The role of extracellular conditions during CaCo-2 cells growth: a preliminary study for numerical model validation
M. Ledda 1*, C. De Lazzari 2,3*, A. Lisi 1, L. Fresiello 1,3, S. Grimaldi 1, M.G. Piccioni 4, A. Di Matteo 5, L. Fusco 5, L. Lanzi 5, C.M. Caldarera 3, N. Alessandri 5,3 1 National Research Council – Institute of Neurobiology and Molecular Medicine, Rome (Italy) 2 National Research Council – Institute of Clinical Physiology, U.O.S of Rome (Italy) 3 Istituto Nazionale per le Ricerche Cardiovascolari, Bologna (Italy) 4 Department of Gynaecological Sciences, Perinatology and Puericulture, III Division of Obstetrics and Gynaecology-Rome University “La Sapienza” (Italy) 5 U.O.C. of Cardiology, University “Sapienza”, Polo Pontino, Latina, (Italy) *Both authors contributed equally to this work
Objectives: One important limitation in cell therapy protocols, and regenerative medicine (an innovative and promising strategy for different pathologies treatment), is the lack of knowledge about cells engraftment, proliferation and differentiation. In order to allow an efficient and successful cell transplant, it is necessary to predict the logistics, economic and timing issues during cellular injection. It has been reported that several parameters, such as cells number, temperature and extracellular pH (pH0) value can influence metabolic pathways and cellular growth. Numerical analysis and model can help to reduce and understand the effects of the above environmental conditions on cell survival.
The aim of this paper is to develop the first step of cells transplantation in order to identify “in vitro”, which parameters can be useful to develop and validate a numerical model, able to evaluate “in vivo” cells engraftment and proliferation.
Material and Methods: We studied the variation of extracellular parameters – such as medium volume, buffer system, nutrient concentrations and temperature on human colon carcinoma cells (CaCo-2) “in vitro culture” – pursuing the goal of understanding in deeper details cellular processes such as growth, metabolic activity, survival and pH0.
Results: Results showed that CaCo-2 cells growth and mortality increase after two days in culture when cells were suspended in 3.5 ml volume to respect of 10 ml volume. Different temperature values influenced CaCo-2 cells growth and metabolic activity showing a direct relationship with the volume of the medium.
Conclusions: Our results describe as CaCo-2 cell growth, metabolic activity, mortality and extracellular pH were influenced by extracellular parameters, enabling us to develop and validate a numerical model to be use to predict cells engraftment and proliferation.
Corresponding Author: Antonella Lisi, Ph.D; e-mail: antonella.lisi@artov.inmm.cnr.it
Free PDF DownloadThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
To cite this article
M. Ledda 1*, C. De Lazzari 2,3*, A. Lisi 1, L. Fresiello 1,3, S. Grimaldi 1, M.G. Piccioni 4, A. Di Matteo 5, L. Fusco 5, L. Lanzi 5, C.M. Caldarera 3, N. Alessandri 5,3
The role of extracellular conditions during CaCo-2 cells growth: a preliminary study for numerical model validation
Eur Rev Med Pharmacol Sci
Year: 2011
Vol. 15 - N. 1
Pages: 61-70