group, a statistically significant difference control was not different between high glucose + 1 pmol/L Epalrestat group and high glucose group, while it was substantially raised in high glucose +

3. Epalrestat protects cultured cardiomyocytes from high glucose. *A*, CCK8 detects cell viability in blank, control, high group, 1 umol/L epalrestat treatment group, and 10 umol/l epalrestat treatment group. *B*, LDH detects cytotoxicity holank, control, high glucose group, 1 umol/L epalrestat treatment group, and 10 umol/L epalrestat treatment group.* Compared with the blank group, *p*<0.05, ** compared with the high sugar group, *p*<0.05

10 μ mol/L Epalrestat group compared with that in high glucose group, displaying a statistically significant difference (p<0.05).

Epalrestat Alleviated High Glucose-Induced Cardiomyocyte Apoptosis

Hoechst staining results revealed that compared with that in normal control group, the proportion of cells with karyopyknosis was evidently raised in high glucose group, displaying a statistically significant difference (Figure 4A, 4B, p < 0.05, n=6). Moreover, it was not different between high glucose + 1 µmol/L Epalrestat group and high glucose group, but significantly decreased in high glucose + 10 µmol/L Epalrestat group compared with that in high glucose group. Also, p < 0.05 was a statistically significant difference. PCR results indicated that high glucose group had a markedly higher gene expression level of Caspase-3 than normal control group, with a statistical difference (Figure 4C, p<0.05, n=6), and that it was evidently lowered in high glucose + 10 µmol/L Epalrestat group compared with that in high glucose grou so, p < 0.05 was a statistically significan mence. It was found through enzyme-link munosorbent assay (ELISA) that the activ Caspase-3 in high glucose group was signification group, w ly higher than that in normal cona statistical difference (Figur 05, n=6 glucose and that it was evidently lo ed in h up com + 10 μmol/L Epalrestat ed with that in high glucose ground cally significant diff nce () . According to the WB result cleavedne propor gh glu-Caspase-3 was antly raised that in normal control cose group co group, showing a statidifference (Figure 05, n=6), while proportion was owered in high glasse + 10 μmol/L 4E, 4F, 1 evident at grow compared with that in high glu-Epal aying a statistically significant cos 0.05). differe

estate d the Oxidative Stress in diomyo es

detection results revealed that inhibition was markedly decreased in high cose group compared with that in normal ol group (Figure 5A, p<0.05, n=6), and that as no difference between high glucose + 1 mol/L Epalrestat group and high glucose group, while it was evidently increased in high

glucose + 10 µmol/L Epalrestat group compared with that in high glucose group (p < 0.05). The NO synthase (NOS) gene expression was det PCR. It was discovered that the exp n high glu of NOS gene was markedly lower cose group compared with that j rmal control group, showing a statistical differ igure 5B, p < 0.05, n=6) and that it w sed in evide high glucose + 10 μmol/ Jalrestat gr pared with that in high ucose group (p According to the det ination ults, the c centration of NO in h group y s sigmal con nificantly lower a that group 05, n=6vidently (Figure 5C, W 1cose + 10 p. Epalrestat higher in h The glucose group (p < 0.05). group that Additionary, high group had a markedly higher level of ROS p. ad in cardiomyocytes Figure 5D, p < 0.05, al control grou), while the production level of ROS in carmyocytes wa substantially reduced in high ose + 10 un L Epalrestat group compared at in high acose group, showing a statisdifference (Figure 5E, p < 0.05, n=6). 1.1 staining results manifested that mitochondrial membrane potential was sigdecreased in high glucose group com-In that in normal control group (p < 0.05), and it was higher in high glucose + 10 µmol/L Epalrestat group than that in high glucose group (p < 0.05).

Discussion

A major cause of multiple diabetes-related complications is the abnormality of the polyol pathway directly induced by high glucose8. In recent years, the key enzymes in the polyol pathway, namely, AR and ARIs, have attracted much attraction9. With Epalrestat, an ARI widely applied in clinic, as the research object, the present study found that it exerted a protective effect against high glucose-induced cardiomyocyte injuries. Namely, it inhibited AR activity to attenuate oxidative stress and mitochondrial injury in cardiomyocytes, and reduce high glucose-induced cardiomyocyte apoptosis. Excessive activation of AR can result in circulatory disorders, and affect the activity of vascular endothelial and myocardial cells⁵, thus weakening their reactivity to bioactive substances such as histamine and platelet-activating factor, aortas' reactivity to phenylephrine, and the relaxation

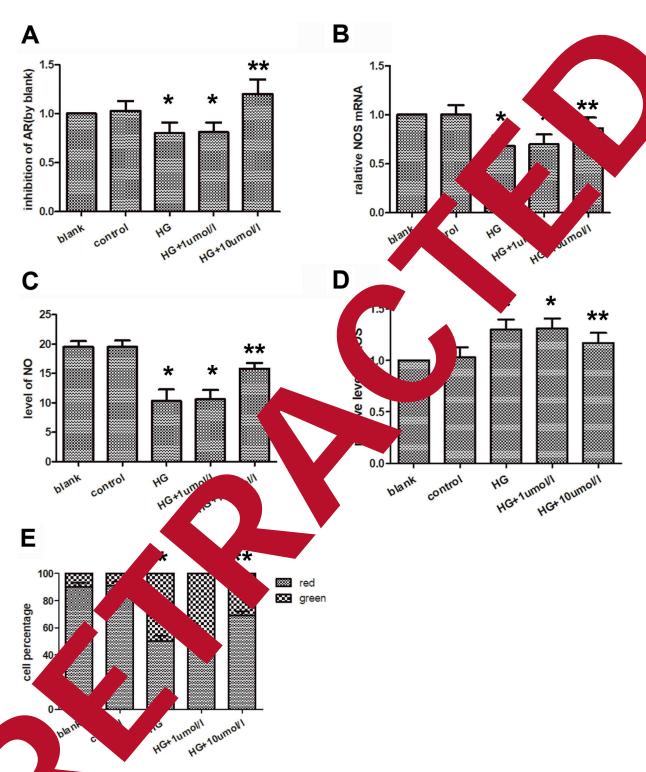


Fig. 1. Stat ameliorates oxidative stress induced by high glucose in cardiomyocytes. A, Detection of Cell AR induction was a sured in blank group, control group, high sugar group, 1 umol/L epalrestat treatment group, and 10 umol/L estat treatment group. B, Detection of NOS mRNA expression in cells of each group by PCR. C, Detection of NO Concentration in Cells of Different Groups. D, Detection of ROS concentration in cells of each group. E, Detection of mitochondrial meaning potential changes in each group by JC-1. * Compared with the blank group, p<0.05, ** compared with the high glucos. group, p<0.05

of vascular endothelial cells by acetylcholine⁴. The intervention with ARIs can improve the microvascular reactivity to bradykinin, histamine, platelet-activating factor, and so on, significantly enhance the maximal contractile response of aortas to phenylephrine action, and restore acetylcholine-dependent vasodilation in endothelium^{10,11}. The above effects may be realized through NOS.

It has been found in clinical research that Epalrestat, non-competitive ARIs, is capable of relieving diabetic peripheral neuropathy, autonomic neuropathy, fundus disease, and renal lesions¹¹⁻¹³. Also, there were few findings in the study of diabetic cardiomyopathy: the diabetic patients with neuropathy and decreased cardiac ejection fraction were randomly divided into ARI treatment group and placebo group. The 1-year follow-up results showed that the left ventricular ejection fraction, cardiac output, and left ventricular stroke volume under resting conditions, as well as left ventricular ejection fraction in motion state, were notably improved in ARI treatment group. The efficacy was independent of blood pressure, insulin use, and abnormal heart rate variation under baseline conditions, while the card put, stroke volume, and end-diastolic volume all lowered in placebo group¹⁴. The above i indicate that ARIs repress and even partiall verse the worsening of diabetic ca

In this research, the high induce cardiomyocyte injury mo was c tructed. Epalres alleviatand it was discovered ed high glucose-induced tiy inhibition on NO, production, and protected the mitochono embrane potential from s under oxic stress, activation of the inultimately w y, decreasing the tracellular apoptosis proportig f apoptotic ce. d relieving high duced myocardial cotoxicity. This glucos why palrestat can improve the disexpl n diabetic patients with cardieas y to so extent and provides a ac ins oretica for treatment in those with thy. ic care

Conclusions

und that Epalrestat inhibited AR activity to an viate oxidative stress, thereby improving high glucose-induced cardiomyocyte injuries.

Conflict of Interests

The Authors declare that they have no conflict of

References

- 1) Hong XY, Lin J, Gu WW. Richfactors arrapies in vascular diseases: an orella reviewed diseases and prelia reviewed diseases. Physiol 2019; 234: 8 48232.
- 2) YUAN T, YANG T, CLOUDE FU D, Y, WANG J, YUAN Q, YU H, XU W XIE WITH JUBY STRESS and JUBY MINISTRA (IN MINISTRA CONTROL OF THE CONTROL OF T
- 3) HUYNH DO BC, McMUL, R, RITCHIE RH. Diable care pathy: mechanisms and new treatment strate regeting antioxidant signaling pathways. Pha. 1 Ther 2014; 142: 375-
 - ADO JA. Cellular death, reactive oxygen species (ROS) and distriction complications. Cell Death Dis 2018; 9: 119.
 - VANG Z, Hot D, ZHANG X, XIAO W, WANG L, CUI CAI G, CHEN X, WU D. Aldose reates endothelial cell dysfunction induced by nigh uric acid concentrations. Cell Commun Signal 2017; 15: 3.
- HEMSHEKHAR M, KEMPARAJU K, GIRISH KS. Bere mitigates high glucose-potentiated platelet aggregation and apoptosis by modulating aldose reductase and NADPH oxidase activity. Free Radic Biol Med 2019; 130: 196-205.
- HUANG Q, LIU Q, OUYANG D. Sorbinil, an aldose reductase inhibitor, in fighting against diabetic complications. Med Chem 2019; 15: 3-7.
- JIN QS, HUANG LJ, ZHAO TT, YAO XY, LIN LY, TENG YQ, KIM SH, NAM MS, ZHANG LY, JIN YJ. HOXA11-AS regulates diabetic arteriosclerosis-related inflammation via PI3K/AKT pathway. Eur Rev Med Pharmacol Sci 2018; 22: 6912-6921.
- SOLTESOVA PRNOVA M, SVIK K, BEZEK S, KOVACIKOVA L, KARASU C, STEFEK M. 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (Cemtirestat) alleviatessymptoms of peripheral diabetic neuropathy in Zucker diabetic fatty (ZDF) rats: arole of aldose reductase. Neurochem Res 2019; 44: 1056-1064.
- ALAM F, SHAFIQUE Z, AMJAD ST, BIN AM. Enzymes inhibitors from natural sources with antidiabetic activity: a review. Phytother Res 2019; 33: 41-54.
- SENTHILKUMARI S, SHARMILA R, CHIDAMBARANATHAN G, VANNIARAJAN A. Epalrestat, an aldose reductase inhibitor prevents glucose-induced toxicity in human retinal pigment epithelial cells in vitro. J Ocul Pharmacol Ther 2017; 33: 34-41.
- 12) He J, GAO HX, YANG N, ZHU XD, SUN RB, XIE Y, ZENG CH, ZHANG JW, WANG JK, DING F, AA JY, WANG GJ. The aldose reductase inhibitor epalrestat exerts nephritic protection on diabetic nephropathy in db/db mice through metabolic modulation. Acta Pharmacol Sin 2019; 40: 86-97.

- 13) HOTTA N, KAWAMORI R, FUKUDA M, SHIGETA Y; Aldose Reductase Inhibitor-Diabetes Complications Trial Study Group. Long-term clinical effects of epalrestat, an aldose reductase inhibitor, on progression of diabetic neuropathy and other microvascular complications: multivariate epidemiological analysis based on patient background factors and
- severity of diabetic neuropathy. Diabet Med 2012; 29: 1529-1533.
- 14) Hu X, Li S, Yang G, Liu H, Boden G, Li L, Efficacy and safety of aldose reductase inhibit treatment of diabetic cardiovascul readition neuropathy: systematic review and meta-analysis. PLoS One 2014; 9: e87096